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Analog Quantum Error Correction
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Quantum error-correction routines are developed for continuous quantum variables such as position
and momentum. The result of such analog quantum error correction is the construction of composite
continuous quantum variables that are largely immune to the effects of noise and decoherence.
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The quantum systems used for quantum computatioexample,Q(P;) = éx P; takes
and quantum communications are small, sensitive, and R
easily perturbed [1-8]. The theory of quantum error- |x); — (l/x/ﬁ)f e PETIPOX| py dp = |x + 8x);.
correcting codes provides a new set of techniques for w 2)
protecting quantum systems against the effects of noise
and decoherence [9-29]. Conventional quantum error- To correct for these errors, apply the following quantum
correcting codes are effective only for discrete variables;continuous voting” procedure. We assume that a vari-
however. This Letter presents a setasfalog quantum able can be prepared in the st#ig; by some dissipative
error-correcting routines that protect continuous variablegrocess such as cooling, and that the stetecan also be
such as position and momentum against noise and decprepared, e.g., by applying the displacement Hamiltonian
herence. These error-correcting routines can, in principleyxP; to the statel0); for a time 1/5. To “vote,” ap-
be enacted using simple Hamiltonian operations to stabily the following procedure to three continuous quantum
lize the states of arbitrary continuous quantum variablesvariables (for example, the, y, andz components of the
Particular applications include error correction for quan-position of a single particle in three dimensions), initially
tum communications using continuous variables such ai the statefxxx)i23, together with three ancilla variables
photon momentum, and for analog quantum computercix2x3)123, initially in the state|000),»3: (i) Suppose
used for simulating continuous quantum systems [30_31},hat an error occurs to one of the variables, e.g., the sec-
The simplest classical discrete error-correcting routingnd one:
is triple modular redundancy, in which three bits are A o
initially set to the same value and checked at regulatx)> — e "¢%)|x), = (l/m)] e P TIP)| by, dp
intervals to see if they still have the same value: If one o

of them differs, it is reset to the value of the two others. = fm a(x, x') |x'), dx’ 3)
If the error rate per bit per unit time i%, then performing e ’

this “voting” routine at intervals of timér < 1/A results wherea (x, x') = (I/Jﬁ) ffxe—ip(x—x')—ig(p) dp. Re-
in a new error rate 03A* 81 < A. prepare the ancilla variables in the std®00),.3 (this

The discrete error-correcting technique of triple modu-orrects any error that has occurred to the ancillae). The
lar redundancy can be adapted to continuous quantuigera)| state of the variables and the ancillae is now
variables. Consider three continuous “position” quantum "
variables with statepr; x2x3)123, and errors corresponding — (|x),|0),) <j a(x,x) |x'), dx/|0>2,> (Ix)310)3) . (4)
to unitary operatorse ‘2", where P; = —id/dx; is e
the “momentum” operator on thgth variable andQ  (ii) Perform a continuous quantum analog of voting. We
is a polynomial function ofP; (we call these variables will assume that we can perform simple real-number op-
position and momentum for convenience only: the methoerations such as comparing the values of two variables
works for any continuous variable and its conjugate)to see if they are equal, and adding the value of one
Such an error takes variable to another. So, for example, we will assume

% that we can perform operations such as compafingy
lx); — e 0P)|x); = (1/\/%)[ e i pydp,  and |x,), to see ifx; = x; and, if they are, perform-
- (1) ing operations such abf1>1|X2>2|X3>3_ = |xp)ilx)alxs +
x1)3. Such operations are reversible and correspond to
where|p); = (1/v27) [~ e'P*|x); dx. The error acts unitary transformations on Hilbert space. They can be
on only one variable: |x); — |x); for k # j. For accomplished by the application of simple interactions
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between variables. For example, the conditional additiombles and ancillae are now in the state

operation just described can be accomplished by apply- "

ing the Hamiltoniany A (X1, X)X, P; for time 1/7, where (|x>1|0>/1)<j a(e,x) ) lx — x) dx'>(|x>3|0>3«).
A(X1,X2) = [ lx) (x| ® |x)2{x| dx. Such an operation —o

can be thought of as a continuous version of a quantum (5)
logic gate. (In I’?QJ lite, a!l .SU(_:h operations can _be_ per—(i”) Now, if x; = x;, subtract the value of thith ancilla
formed only to finite precision; we will assume infinite variable from the c;ri inakth variable, leaving the state
precision for the moment and discuss the effects of finite 9 ' 9

precision below.) If only one error has occurred, then two °° .y ,
of thex's are always equal. So, one by one, compare each(lx)110)1") <|X>2 f,m a(x, x') |x" = x)x dx >(|x>3|o>3,)_
of the |x); to the other two. Letjk be some permutation (6)

of 123. Ifx; = x; = x, then add the value ofy — x to
the ancilla statd0),. If x; # x;, then do nothing. In our Substituting in the explicit expression fer(x, x') given
case, onlylx), and its ancilla will be affected. The variI above allows this state to be written as

(0100 (Ix)2(1/2m) [ 710 — oy, ! dp ) (1sl0hs)
= (nloh) (19:0/527) [ e @@y ap ) i)

= (Jx)110)17) (Jx)pe 0P

0)2) (Ix)310)3) . (7)

The error has now been corrected. ! eigenstategp = 0); and that state$p); can be created
This procedure corrects the error by restoring the thredy applying the “boost” Hamiltoniam pX; to the state
variables to the original continuous “code word’x)23 |p = 0); for atimel/n.
while leaving the ancilla in a state that is independent of The following algorithm corrects both phase and dis-
the initial value ofx. The fact that the ancilla is in a state placement errors. Define the state
that depends only on error operator’¢”) applied and -
not on the particular code word to which it is applied Pz = (1/V27) f e xxx) 3 dx . (8)
means that the procedure restores not only continuous e
cfode words but arbitrary superpositions of the code wordSuch a state can be created from the state
© L (x) Jxxx) dx. »
To¢continue correcting errors, simply return the ancilla ~ 1P)110)210); = (1/5)[ mé’px|X>1|O>2|0>3 dx

variables to]000);.»3 and apply the procedure again , o ,

a time 8¢ later. Just as in classical triple modular PY @pplying the HamiltoniamX,P; for time 1/7 to
redundancy, performing the error-correcting routine a€ffect the unitary operatiopx)i|y); — lxhlx + y);, for
intervals 8¢ reduces the error rate from to 3A%?6¢, J _ 2,3. R(X

which can be made as small as desired by decreasing 1€ €TOr Operatoe’ %) has the same effect on the
8t. As an example, consider the case wheérex) s triple-variable stat¢p),3 that it has on the single-variable
corresponds to the position of a free particle in threetatelp);:

dimensions, the ancilla corresponds to a second particle

initially located at the origin, and the “error” operator is [p)i2s — ¢ p)ias

supplied by the particle’s natural Hamiltonian. Here, the -

error-correcting routine suppresses to first ordegirthe = (1/\/%)[ P RW 3y s dx . (9)
dispersive spreading of the particle’s wave packet away —oo

from the linex = y = z while enhancing the dispersion This error can be corrected in an analogous way to the

of the ancilla wave packet. errors on single continuous variables: Create redundant
It can be seen easily by interchanging the rolescof states of the nine variablelpi.3pasep7so)1...o together

and p above that continuous code words of the formwith a set of three ancilla variables originally in the

| ppp)123 can be protected against arbitrary errors of thestate |000)45c, where ancilla variabled is used as the

form ¢®X), where X; is the position operator on the ancilla for the triple of variables 1238 is used for

jth variable andR is a polynomial function ofX;. In 456, andC is used for 789, then carry out the same

analogy to thgxxx) error-correcting routine, we assume error-correcting dynamics as above, but as a function

that variables and ancillae can be prepared in momentuwf the continuous variablep that label the state$p).
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That is, phase errors on the triply redundant state o ¢%:P) =3 0 q,.,Py'X}. Look at what hap-
triply redundant continuous variables can be corrected bpens when an error of this form occurs to one of the
applying essentially the same error-correcting routine asariables, for example, the fir§j = 1). We have
before.

To correct any combination of phase and displace- IP123P4s6P789)1....010. . Oy,
ment errors on one variable, first apply thex) error-
correction routine for error operators of the foemn’@(?))
to each of the three triples of variables 123, 456, 789,

then apply thelppp) error-correction routine for error ® |p)sslp)7s910... O)v..o1000)asc - (10)
operators of the forme’®*)) to the nine variables as a which can be rewritten using the decomposi-
whole. The basic idea of this continuous quantum errortions Ix) = (1/N2m) [~ e iP*| p)dp, |p) =

correcting routine is the same as Shor’s binary quantun /27 ) [~ P |x')dx’, as

error-correcting routine [9]: Using triple modular redun- -

dancy twice (“triple-triple” modular redundancy) corrects Z qmn(l/\/ﬁff px" P pTipx=x)

both phase and displacement errors. This sequence of  wn —o

error-correcting steps compe(nsa’ges for the effect of any X |x") |xx)23 dx dx" dp

error operator of the forna~'2%;-P)) whereQ(X;, P;) is

now a polynomial in the operators;, P;. As ajny error ® Ip)ssolp)s9l0- O)rr._91000)anc . (11)

operator can be approximated arbitrarily closely by comNow proceed as before, comparing, x;, xx, and, if

posing error operators of this form, the following routinex; = x; = x, addingy = x’ — x to the value of the

corrects for arbitrary one-variable errors. ancilla statel0),: and subtracting’ — x from the value
To see the error-correction explicitly, use of the statelx’),. Only the first variable and its ancilla

the commutation relation [X;,P;]=i to write state will be affected, resulting in the state

> qu(1/N27 )3f p"x"e® e | y)y|xxx)3 dx dy dp

mn -

* 12
:Zan(l/m)fi x" e |xxx) 23 dx (12

mn

,,,,,

where P/ acts only as the first ancilla variable. The guent application of th¢ppp) error-correction routine to
error-correction routine for states of the formxx) has the triple of triples then restores the nine variables as a
transferred the effect of thE?” part of the error operator whole to the statdppp);..o. The fact that the state of

from the code word to the ancilla. the ancillae after each error-correcting routine depends
Similarly, applying the|ppp) error correction to the only on what errors occurred and not on which code

.....

.....

in the state also restored by the continuous error-correction routine.
= The analog quantum error-correcting routine presented
(1/v2m) ]ﬁm e'P*lexx)izs dx|p)aslp)rso above corrects for errors that are arbitrary polynomials in
X; and P; and, by extension, to arbitrary single variable
® (Z qmnP’f/'l())l/XﬂO)A) 0...0)2 _ol00)sc  (13)  errors. It can be enacted in principle using simple opera-
s , tions on the real numbers such as comparing and adding
= Ip)i2alp)assIp)rsoe CEP10 . 0y 9|000)azc.  two numbers. What happens when these operations can
The error has now been corrected. The ancillae can biee performed only to finite precision? By going through
reset and the procedure repeated to provide ongoing errttie error-correcting routine and following what happens
correction. when comparison and addition are performed to finite pre-
In summary, in each term of the polynomial expansioncision §, one can verify that the procedure still works as
of the error operator, the application ¢fxx) error- long as (i) the wave functior does not vary significantly
correcting routine to the triple of continuous variablesover scaless, and (ii) the expectation values for the error
containing; restores the triple where the error occurred tooperators on the range ¢f do not vary significantly over
a superposition of the fornf”,, B,.(p.p’) [p/) dp’, where  scaless. Perhaps the easiest way to see why such inexact
Ba(p,p) = (1/27) [Z . x"e!®P)*4x.  The subse- error correction still works is to note that, when (i) and (ii)
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