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Error Correction for Continuous Quantum Variables
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We propose an error correction coding algorithm for continuous quantum variables. We us
algorithm to construct a highly efficient 5-wave-packet code which can correct arbitrary single w
packet errors. We show that this class of continuous variable codes is robust against imprecision
error syndromes. A potential implementation of the scheme is presented. [S0031-9007(98)0586

PACS numbers: 03.67.Hk, 03.67.Dd, 42.50.–p
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Quantum computers hold the promise for efficiently fac
toring large integers [1]. However, to do this beyond
most modest scale they will require quantum error co
rection [2]. The theory of quantum error correction is a
ready well studied in two-level or spin-1

2 systems (in terms
of qubits or quantum bits) [2–7]. Some of these resul
have been generalized to higher-spin systems [8–11]. T
work applies to discrete systems like the hyperfine levels
ions but is not suitable for systems with continuous spe
tra, such as unbound wave packets. Simultaneously w
this paper, Lloyd and Slotine present the first treatme
of a quantum error correction code for continuous qua
tum variables [12], demonstrating a 9-wave-packet co
in analogy with Shor’s 9-qubit coding scheme [2]. Suc
codes hold exciting prospects for thecompletemanipula-
tion of quantum systems, including both discrete and co
tinuous degrees of freedom, in the presence of inevitab
noise [13].

In this Letter we consider a highly efficient and compac
error correction coding algorithm for continuous quantum
variables. As an example, we construct a 5-wave-pac
code which can correct arbitrary single-wave-packet e
rors. We show that such continuous variable codes a
robust against imprecision in the error syndromes and d
cuss potential implementation of the scheme. This p
per is restricted to one-dimensional wave packets whi
might represent the wave function of a nonrelativistic on
dimensional particle or the state of a single polarization
a transverse mode of electromagnetic radiation. We sh
henceforth refer to such descriptions by the generic te
wave packets [14].

Rather than starting from scratch we shall use some
the theory that has already been given for error corre
tion on qubits. In particular, Steane has noted that t
Hadamard transform,

Ĥ ­
1

p
2

µ
1 21
1 1

∂
, (1)

maps phase flips into bit flips and can therefore be us
to form a class of quantum error correction codes th
consist of a pair of classical codes, one for each type
“flip” [3]. This mapping between phase and amplitud
bases is achieved with a rotation about they axis bypy2
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radians in the Bloch sphere representation of the state.
analogy, the position and momentum bases of a continuo
quantum state may be transformed into each other bypy2
rotations in phase space. This transition is implement
by substituting the Hadamard rotation in the Bloch sphe
by a Fourier transform between position and momentu
in phase space. This suggests that we could develop
analogous quantum error correction codes for continuo
systems [15].

We shall find it convenient to use a units-free notatio
where

position­ x 3 sscale lengthd ,

momentum­ pysscale lengthd ,
(2)

wherex is a scaled length,p is a scaled momentum, and
we have taken̄h ­ 1

2 . (We henceforth drop the modifier
“scaled.”) The position basis eigenstatesjxl are normal-
ized according tokx0jxl ­ dsx0 2 xd with the momentum
basis given by

jxl ­
1

p
p

Z
dp e22ixp jpl . (3)

To avoid confusion we shall work in the position basi
throughout and so define the Fourier transform as an act
operation on a state by

F̂ jxl ­
1

p
p

Z
dy e2ixyj yl , (4)

where bothx andy are variables in the position basis. Note
that Eqs. (3) and (4) correspond to a change of represen
tion and a physical change of the state, respectively.

In addition to the Fourier transform we shall require a
analog to the bit-wise exclusive-OR (XOR) gate for con-
tinuous variables. TheXOR gate has many interpretations
including controlled-NOT gate, addition modulo 2, and par-
ity associated with it. Of these interpretations the natur
generalization to continuous variables is addition withou
a cyclic condition, which maps

jx, yl ! jx, x 1 yl . (5)

By removing the cyclic structure of theXOR gate we have
produced a gate which is no longer its own inverse. Thu
© 1998 The American Physical Society
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in addition to the Fourier transform and this generalize
XOR gate, we include their inverses on our list of usef
gates. This generalizedXOR operation performs transla-
tions over the entire real line, which are related to the in
nite additive group onR. The charactersx of this group
satisfy the multiplicative propertyxsx 1 yd ­ xsxdxs yd
for all x, y [ R and obey the sum rule

1
p

Z `

2`

dx xsxd ­ dsxd , (6)

wherexsxd ­ e2ix. Interestingly, this sum rule has the
same form as that found by Chau in higher-spin codes [1
Once we have recognized the parallel, it is sufficient to ta
the code of a spin-12 system as a basis for our continuous
variable code.

Based on these parallel group properties, we are temp
to speculate a much more general and fundamental re
tion: We conjecture thatn-qubit error correction codes
can be paralleled withn-wave-packet codes by replacing
the discrete-variable operations (Hadamard transform a
XOR gate) by their continuous-variable analogs (Fouri
transform, generalizedXOR, and their inverses). As a las
remark before embarking on the necessary substitutions
a specific example), we point out that the substitution co
jecture is only valid for qubit codes whose circuits involv
only these (̂H andXOR) elements. We shall therefore re
strict our attention to this class of codes.

An example of a suitable 5-qubit code was given b
Laflammeet al. [16]. We show an equivalent circuit in
Fig. 1 [17]. As we perform the substitutions, we must de
termine which qubit-XOR gates to replace with the gener
alized XOR and which with its inverse. To resolve this
ambiguity, two conditions are imposed. First, we dema
that the code retain its properties under the parity operat
d
l

fi-

0].
ke
-

ted
la-

nd
r

(in
n-
e
-

y

-
-

d
ion

(on each wave packet). We conclude that either gate m
be chosen for the first operation on initially zero-positio
eigenstates. Ambiguity remains for the last fourXOR sub-
stitutions. As a second step, the necessary and suffic
condition for quantum error correction [5,6],

kx0
encodejÊ

y
a Êbjxencodel ­ dsx0 2 xdlab , ; a, b ,

(7)

must be met. Herejxencodel encodes a single wave
packet’s position eigenstate in a multiwave-packet sta
Êa is a possible error that can be handled by the co
andlab is a complex constant independent of the encod
states. [Condition (7) says that correctable errors do
mask the orthogonality of encoded states.]

In the case of a single-wave-packet error, for our
wave-packet code, it turns out that among the conditio
of Eq. (7) onlykx0

encodejÊ
y
4aÊ5bjxencodel, having errors on

wave packets 4 and 5, is affected by the ambiguity (s
detail below). An explicit calculation ofall the condi-
tions shows that the circuit of Fig. 2 yields a satisfacto
quantum error correction code (as do variations of this c
cuit due to the extra freedom with respect to the choice
operator acting on wave packets 1–3). By analogy w
the results for higher-spin codes, we know that this co
is optimal (though not perfect) and that no 4-wave-pack
code would suffice [10]. The code thus constructed has
form

jxencodel ­
1

p3y2

Z
dw dy dz e2iswy1xzd

3 jz, y 1 x, w 1 x, w 2 z, y 2 zl . (8)

Let us demonstrate the calculation of one of the con
tions specified by Eq. (7),
kx0
encodejÊ

y
4aÊ5bjxencodel ­

1
p3

Z
dw0 dy0 dz0 dw dy dz e2iswy1xz2w 0y02x0z0d

3 dsz0 2 zdds y0 2 y 1 x0 2 xddsw0 2 w 1 x0 2 xd

3 kw0 2 z0jÊ y
a jw 2 zl k y0 2 z0jÊbj y 2 zl

­
e22isx02xd2

p3

Z
dw dy dz e2isx02xd sw1y2zd

(9)

3 kw 2 x0 1 x 2 zjÊ y
a jw 2 zl k y 2 x0 1 x 2 zjÊbj y 2 zl .

Making the replacementsw ! w 1 z andy ! y 1 z in this last expression we obtain

­
e22isx02xd2

p3

Z
dw dy dz e2isx02xd sw1y1zdkw 2 x0 1 xjÊ y

a jwl k y 2 x0 1 xjÊbj yl

­
dsx0 2 xd

p2

Z
dw dy kwjÊ y

a jwl k yjÊbj yl ; dsx0 2 xdlab .

(10)

For the other cases we find by explicit calculation, for wave packetsj fi k, that

kx0
encodejÊ

y
jaÊkbjxencodel ­ dsx0 2 xdlab . (11)
4085
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FIG. 1. Quantum error correction circuit from [17]. The
qubit jcl is rotated into a 5-particle subspace by the unitar
operations represented by the operations shown in this circu
Note that the 3-qubit gates are simply pairs ofXORs.

For j ­ k this constant is found to be

lab ­
C
p2

Z
dw kwjÊ y

a Êbjwl , (12)

whereC is formally infinite.
We shall argue that this infinity vanishes when the syn

drome is read with only finite precision, which is always
going to be the real situation. However, this requires us
demonstrate that our codes are robust and that for a su
ciently good precision we may correct single-wave-pack
errors to any specified accuracy. In order to understa
how the error syndromes are measured, let us consid
a simpler code, namely, the continuous version of Shor
original 9-qubit code,

jxencodel ­
1

p3y2

Z
dw dy dz e2ixsw1y1zd

3 jw, w, w, y, y, y, z, z, zl , (13)

where parity alone removes all ambiguity. (This code ha
been independently obtained by Lloyd and Slotine [12]
Since this 9-wave-packet code corrects position errors a
momentum errors separately, it is sufficient to study th
subcode

jxencodel ­ jx, x, xl , (14)

FIG. 2. This “circuit” unitarily maps a one-dimensional
single-wave-packet statejcl into a 5-wave-packet error cor-
rection code. Here the auxiliary wave packetsj0l are initially
zero-position eigenstates. For degrees of freedom larger th
qubits the idealXOR is not its own inverse; here the daggers o
the XOR gates represent the inverse operation.
4086
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designed to correct position errors on a single wave pac
The most general position error (on a single wave pack
is given by some function of the momentum of that syste
Ê sp̂d and need not be unitary on the code subspa
[Eq. (7)]. The action of such an error on a wave pack
may be written in the position basis as

Ê sp̂d jxl ­
1
p

Z
dy dp e2ips y2xdE spd j yl

­
Z

dy Ẽ s yd jx 2 yl , (15)

whereẼ sxd is the Fourier transform ofE spd. Thus, the
most general position error looks like a convolution
the wave packet’s ket with some unknown (though n
completely arbitrary) function. Suppose this error occu
on wave packet 1 in the repetition code (14). Furth
let us use auxiliary wave packets (so-called ancilla
and compute the syndrome as shown in Fig. 3, then
resulting state may be written asZ

dy Ẽ s yd jx 2 y, x, x, 2y, 0, yl . (16)

Everything up till now has been unitary and assum
ideal. Now measure the syndrome: Ideally, it would
h2y, 0, yj collapsing the wave packet for a specificy.
Correcting the error is now easy, because we know
location, value, and sign of the error. Shifting the fir
wave packet by the amounty retrieves the correctly en-
coded statejx, x, xl. Note that this procedure uses on
very simple wave-packet gates: The comparison stag
doneclassically,in contrast to the scheme of Lloyd an
Slotine, where the comparison is performed at the a
plitude level and involves significantly more complicate
interactions [12].

It is now easy to see what imprecise measurements
the syndromes will do. Suppose each measured valu
a syndromes0

j is distributed randomly about the true valu
sj according to the distributionpmeasss0

j 2 sjd. We find
two conditions for error correction to proceed smooth
First, pmeassxd must be narrow compared to any im
portant length scales iñE sxd. This guarantees that the

FIG. 3. Syndrome calculation and measurement: A st
with a single-wave-packet position error (here on wave pac
1) enters, and the differences of each pair of positions
computed. The syndromehs1, s2, s3j may now be directly
measured in the position basis.



VOLUME 80, NUMBER 18 P H Y S I C A L R E V I E W L E T T E R S 4 MAY 1998

n

n-
t

s.
f
n
f

f
.

h
.

-

f

-

y
d

.

,

.

chance for “correcting” the wrong wave packet is negli
gible and reduces the position-error operator to an uninte
esting prefactor. If the original unencoded state had beR

dx csxd jxl, then after error correction we would obtain
the mixed stateZ

dx0 dx dz csxd cpsx0dpmeasszd

3 jx 2 z, x, xl kx0 2 z, x0, x0j . (17)

Thus, unlesspmeassxd is alsonarrow compared to any im-
portant length scales incsxd, decoherence will appear in
the off-diagonal terms for wave packet 1 of the correcte
state (17). This second condition is also seen in the qua
tum teleportation of continuous variables due to inaccu
racies caused by measurement [13]. These conditio
roughly match those described by Lloyd and Slotine [12
We note that any syndrome imprecision will degrade th
encoded states, although this precision may be improv
by repeated measurements of the syndromes. For our
wave-packet example (8), syndromes consist of sums
two or more wave-packet positions or momenta and a
measured similarly.

It should be noted that Chau’s higher-spin code [10
could have been immediately taken over into a quantu
error correction code for continuous quantum variables
accordance with our substitution procedure. However, w
have produced an equivalent code with a more efficient c
cuit prescription: Whereas Chau gives a procedure for co
structing his higher-spin code using nine generalizedXOR

operations, the circuit in Fig. 2 requires only seven suc
gates or their inverses. In fact, we could run this subst
tution backwards to obtain a cleaner 5-particle higher-sp
code based on Eq. (8).

In order to consider potential implementations of th
above code let us restrict our attention to a situation whe
the wave packets are sitting in background harmoni
oscillator potentials. By the virial theorem the form of a
wave packet in such a potential is preserved up to a tri
ial rotation in phase space with time. The two operation
required may be implemented simply as follows: The rota
tion in phase space, Eq. (4), may be obtained by delayi
the phase of one wave packet relative to the others, a
the XOR operation, Eq. (5), should be implemented via
quantum nondemolition coupling. There exists extensiv
experimental literature on these operations both for optic
fields and for trapped ions [13,18–21].

The conjecture put forth in this Letter leads to a
simple, two-step design of error correction codes for con
tinuous quantum variables. According to this conjecture
any qubit code, whose circuit operations include only
specific Hadamard transformation, its inverse, and the ide
XOR, may be translated to a continuous quantum-variab
code, by substituting these operators with their continuou
analogs and then imposing two criteria—parity invarianc
and the error-correction condition—which remove an
ambiguities in the choice of operators. We demonstra
the success of this coding procedure in two examples (o
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based on Shor’s 9-qubit code [2], and a second based o
a variation of the Laflammeet al. 5-qubit code [16,17]).
The 5-wave-packet code presented here is the optimal co
tinuous encoding of a single one-dimensional wave packe
that protects against arbitrary single-wave-packet error
We show that this code (and, in fact, the entire class o
codes derived in this manner) is robust against imprecisio
in the error syndromes. The potential implementation o
the proposed class of circuits in optical-field and ion-trap
setups is an additional incentive for further investigation o
the robust manipulation of continuous quantum variables
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