
VOLUME 80, NUMBER 18 P H Y S I C A L R E V I E W L E T T E R S 4 MAY 1998

,

ology,

n
e
e.

4088
Analog Quantum Error Correction

Seth Lloyd1 and Jean-Jacques E. Slotine1,2

1d’Arbeloff Laboratory for Information Systems and Technology, Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

2Nonlinear Systems Laboratory, Department of Mechanical Engineering, Massachusetts Institute of Techn
Cambridge, Massachusetts 02139

(Received 3 December 1997)

Quantum error-correction routines are developed for continuous quantum variables such as positio
and momentum. The result of such analog quantum error correction is the construction of composit
continuous quantum variables that are largely immune to the effects of noise and decoherenc
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The quantum systems used for quantum computati
and quantum communications are small, sensitive, a
easily perturbed [1–8]. The theory of quantum error
correcting codes provides a new set of techniques f
protecting quantum systems against the effects of no
and decoherence [9–29]. Conventional quantum erro
correcting codes are effective only for discrete variable
however. This Letter presents a set ofanalog quantum
error-correcting routines that protect continuous variabl
such as position and momentum against noise and de
herence. These error-correcting routines can, in princip
be enacted using simple Hamiltonian operations to sta
lize the states of arbitrary continuous quantum variable
Particular applications include error correction for quan
tum communications using continuous variables such
photon momentum, and for analog quantum compute
used for simulating continuous quantum systems [30–31

The simplest classical discrete error-correcting routin
is triple modular redundancy, in which three bits ar
initially set to the same value and checked at regul
intervals to see if they still have the same value: If on
of them differs, it is reset to the value of the two others
If the error rate per bit per unit time isl, then performing
this “voting” routine at intervals of timedt ø 1yl results
in a new error rate of3l2 dt ø l.

The discrete error-correcting technique of triple modu
lar redundancy can be adapted to continuous quantu
variables. Consider three continuous “position” quantu
variables with statesjx1x2x3l123, and errors corresponding
to unitary operatorse2iQsPjd, where Pj ­ 2i≠y≠xj is
the “momentum” operator on thejth variable andQ
is a polynomial function ofPj (we call these variables
position and momentum for convenience only: the metho
works for any continuous variable and its conjugate
Such an error takes

jxli ! e2iQsPj djxlj ­ s1y
p

2p d
Z `

2`

e2ipx2iQspdjplj dp ,

(1)

where jplj ­ s1y
p

2p d
R`

2` eipxjxlj dx. The error acts
on only one variable: jxlk ! jxlk for k fi j. For
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example,QsPjd ­ dx Pj takes

jxlj ! s1y
p

2p d
Z `

2`

e2ipx2ipdxjplj dp ­ jx 1 dxlj .

(2)

To correct for these errors, apply the following quantum
“continuous voting” procedure. We assume that a var
able can be prepared in the statej0lj by some dissipative
process such as cooling, and that the statejxlj can also be
prepared, e.g., by applying the displacement Hamiltonia
hxPj to the statej0lj for a time 1yh. To “vote,” ap-
ply the following procedure to three continuous quantum
variables (for example, thex, y, andz components of the
position of a single particle in three dimensions), initially
in the statejxxxl123, together with three ancilla variables
jx1x2x3l102030 , initially in the statej000l102030 : (i) Suppose
that an error occurs to one of the variables, e.g., the se
ond one:

jxl2 ! e2iQsP2djxl2 ­ s1y
p

2p d
Z `

2`
e2ipx2iQspdjpl2 dp

;
Z `

2`
asx, x0d jx0l2 dx0, (3)

whereasx, x0d ­ s1y
p

2p d
R`

2` e2ipsx2x0d2iQspd dp. Re-
prepare the ancilla variables in the statej000l102030 (this
corrects any error that has occurred to the ancillae). T
overall state of the variables and the ancillae is now

sjxl1j0l10 d
µZ `

2`
asx, x0d jx0l2 dx0j0l20

∂
sjxl3j0l30d . (4)

(ii) Perform a continuous quantum analog of voting. W
will assume that we can perform simple real-number o
erations such as comparing the values of two variabl
to see if they are equal, and adding the value of on
variable to another. So, for example, we will assum
that we can perform operations such as comparingjx1l1

and jx2l2 to see if x1 ­ x2 and, if they are, perform-
ing operations such asjx1l1jx2l2jx3l3 ! jx1l1jx2l2jx3 1

x1l3. Such operations are reversible and correspond
unitary transformations on Hilbert space. They can b
accomplished by the application of simple interaction
© 1998 The American Physical Society
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between variables. For example, the conditional additi
operation just described can be accomplished by app
ing the HamiltonianhDsX1, X2dX1P3 for time1yh, where
DsX1, X2d ­

R`
2` jxl1kxj ≠ jxl2kxj dx. Such an operation

can be thought of as a continuous version of a quant
logic gate. (In real life, all such operations can be pe
formed only to finite precision; we will assume infinite
precision for the moment and discuss the effects of fin
precision below.) If only one error has occurred, then tw
of thex’s are always equal. So, one by one, compare ea
of the jxli to the other two. Letijk be some permutation
of 123. If xi ­ xj ­ x, then add the value ofxk 2 x to
the ancilla statej0l0k. If xi fi xj , then do nothing. In our
case, onlyjxl2 and its ancilla will be affected. The vari-
on
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ables and ancillae are now in the state

sjxl1j0l0
1d

µZ `

2`
asx, x0d jx0l2jx

0 2 xl20 dx0

∂
sjxl3j0l30 d .

(5)

(iii) Now, if xi ­ xj, subtract the value of thekth ancilla
variable from the originalkth variable, leaving the state

sjxl1j0l10 d
µ
jxl2

Z `

2`

asx, x0d jx0 2 xl20 dx0

∂
sjxl3j0l30d .

(6)

Substituting in the explicit expression forasx, x0d given
above allows this state to be written as
sjxl1j0l10d
µ
jxl2s1y2pd

Z `

2`
e2ipsx2x0d2iQspdjx0 2 xl20 dx0 dp

∂
sjxl3j0l30 d

­ sjxl1j0l10 d
µ
jxl2s1y

p
2p d

Z `

2`
e2iQspdjpl20 dp

∂
sjxl3j0l30 d

­ sjxl1j0l10 d sjxl2e2iQsP20 dj0l20d sjxl3j0l30 d . (7)
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The error has now been corrected.
This procedure corrects the error by restoring the thr

variables to the original continuous “code word”jxxxl123

while leaving the ancilla in a state that is independent
the initial value ofx. The fact that the ancilla is in a state
that depends only on error operatore2iQsPid applied and
not on the particular code word to which it is applie
means that the procedure restores not only continu
code words but arbitrary superpositions of the code woR`

2` csxd jxxxl dx.
To continue correcting errors, simply return the ancil

variables to j000l102030 and apply the procedure agai
a time dt later. Just as in classical triple modula
redundancy, performing the error-correcting routine
intervals dt reduces the error rate froml to 3l2 dt,
which can be made as small as desired by decreas
dt. As an example, consider the case wherejxxxl123

corresponds to the position of a free particle in thr
dimensions, the ancilla corresponds to a second part
initially located at the origin, and the “error” operator i
supplied by the particle’s natural Hamiltonian. Here, th
error-correcting routine suppresses to first order indt the
dispersive spreading of the particle’s wave packet aw
from the linex ­ y ­ z while enhancing the dispersion
of the ancilla wave packet.

It can be seen easily by interchanging the roles ofx
and p above that continuous code words of the for
jpppl123 can be protected against arbitrary errors of t
form eiRsXjd, where Xj is the position operator on the
jth variable andR is a polynomial function ofXj . In
analogy to thejxxxl error-correcting routine, we assum
that variables and ancillae can be prepared in moment
ee

of

us
ds
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eigenstatesjp ­ 0lj and that statesjplj can be created
by applying the “boost” HamiltonianhpXj to the state
jp ­ 0lj for a time1yh.

The following algorithm corrects both phase and di
placement errors. Define the state

jpl123 ; s1y
p

2p d
Z `

2`

eipxjxxxl123 dx . (8)

Such a state can be created from the state

jpl1j0l2j0l3 ­ s1y
p

2p d
Z `

2`
eipx jxl1j0l2j0l3 dx

by applying the HamiltonianhX1Pj for time 1yh to
effect the unitary operationjxl1j ylj ! jxl1jx 1 ylj , for
j ­ 2, 3.

The error operatoreiRsXjd has the same effect on the
triple-variable statejpl123 that it has on the single-variable
statejplj :

jpl123 ! eiRsXj djpl123

­ s1y
p

2p d
Z `

2`

eipx1iRsxdjxxxl123 dx . (9)

This error can be corrected in an analogous way to
errors on single continuous variables: Create redund
states of the nine variablesjp123p456p789l1,...,9 together
with a set of three ancilla variables originally in th
state j000lABC, where ancilla variableA is used as the
ancilla for the triple of variables 123,B is used for
456, andC is used for 789, then carry out the sam
error-correcting dynamics as above, but as a functi
of the continuous variablesp that label the statesjpl.
4089
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That is, phase errors on the triply redundant state
triply redundant continuous variables can be corrected
applying essentially the same error-correcting routine
before.

To correct any combination of phase and displac
ment errors on one variable, first apply thejxxxl error-
correction routine for error operators of the forme2iQsPjd

to each of the three triples of variables 123, 456, 7
then apply thejpppl error-correction routine for error
operators of the formeiRsXjd to the nine variables as a
whole. The basic idea of this continuous quantum err
correcting routine is the same as Shor’s binary quant
error-correcting routine [9]: Using triple modular redun
dancy twice (“triple-triple” modular redundancy) correc
both phase and displacement errors. This sequenc
error-correcting steps compensates for the effect of
error operator of the forme2iQsXj ,Pjd, whereQsXj , Pjd is
now a polynomial in the operatorsXj , Pj . As any error
operator can be approximated arbitrarily closely by co
posing error operators of this form, the following routin
corrects for arbitrary one-variable errors.

To see the error-correction explicitly, us
the commutation relation fXj , Pjg ­ i to write
4090
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e2iQsXj ,Pj d ­
P

m,n$0 qmnPm
j Xn

j . Look at what hap-
pens when an error of this form occurs to one of th
variables, for example, the firsts j ­ 1d. We have

jp123p456p789l1,...,9j0 . . . 0l10,...,90 j000lABC

!
X
mn

qmnPm
1 Xn

1 s1y
p

2p d
Z `

2`
eipx jxxxl123 dx

≠ jpl456jpl789j0 . . . 0l10,...,90 j000lABC , (10)

which can be rewritten using the decomposi
tions jxl ­ s1y

p
2p d

R`

2` e2ipx jpl dp, jpl ­
s1y

p
2p d

R`

2` eipx0

jx0l dx0, asX
mn

qmns1y
p

2p d3
Z `

2`
pmxneipxe2ipsx2x0d

3 jx0l1jxxl23 dx dx0 dp

≠ jpl456jpl789j0 . . .0l10,...,90 j000lABC . (11)

Now proceed as before, comparingxi, xj, xk, and, if
xi ­ xj ­ x, adding y ­ x0 2 x to the value of the
ancilla statej0lk0 and subtractingx0 2 x from the value
of the statejx0lk. Only the first variable and its ancilla
state will be affected, resulting in the state
X
mn

qmns1y
p

2p d3
Z `

2`
pmxneipx eipyj yl10 jxxxl123 dx dy dp

≠ jpl456jpl789j0 . . . 0l20,...,90 j000lABC

­
X
mn

qmns1y
p

2p d
Z `

2`

xneipx jxxxl123 dx
(12)

≠ jpl456jpl789Pm
10 j0l10 j0 . . . 0l20,...,90 j000lABC ,
s a
f
ds
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i)
where Pm
10 acts only as the first ancilla variable. The

error-correction routine for states of the formjxxxl has
transferred the effect of thePm

j part of the error operator
from the code word to the ancilla.

Similarly, applying thejpppl error correction to the
state in Eq. (12) transfers the effect of theXn

j part of the
error operator from the code word to the ancilla, resultin
in the state

s1y
p

2p d
Z `

2`
eipx jxxxl123 dxjpl456jpl789

≠

√X
m,n

qmnPm
10 j0l10 Xn

Aj0lA

!
j0 . . . 0l20,...,90 j00lBC (13)

­ jpl123jpl456jpl789e2iQsXA,P10 dj0 . . . 0l10,...,90 j000lABC .
The error has now been corrected. The ancillae can
reset and the procedure repeated to provide ongoing er
correction.

In summary, in each term of the polynomial expansio
of the error operator, the application ofjxxxl error-
correcting routine to the triple of continuous variable
containingj restores the triple where the error occurred t
a superposition of the form

R`

2` bnsp, p0d jp0l dp0, where
bnsp, p0d ­ s1y

p
2p d

R`
2` xneisp2p0dx dx. The subse-
g

be
ror

n

s
o

quent application of thejpppl error-correction routine to
the triple of triples then restores the nine variables a
whole to the statejpppl1,...,9. The fact that the state o
the ancillae after each error-correcting routine depen
only on what errors occurred and not on which co
word jpppl1,...,9 the system was in implies that arbitrar
superpositions of the form

R`
2` cspd jpppl1,...,9 dp are

also restored by the continuous error-correction routine
The analog quantum error-correcting routine presen

above corrects for errors that are arbitrary polynomials
Xj and Pj and, by extension, to arbitrary single variab
errors. It can be enacted in principle using simple ope
tions on the real numbers such as comparing and add
two numbers. What happens when these operations
be performed only to finite precision? By going throug
the error-correcting routine and following what happe
when comparison and addition are performed to finite p
cision d, one can verify that the procedure still works a
long as (i) the wave functionc does not vary significantly
over scalesd, and (ii) the expectation values for the erro
operators on the range ofc do not vary significantly over
scalesd. Perhaps the easiest way to see why such inex
error correction still works is to note that, when (i) and (i
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hold for finite precisiond in manipulations of continuous
variables, the system behaves like an infinite-dimensio
discretesystem with statesjxnl ­ jndl. The continuous
error-correcting scheme above, performed at finite p
cision, still functions as an error-correcting scheme
the discrete infinite-dimensional system. Similarly, t
method described here generalizes in a straightforw
fashion to systems that are continuous in one variable
discrete in the complementary variable (e.g., a particle
a box).

We have presented a quantum error-correcting rou
for continuous variables. The routine allows the creat
of states of a composite system that resist the effects
errors and noise. In practice, of course, performing
continuous “quantum logic gates” necessary to enact
analog error-correcting scheme is likely to prove difficu
For simplicity of exposition, we presented a meth
for analog quantum error correction based on Sho
original error-correcting routine for qubits. A variety o
other continuous quantum error-correcting routines c
be constructed based on other discrete quantum co
In particular, in analogy to [29], it is possible to devis
a “perfect” analog quantum error-correcting code usi
only five continuous variables, although the dynamics
the error correction are more complicated than the sim
continuous voting used here [32]. The quantum err
correcting mechanism described here is an example
a feedback loop that preserves quantum coherence
proposed by Lloyd [33]. The nonlinear dynamics cau
the ancilla variables to become correlated with the syst
in a coherent manner, and the information that th
possess is used coherently to restore the system to
desired state.

This work was supported by ONR and by DARPA
ARO under the Quantum Information and Computati
initiative (QUIC).
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