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Hard Spheres in Vesicles: Curvature-Induced Forces and Particle-Induced Curvature

A. D. Dinsmore,* D. T. Wong, Philip Nelson, and A. G. Yodh
Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104
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We explore the interplay of membrane curvature and nonspecific binding due to excluded-volume
effects among colloidal particles inside lipid bilayer vesicles. We trapped submicron spheres of
two different sizes inside a pear-shaped, multilamellar vesicle and found the larger spheres to be
pinned to the vesicle’s surface and pushed in the direction of increasing curvature. A simple model
predicts that hard spheres can induce shape changes in flexible vesicles. The results demonstrate a
important relationship between the shape of a vesicle or pore and the arrangement of particles within it.
[S0031-9007(97)05124-7]

PACS numbers: 87.22.Bt, 05.20.–y, 82.65.Dp, 82.70.Dd
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Entropic excluded-volume (depletion) effects are w
known to lead to phase separation in the bulk of collo
and emulsions consisting of large and small particles w
short-range repulsive interactions [1–6]. More recent
attraction of the large particles to flat, hard walls [7,8] a
repulsion from step edges [9] have been demonstrate
binary hard-sphere mixtures. A key concept suggeste
these papers is that the geometric features of the sur
can create “entropic force fields” that trap, repel, or indu
drift of the larger particles. This mechanism is not limite
to suspensions of micron-sized particles; it may pl
a role in “lock and key” steric interactions on smalle
macromolecular length scales. For example, the sh
of pores and liposomes inside cells is likely to affect t
behavior of macromolecules confined within them [10].

In this Letter, we present experimental results th
demonstrate new entropic effects at surfaces. In particu
the behavior of particles confined within vesicles reve
quantitatively the striking effect of membrane curvatu
We first discuss experiments probing the behavior o
microscopic sphere trapped inside a rigid, phospholi
vesicle. Adding much smaller spheres to the mixtu
changes the distribution of the larger sphere in a way t
depends on the curvature of the vesicle wall [see Figs. 1
and 1(c)]. The results are consistent with the deplet
d the in-

ed points
events
as in
e
ved.
FIG. 1. (a) Cartoon of the 600-nm thick slice through an SOPC vesicle imaged with an optical microscope. We measure
plane positions of the larger colloidal sphere when it was in focus. (b)(color) Probability distribution of a single 0.237-mm-radius
polystyrene sphere inside a vesicle (no small spheres). The white dashed line is the edge of the vesicle, and the color
indicate the number of times,N , the center of the sphere was observed in a bin located at a given point. There were 2000
and the bins were130 3 130 nm. The sphere simply diffused freely throughout all of the available space. (c)(color) Same
(b), but with a vesicle that also contained small spheres (fS ­ 0.30, RS ­ 0.042 mm, a ­ 5.7). There were 2300 events and th
bin size was 65 nm. The large sphere was clearly attracted to the vesicle wall, especially where the vesicle was most cur
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force theory and illustrate a new mechanism for the siz
dependent arrangement of particles within pores. We th
explore theoretically some consequences of replacing t
rigid wall with a flexible one. The entropic curvature
effects can overcome the membrane’s stiffness, leading
a new mechanism for shape changes in vesicles.

We first briefly review depletion effects in mixtures of
microscopic hard spheres of two different sizes. Movin
two of the larger spheres toward one another does n
change their interaction energy (which is zero for har
spheres) but does increase the volume accessible to
other particles (Fig. 2). The resulting gain in entrop
reduces the free energy of the system bys3y2dafSkBT
[11,12]. Here a is the ratio of large to small radii
sRLyRSd, fS is the small-sphere volume fraction, andkBT
is Boltzmann’s constant times the absolute temperatu
This simple result relies on the approximation that th
small spheres are a structureless ideal gas and that
large-sphere volume fractionfL is small. The reduction
of free energy produces an “entropic force” that pushes t
large spheres together. When the large sphere is mov
to a flat wall, moreover, the overlap volume and the free
energy loss are approximately doubled [7]. In binar
hard-sphere mixtures, these effects are known to dri
crystallization of large spheres in the bulk [1,2,5] and at
© 1998 The American Physical Society 409
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FIG. 2. Description of depletion forces in a binary har
sphere mixture. The centers of mass of the small spheres
excluded from the hatched regions, within one radius of
surface of the large sphere and of the walls. In (a), the volu
accessible to the small-sphere centers,Vacc, is the total volume
minus the hatched regions. (b) When the large sphere mo
to the wall, the excluded regions overlap, as shown in bla
andVacc increases by this amount. The small spheres’ entro
therefore increases. (c) Because of the changing wall curvat
the size of the overlap depends on sphere position. The la
sphere will move along the wall to maximize the size of t
overlap region, as indicated by the arrow.

flat surface [1,7,13,14]. Furthermore, the shape of the w
can lead to entropic forces in a specific directionalong the
wall. For example, the larger spheres are locally repel
from an edge cut into the wall [9] and attracted to a corn
(i.e., where the “wall” meets the “floor”) [15]. If the wal
has constantly changing radius of curvature, these for
are predicted to act everywhere along it [9]. As show
in Fig. 2(c), when the large sphere is near the wall,
overlap volume depends on the wall’s curvature radi
The large sphere will therefore move in the directio
of increasing curvature to minimize the small sphere
excluded volume.

To measure this surface entropic force, we have stud
the distribution and dynamics of microscopic nearly ha
spheres trapped inside rigid, pear-shaped vesicles.
vesicles were prepared from a phospholipid [1-stearoy
oleoyl-sn-glycero-3-phosphocholine (SOPC), Avanti In
U.S.A.], dissolved in chloroform (25 mgymL). After
evaporating the chloroform from 200mL of SOPC solu-
tion, we added 100mL of salt water with charge-stabilized
polystyrene spheres (Seradyn, IN, U.S.A.) in suspens
The salt (0.01M NaCl) served to screen out electrosta
forces over a distance ofø5 nm, the Debye-Huckel
screening length [7]. Thus, our sample closely resemb
an ideal hard-sphere and hard-wall (HSHW) syste
Rigid, multilamellar vesicles of diverse shapes and si
immediately formed with colloidal spheres trapped i
side. We injected the solution into a 10-mm-thick glass
container for viewing under an optical microscope (1003

objective with 1.30 numerical aperture, in transmissi
mode). We focused on vesicles that had spontaneo
formed with thick walls of static, nonuniform curvatur
(i.e., “pear shaped”). Images of a planar slice, 600
thick, through the center of these vesicles were captu
then later digitized [Fig. 1(a)].

We quantified the behavior of the mixture by measuri
its free energyFsrd as a function of the position of a spher
of radiusRL ­ 0.237 mm. First, using NIH Image soft-
ware, we determined the in-plane position of the spher
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center of massr s60.08 mmd when it appeared in the im-
aged slice. From these data, we used two technique
extractFsrd. In the first, the number of timesNsrid the
sphere appeared at a given bin located atri defined the den-
sity distribution. Assuming that each measurement ev
was independent of the others,Nsrid follows the Boltz-
mann distribution:Nsrid ~ expf2FsridykBTg. Since a
systematic error can arise if events are not completely in
pendent (i.e., not separated by an infinite time), we wait
a minimum of 0.6 s between measurements. During t
time the root mean square displacement wasø0.3 mm,
larger than the 0.07–0.13mm bin sizes. We also col-
lected data over a period of 30–80 min, enough time f
the sphere to explore all of the available space. We the
fore used the logarithm of the sphere’s distribution to e
tract the free energy.

The dynamics of the diffusing 0.237-mm sphere pro-
vided the second way to measureFsrid, as described in
[16]. The region along the inner surface of the vesicle w
divided into several equal-area bins. We considered o
events in which the center of the large sphere was with
0.28 mm of contact with the surface in consecutive fram
(separated by a timet). From our videotape, we counted
the number of timesfNijstdg the sphere was located in
bin j at timet and in bini at timet 1 t. The transition
probability matrixPijstd is given byNijstdyNsrjd. The
measured matrixPij contains information about the equi
librium state of the system. In particular, the eigenve
tor sêd of Pij with unit eigenvalue is proportional to the
Boltzmann factor:êi ~ expf2FsridykBT g. We obtained
consistent results witht ­ 0.1, 0.2, and 0.3 s and with
various bin sizes. This technique avoids fit paramete
and possible systematic errors arising from the dens
distribution approach. It also avoids potential errors ar
ing from a slow change in the shape of the vesicle, whi
could affect the distribution averaged over a long time b
would not affect the short-time particle dynamics.

We report here the results from two different sample
The first “control” sample contained a solitary 0.237-mm
sphere (no small spheres) diffusing freely inside a vesic
The measured density distribution is shown in Fig. 1(b
The sphere distribution is uniform: There is no significa
interaction between the vesicle wall and the polystyre
sphere, as expected due to the very short Debye-Huc
screening length.

The behavior changed noticeably when small sphe
were added to the interior of a vesicle. In Fig. 1(c
we show the distribution of theRL ­ 0.237-mm sphere
in a binary mixture with fS ­ 0.3, RS ­ 0.042 mm
sa ­ 5.7d. The distribution is highly nonuniform, with a
significantly higher probability of finding the large spher
within about 0.28mm of the surface. The apparent widt
of this “surface” region exceeds2RS due to uncertainties
in the particle positions and, possibly, due to a slight t
of the vesicle wall away from vertical.

We measured the average number of times the la
sphere appeared in each bin within 0.28mm of the
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surface and the average number per bin in the bulk. W
defined the natural logarithm of the ratio of these numbe
as F0yskBTd, a measure of the average strength of t
depletion attraction. We foundF0 ­ s2.2 6 0.5dkBT .

Theoretically, F0 ­ ln
RRL10.28 mm

RL
fdry0.28 mmg 3

e2V srdykBT , wherer is the distance from the large-spher
center to the wall andV srd is given by the depletion force
model. Although the vesicle wall was curved, we ca
predict a lower bound ofF0 by assuming the wall is flat,
in which case

V srd ­
2kBTfS

4R3
S

sr 2 RL 2 2RSd2sr 1 2RL 1 RSd .

(1)

Putting in the numbers gives a theoretical predictio
of F0 ­ 1.97kBT . Here we have neglected therma
fluctuations in the shape of the vesicle wall and residu
electrostatic repulsion. Constraining the large sphere
lie 5 nm away from the wall, for example, reduce
the predicted result to1.45kBT . The 0.7kBT difference
from our measured result is likely due to the curvatu
of the wall, which would enhance the observedF0 as
discussed in the following paragraph. These results
consistent with recent calculations showing that the ide
gas approximation accurately predicts the depletion w
depth at contact (although it misses the relatively wea
long-range depletion repulsion) [17].

The distribution in Fig. 1(c) demonstrates a high
large-sphere occupation where the vesicle surface is m
curved. From the sphere dynamics, we obtained the to
free energyF as a function of sphere position when it wa
near the surface. The inset in Fig. 3 shows the measu
F as a function of the positions along the perimeter.
The slope of this curve reveals a maximum force
20 3 10215N pushing the large sphere along the wa
We also determined the curvature radius at points along

FIG. 3. The total free energy of the binary mixtureF, when
the large (0.237-mm) sphere was at the vesicle wall.F is
plotted in units ofkBT as a function of the wall curvature
radiusRC . The symbols represent measurements and the
represents the results of the calculation described in the t
(Inset)FykBT vs positions along the perimeter of the vesicle
The origin ss ­ 0d is located at the lower left of the vesicle
shown in Fig. 1(c).
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wall using our images of the vesicle. In Fig. 3, we plot th
free energy as a function of wall curvature radiusRC .
The free energy decreased by approximately1.5kBT when
the curvature radius decreased from 20 to 2mm. For
comparison to our results, we used the simple depletio
force model described above [Fig. 2(c)] to calculate th
free energy as a function of wall curvature (assumin
a locally spherical wall): FsRCd ­ 2PSVoverlapsRCd.
Here PS is the small-particle osmotic pressure (from th
ideal-gas law) andVoverlapsRCd is the size of the excluded-
volume overlap. The large sphere was assumed to to
the vesicle wall. The theory, represented by the so
line in Fig. 3, is consistent with the experimental result
For both plots, the free energy was set to 0 in the lim
of a large curvature radius (flat wall). Since we cou
only measureRC in the image plane, we assumed that th
also determined the out-of-plane curvature. This appro
mation probably explains the scatter in our data points.

So far we have shown that curvature of arigid wall
induces forces on the large spheres in binary particle m
tures. To conclude this Letter, we consider theoretica
a binary hard-sphere mixture in the presence offlexible
walls. This extra degree of freedom introduces a com
petition between depletion and curvature energy that c
produce a variety of new phenomena. For example,
expect that under some circumstances, the membrane
spontaneously bend around the large sphere (Fig. 4).
anticipate that these effects will be observable and th
understanding this mechanism will be essential to pred
the behavior of unilamellar phospholipid vesicles contai
ing particles of different sizes.

The membrane will spontaneously envelop the lar
sphere only if the resulting total free energy changeDF
is negative. Our experiment indicates that the membra
particle interactions are very short ranged, so we use
hard-sphere and hard-wall approximations. We therefo
divide the full free energy into two terms, one represen
ing the net adhesion induced by the colloidal spheres,
other the vesicle’s bending energy:F ­ Fadh 1 Fves.

The experiment described above shows that for rig
membranes,Fadh can be well described by the depletion
force model. For flexible membranes we must add a n
contribution toFadh to account for the “steric repulsion”
effect [18,19]. ForRS ø RL we may approximate the

FIG. 4. Cartoon demonstrating how hard spheres can indu
a change in the shape of a vesicle. (a) When the membr
is flat, the excluded-volume overlap is minimized and th
curvature energy is zero. (b) When the vesicle envelo
the large sphere, the curvature energy increases, but so d
the excluded-volume overlap (hatched region).
411
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latter by interaction between a flat hard wall and a fluctu
ting membrane at constant mean separationx. This
free energy equals0.06skBT d2ykx2 per unit area [20,21].
For unilamellar phospholipid membranes, the bendi
stiffnessk ø 15kBT [22]. Approximating the change of
excluded volume upon adhesion by2RS 2 x per unit
area and again taking the small-sphere volume fract
to be fS ­ 0.3, we minimize the total adhesive energ
(depletion attraction plus steric repulsion) to findx ,
0.5RS and the adhesive energyFadh ­ 20.091kBTApyR2

S ,
whereAp is the area of contact between the membrane a
the sphere [Fig. 4(b)] [23].

The vesicle’s elastic energyFves depends only on the
membrane curvature. We neglect the constant-volu
and constant-area constraints of a vesicle and instead c
sider an infinite membrane. Thus the local curvatu
energy change upon adhesion is justFves ­ 2kApyR2

L
[24,25]. Combining Fadh 1 Fves, we see that adhe-
sion and engulfment are favored whena ; RLyRS .p

2ky0.091kBT ­ 18. A more detailed analysis of the
deformation of vesicles at a generically sticky surfac
specialized to the case of interest here, gives a similar
sult [26]. The required regime fora is easily accessible,
using either polymers or spheres as the small particles.

In conclusion, we have measured for the first tim
a curvature-induced entropic force in a system of ha
spheres trapped in a rigid vesicle. The results show t
the distribution of particles within the vesicle is strongl
affected by the local shape of the vesicle wall. Furthe
more, a simple estimate predicts shape transitions of u
lamellar phospholipid vesicles induced by particles insi
the vesicle. The ideas presented here suggest a way to
derstand several phenomena in cellular interiors and co
plex fluids inside porous media. For example, in a vesic
whose membrane contains multiple species of lipids, t
lipids can segregate into regions with different curvatur
[27]. In such a sample, the particle distribution, whic
depends on curvature, would correlate with the localcom-
positionof the membrane. This mechanism may provid
considerable specificity in associations between mac
molecules and lipids. Finally, when the size ratio is mo
extreme or the vesicle wall is less rigid, the spheres m
be able to induce budding and fission of the vesicle.
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