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Effects of Noise in Symmetric Two-Species Competition
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We have analyzed the interplay between noise and periodic modulations in a classical Lotka-Volterra
model of two-species competition. We have found that the consideration of noise changes drastically
the behavior of the system and leads to new situations which have no counterpart in the deterministic
case. Among others, noise is responsible for temporal oscillations, spatial patterns, and the enhancement
of the response of the system via stochastic resonance. [S0031-9007(98)06013-X]

PACS numbers: 87.10.+e, 05.40.+j

In the past years the study of deterministic mathematiknown that, for 8 < 1, both species are present but,
cal models of ecosystems has clearly revealed a large véer B8 > 1, exclusion takes place through a symmetry-
riety of phenomena, ranging from deterministic chaos tdoreaking bifurcation and one of the species is eliminated.
the presence of a spatial organization [1-4]. In the ab- As an additional feature, we account for a nonstationary
sence of spatial dependence these models study the tireavironment. The simplest way to do it is to assume
evolution of the averaged number of individuals of somethat our dynamics is modulated through a periodic varia-
interacting species. When space is considered, the dé&en in one of the relevant parameters. Seasonality and
scription is usually done in terms of population densitydaily variations are the most important sources of regu-
fields. These models, however, do not account for théar forcing. The explicit case we consider here is de-
effects of noise despite the fact that it is always presenscribed by
in actual population dynamics and arises from different B=pB>1t) =1+¢e+ asinw), (3)
sources, sm_Jch as thg intrinsic stochasticity assoma_teq ‘,N'Where ¢, @, andwy are constants. This form @(7) cor-
the dynamics of the individuals and the random Va”ab'“tyresponds to a situation in which the competition between

of the environment [5]. Frequently, its effects have beeny,qjes is altered in such a way that we move from coexis-
assumed to be only a source of disorder [6]. Conversely,qce (B8 < 1) to exclusion @ > 1) in a regular fashion.

in this Letter we show how the consideration of noise intpqo change in the competition rate may occur when a lim-

a classical Lotka-Volterra model of two-species competl—lting resource which is used by both populations goes from

tion changes drastically and in an unexpected fashion thg .ge 15 Jow values. Thus, at high levels, competition is
dynamics of the deterministic case. Moreover, conS|dera\7V?ak but can become strong at low levels.

tion of noise and space together leads to the appearance o Although some Lotka-Volterra models with sinusoidal

spatiotemporal patterns which in the deterministic moc’|e|1perturbations of parameters show very complex dynamical
except for an initial transient and no matter the value Obatterns [8], in the model we consider the situation is rather
the parameters, always looks homogeneous. simple. Inthe absence of noise, except for a possible initial
Let us consider a classical Lotka-Volterra model ofyangient whem > 0 exclusion takes place. On the other
symmetric two-species competition [2,7] with the additionang whene < 0 the species always coexist, in spite of
of noise terms [5] defined by the equations the fact that@ becomes larger thahperiodically in time.
dx The introduction of noise drastically changes the previous

= px(l —x — By) + filx,)&@0), (1)

dr scenario since even small amounts of stochasticity are able
d to destroy the state of coexistence periodically [9]. In order
d—i = uy(l —y — Bx) + fy(x,y)&,(r),  (2) toanalyze our system we have numerically integrated the

previous equations by using standard methods for stochas-
wherex andy are the population densitieg, is propor- tic differential equations [10]. In Fig. 1(a) we have plot-
tional to the growth rate, an@ accounts for the inter- ted the temporal evolution of both species wikert 0 and
actions among the species. Here the teyins,y)&;(r)  the noise level is very small, but its effects are slightly

(i = x,y) model the contribution of the random forces. appreciable. Thus, the species practically coexist all the
For the sake of simplicity we assume thAt(x,y) = time. When noise increases sufficiently a species is able to
x, fy(x,y) =y. Moreover, ¢;(r) is assumed Gaussian nearly exclude the other one periodically [see Fig. 1(b)];
white noise with zero mean and correlation functioni.e., one species dominates the other. It is interesting to
(i(0)€j(t + 7)) = 06(7)6;j (i,j = x,y). This explicit  realize that by increasing even more the noise level this
form of the noise term may represent, for instance, a fluceoherent response to environmental variations is lost [see
tuating growth rate. Without the noise terms this Lotka-Figs. 1(c) and 1(d)]. A nontrivial consequence of these re-
Volterra model has been widely studied, and it is wellsults is that time variations in competing populations could
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FIG. 1. (a) Time evolution of

4000

t

6000

8000

both population densities

odic stimulus entrains large-scale environmental changes.
These changes are done in a coherent fashion and, as a
result, the periodic component is greatly enhanced. The
usual form to make the presence of SR manifest is through
the signal-to-noise ratio (SNR) [11,14] of a given quantity
describing the state of the system. Thus, SR arises when
the SNR has a maximum as a function of the noise level.

In the system we consider the most straightforward form
of measuring qualitative changes is by using a quantity
that accounts for the degree of coexistence, such as the
squared difference of population densitigs— y)?. In
Fig. 2 we have shown the SNR for this quantity which
clearly exhibits a maximum at nonzero noise level, thus,
indicating the presence of SR [15]. In fact, this is the
first example of SR in a population dynamics model. In
biology these situations have been restricted primarily to
physiological systems [16], but other areas, as population
dynamics, have not been explored up to now. We should
note that previously studied systems displaying SR always
exhibit oscillations when noise is absent by only changing
the values of the parameters, usually by increasing the
amplitude of the input signal. Conversely, in the case
in which we are concerned oscillations only appear when
noise is present.

A further step in our study will be the analysis of
the effects of space. The usual way to do it is by
adding diffusive terms to Egs. (1) and (2). This class
of spatiotemporal model corresponds to the situation in
which the dynamics of the species is continuous in time.
Other situations of interest concern the description of
populations whose generations do not overlap in time
[17]. In this case, the continuous time-space description
is no longer valid, and discrete time evolution models
must be considered. The usual way to model spatially
distributed systems whose time evolution is discrete is by
using a coupled map lattice (CML) [18]. Here we follow
this approach. In such a situation the dynamics of our
discrete model is

35 T T

[Egs. (1) and (2)]. The values of the parameters jare= 1,
wo/2m =1073, a =0.05, ¢ =-001, and o = 107'2.
(b) Same situation as in case (a) bat= 10"%. (c) and
(d) Same situation as in case (a) lut= 10"2.

be a noise-induced phenomenon. In this context, periodic
population oscillations, not present in the original deter-
ministic model, are now allowed to appear.

The previous figure exhibits an aspect which has re-
ceived considerable attention in the recent years; namely,
the response of the system to a periodic force may be en-
hanced by the presence of noise. This is the main charag;q

. 2. SNR corresponding to Egs. (1) and (2). The values

teristic of stochastic resonance (SR) [11-13]. In eSSencef the parameters arg = 1, wo/27 = 1073, a = 0.05, and
SR is a nonlinear cooperative effect in which a weak perie = —0.01.
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FIG. 3. Representation ofx}; given
through Egs. (4) and (5) fom = 1750
(@, n=1875 (b), n=2000 (c),
n = 2125 (d), n = 2250 (e), n = 2375
(f), n =2500 (g), and n = 2625 (h).
- The values of the parameters gie= 2,

b 2) D =005, wy/2m =103 «a=0.1,
e = —001, ando = 1078. The system
size is 200 X 200. Black and white
colors stand for minimum and maximum
values, respectively.

L

,,+1 n existence state is responsible for the appearance of an
= 1 — — + Jo x*. X", . S
Xig o = Xij — By 7 i Xi homogeneous spatial distribution. However, when a suf-
_ 4 ficiently large amount of noise is present apd > 1,
+D 205~ 5y (4) . . , |
spatial patterns arise. In order to elucidate how this spa-
tial structure emerges, we have depicted in Fig. 3 the spa-

y,”/+1 = ,uy{fj(l - y{f, B"x; ) + \/—y,, tiotemporal evolution corresponding to the CML model
for one period ofg”. The other periods also exhibit the

+ DY (=), (5)  same characteristics. Noise is responsible for the peri-

Y odical appearance of the spatial structure since, if low

where 8" = 1 + ¢ + acoqwpn), D is a constant ac- enough, except for an initial transient, the system always
counting for the diffusion, and_, indicates the sum looks homogeneous. An example of how patterns are in-
over the four nearest neighbors. Here the random termffuenced by the noise intensity is shown in Figs. 4(a) and
are modeled by independent Gaussian random variable4(b). We have plotted four spatial patterns correspond-
denoted byX}; and Y;';, with zero mean and variance ing to the first four periods of8” for two representative
unit. The remaining parameters have the same meaning aalues of the noise level. The first pattern is strongly
in the zero-dimensional time-continuous model [Egs. (1)nfluenced by the initial conditions, which are random,
and (2)]. Wheng" = 0 this CML model reduces to a lo- and looks very similar for each noise intensity. However,
gistic lattice, which has been widely explored [19]. once the initial transient is lost, the patterns corresponding
As in the previous case, whe®" < 1 this model ex- to the higher noise level are more pronounced than the
hibits a state in which both species coexist. The coones with lower noise level. If noise is sufficiently

‘ ' FIG. 4. (a) Representation of x/;
given through Eqgs. (4) and (5) for

, ’ ﬂ b n =250,1250,2250, and3250 (from left
to right). The values of the parameters

are u =2, D =0.05 wy/27 =103,

a=0.1, ¢=-001, and o = 1072

M The system size i200 X 200. Black
and white colors stand for minimum and

maximum values, respectively. (b) Same

situation as in case (a) but = 1078,
(c) Same situation as in case (a) but
o =0ande = 0.01.
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decreased, patterns do not appear. A similar behavior i8] S. Rinaldi, S. Muratori, and Y. Kuznetsov, Bull. Math.

also present in the continuous time-space model.

Biol. 55, 15 (1993).

It is worth emphasizing that the deterministic counter- [9] When & > 0 noise does not change in a qualitative

part of most models exhibiting noise-induced structures is
able to display similar patterns to those induced by noisi10
for a certain range of the values of the parameters, as, ]
for instance, the Swift-Hohenberg equation [20]. In our
model, however, these patterns only arise when noise i 1]
present. Forinstance,df > 0 a spatial structure emerges
periodically over a long transient, but eventually it disap-[12]
pears. In Fig. 4(c) we have depicted four patterns corre-
sponding to this situation. This figure clearly shows how
the domains grow in each period. At sufficiently large
time there is one domain; thereby one species excludd&3]
the other.

In summary, we have shown that noise cannot system-
atically be neglected in models of population dynamics.
Its presence is responsible for the generation of temporal
oscillations and for the appearance of spatial patterns. In
contrast, these features do not arise when noise is absent.
Under some circumstances noise has a constructive role,
since it is responsible for the enhancement of the response
of the system via stochastic resonance. The similarity of
the models we have considered with phase separation higt
already been pointed out in the literature [21-23]. In this
regard, it is worth emphasizing that there exist numerous
systems which can be described through competitive or
cooperative interactions. To mention just a few, these are
biological assemblies of individuals, coupled chemical re-
actions, political parties, business, and countries [5]. Thus,
our results are not restricted to only population dynam 15]
ics, but the main ideas can be applied to a wide variety OI‘
situations embracing different scientific areas.
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