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Error Correction for Continuous Quantum Variables
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We propose an error correction coding algorithm for continuous quantum variables. We use this
algorithm to construct a highly efficient 5-wave-packet code which can correct arbitrary single wave-
packet errors. We show that this class of continuous variable codes is robust against imprecision in the
error syndromes. A potential implementation of the scheme is presented. [S0031-9007(98)05865-7]

PACS numbers: 03.67.Hk, 03.67.Dd, 42.50.—p

Quantum computers hold the promise for efficiently fac-radians in the Bloch sphere representation of the state. In
toring large integers [1]. However, to do this beyond aanalogy, the position and momentum bases of a continuous
most modest scale they will require quantum error corquantum state may be transformed into each other %/
rection [2]. The theory of quantum error correction is al-rotations in phase space. This transition is implemented
ready well studied in two-level or spibsystems (interms by substituting the Hadamard rotation in the Bloch sphere
of qubits or quantum bits) [2—7]. Some of these resultsdy a Fourier transform between position and momentum
have been generalized to higher-spin systems [8—11]. This phase space. This suggests that we could develop the
work applies to discrete systems like the hyperfine levels imnalogous quantum error correction codes for continuous
ions but is not suitable for systems with continuous specsystems [15].
tra, such as unbound wave packets. Simultaneously with We shall find it convenient to use a units-free notation
this paper, Lloyd and Slotine present the first treatmenwhere
of a quantum error correction code for continuous quan- L
tum variables [12], demonstrating a 9-wave-packet code position=x X (scale length, )
in analogy with Shor’'s 9-qubit coding scheme [2]. Such momentum= p/(scale length,

codes hold exciting prospects for thempletemanipula- . .

tion of quantum systems, including both discrete and con\—Nherex IS a Sca|6d1 lengthy, is a scaled momentum, _qnd

tinuous degrees of freedom, in the presence of inevitabl € have” takerk = 2 (We hgncgforth drop the modifier

noise [13]. 'scaled.”) The po/smon bas:s eigenstatesare normal-
In this Letter we consider a highly efficient and compact'zeo! according tdx'lx) = 6(x" — x) with the momentum

error correction coding algorithm for continuous quantumbaSIS given by

variables. As an example, we construct a 5-wave-packet 1 ,

code which can correct arbitrary single-wave-packet er- lx) = NG f dp e **P|p). (3)

rors. We show that such continuous variable codes are

robust against imprecision in the error syndromes and disfo avoid confusion we shall work in the position basis

cuss potential implementation of the scheme. This pathroughout and so define the Fourier transform as an active

per is restricted to one-dimensional wave packets whicloperation on a state by

might represent the wave function of a nonrelativistic one-

dimensional particle or the state of a.single. p.olarization of Flx) = 1 f dy e*™|y), 4)

a transverse mode of electromagnetic radiation. We shall JT

henceforth refer to such descriptions by the generic term o e both: andy are variables in the position basis. Note

wave packets [14]. t{1at Egs. (3) and (4) correspond to a change of representa-

Rather than starting from scratch we shall use some Qi and a physical change of the state, respectively.
the theory that has already been given for error COITec- |, o qition to the Fourier transform we shall require an

tion on qubits. In particular, Steane has noted that th%nalog to the bit-wise exclusiver (xOR) gate for con-
Hadamard transform, tinuous variables. ThrOR gate has many interpretations

. 1 /1 —1 including controlledNoOT gate, addition modulo 2, and par-
H = NG <1 1 > (1) ity associated with it. Of these interpretations the natural
generalization to continuous variables is addition without
maps phase flips into bit flips and can therefore be used cyclic condition, which maps
to form a class of quantum error correction codes that .y} — lx.x + ) 5)
consist of a pair of classical codes, one for each type of 24 ’ 7
“flip” [3]. This mapping between phase and amplitude By removing the cyclic structure of theor gate we have
bases is achieved with a rotation about thaxis by=/2  produced a gate which is no longer its own inverse. Thus,
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in addition to the Fourier transform and this generalizedon each wave packet). We conclude that either gate may
XOR gate, we include their inverses on our list of usefulbe chosen for the first operation on initially zero-position
gates. This generalizedor operation performs transla- eigenstates. Ambiguity remains for the last fa@R sub-
tions over the entire real line, which are related to the infistitutions. As a second step, the necessary and sufficient
nite additive group ofR. The charactery of this group  condition for quantum error correction [5,6],

satisfy the multiplicative property(x + y) = x(x)x(y)

for all x,y € R and obey the sum rule ncote| Ed Eplxencode) = 6(x' — X)Aag, V¥ 01,%)
1 o0
p ]_ dx x(x) = 6(x), (6)  must be met. Herduxencode) €ncodes a single wave-

packet’s position eigenstate in a multiwave-packet state,

where y(x) = 2. Interestingly, this sum rule has the £, is a possible error that can be handled by the code,
same form as that found by Chau in higher-spin codes [10nd A, is a complex constant independent of the encoded
Once we have recognized the parallel, itis sufficient to takatates. [Condition (7) says that correctable errors do not
the code of a spiri- system as a basis for our continuous-mask the orthogonality of encoded states.]
variable code. In the case of a single-wave-packet error, for our 5-

Based on these parallel group properties, we are temptedave-packet code, it turns out that among the conditions
to speculate a much more general and fundamental relaf Eq. (7) 0n|Y<xencode|f4a f5B | Xencode ), hAVING errors on
tion: We conjecture thak-qubit error correction codes wave packets 4 and 5, is affected by the ambiguity (see
can be paralleled witl-wave-packet codes by replacing detail below). An explicit calculation o&ll the condi-
the discrete-variable operations (Hadamard transform angbns shows that the circuit of Fig. 2 yields a satisfactory
XOR gate) by their continuous-variable analogs (Fouriefquantum error correction code (as do variations of this cir-
transform, generalizexor, and their inverses). As a last cuit due to the extra freedom with respect to the choice of
remark before embarking on the necessary substitutions (iperator acting on wave packets 1-3). By analogy with
a specific example), we point out that the substitution conthe results for higher-spin codes, we know that this code
jecture is only valid for qubit codes whose circuits involve is optimal (though not perfect) and that no 4-wave-packet
only these i/ andxoR) elements. We shall therefore re- code would suffice [10]. The code thus constructed has the

strict our attention to this class of codes. form

An example of a suitable 5-qubit code was given by
Laflammeet al.[16]. We show an equivalent circuit in | ) = o f dw dy dz eX0v+x2)
Fig. 1[17]. As we perform the substitutions, we must de- =~ <"¢°% 3/2 Yz

termine which qubitxor gates to replace with the gener-
alized xor and which with its inverse. To resolve this
ambiguity, two conditions are imposed. First, we demand Let us demonstrate the calculation of one of the condi-
that the code retain its properties under the parity operaﬁiotions specified by Eq. (7),

X lz,y + x,w + x,w —z,y —z). (8)

At A 1 : v — !
<xénc0de|f4af5,3|xencode> = ; fdwldy/dz/dw dy dz eZl(wy+xz W)

X8(E —28(y —y +x' —x)W —w +x' —x)
X (w' = ZNEfw — 2y = 21 Egly — 2)

*21(x —x)? (9)
_ de dy dz eZl(x —x)(w+y—z)
X <w —x x| Ellw — Dy — X +x —zlflgly - 2).
Making the replacemenis — w + z andy — y + z in this last expression we obtain
—Zz(x —x)?
= — fdwdydzemx TGy — x4+ x| Elw(y = &+ x| Eply)
6( ) (10)
X — X
= 20 [y IE ) D15l y) = 567 = .
For the other cases we find by explicit calculation, for wave packetsk, that
<xéncode|fj1-a ZA‘k,B |xencode> = B(Xl - x))\oz,B . (11)
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|4b) Ee— designed to correct position errors on a single wave packet.
The most general position error (on a single wave packet)
10) {Ee{E+& is given by some function of the momentum of that system
E(p) and need not be unitary on the code subspace
|0) & & [Eq. (7)]. The action of such an error on a wave packet
may be written in the position basis as
|0) > 7 . 1 .
(D10 =~ [ avdp PO IE(p) 1)
|0) 7 S

FIG. 1. Quantum error correction circuit from [17]. The = [ dyE(y)lx —y), (15)
qubit [¢) is rotated into a 5-particle subspace by the unitary
operations represented by the operations shown in this CirCUiWheref(x) is the Fourier transform of (p). Thus, the
Note that the 3-qubit gates are simply pairs<oks. most general position error looks like a convolution of
the wave packet’s ket with some unknown (though not
Forj = k this constant is found to be completely arbitrary) function. Suppose this error occurs
C A on wave packet 1 in the repetition code (14). Further,
Aap = — fdw WIES Eglw), (12)  let us use auxiliary wave packets (so-called ancillae)
7 and compute the syndrome as shown in Fig. 3, then the

whereC is formally infinite. resulting state may be written as
We shall argue that this infinity vanishes when the syn-

drome is read with only finite precision, which is always f dy E(y)|x — y,x,x,—,0,y). (16)
going to be the real situation. However, this requires us to
demonstrate that our codes are robust and that for a suffi- Everything up till now has been unitary and assumed

ciently good precision we may correct single-wave-packefjeal. Now measure the syndrome: Ideally, it would be

errors to any specified accuracy. In order to understan{i_y 0,y} collapsing the wave packet for a specific

how the error syndromes are measured, let us considefsrecting the error is now easy, because we know the
a simpler code, namely, the continuous version of Shor'gycation, value, and sign of the error. Shifting the first

original 9-qubit code, wave packet by the amount retrieves the correctly en-
1 dix(wy+2) coded statdx, x,x). Note that this procedure uses only
Iencode) = —573 j dwdydze very simple wave-packet gates: The comparison stage is
doneclassically,in contrast to the scheme of Lloyd and
Slotine, where the comparison is performed at the am-
where parity alone removes all ambiguity. (This code hagplitude level and involves significantly more complicated
been independently obtained by Lloyd and Slotine [12].)interactions [12].
Since this 9-wave-packet code corrects position errors and It is now easy to see what imprecise measurements of
momentum errors separately, it is sufficient to study théhe syndromes will do. Suppose each measured value of
subcode a syndrome} is distributed randomly about the true value
Iencode) = |, x, XY, (14) i accord.ir_lg to the distributiommeas(s} — sj). We find
two conditions for error correction to proceed smoothly.
First, pmeas(x) must be narrow compared to any im-

X Aw, w,w,y,5,,2,2,2), (13)

) (7— portant length scales iff (x). This guarantees that the
0) ez
0 —o— o faen {
|0) S & 10) o T $1
A S
0) S 0 =T
|0) - 53

FIG. 2. This “circuit” unitarily maps a one-dimensional

single-wave-packet statR)) into a 5-wave-packet error cor- FIG. 3. Syndrome calculation and measurement. A state
rection code. Here the auxiliary wave packHisare initially ~ with a single-wave-packet position error (here on wave packet
zero-position eigenstates. For degrees of freedom larger thal) enters, and the differences of each pair of positions are
gubits the ideakor is not its own inverse; here the daggers oncomputed. The syndromésy,s,,s3} may now be directly
the XOR gates represent the inverse operation. measured in the position basis.
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chance for “correcting” the wrong wave packet is negli-based on Shor’s 9-qubit code [2], and a second based on
gible and reduces the position-error operator to an unintela variation of the Laflammet al. 5-qubit code [16,17]).

esting prefactor. If the original unencoded state had beefihe 5-wave-packet code presented here is the optimal con-
[ dx (x) |x), then after error correction we would obtain tinuous encoding of a single one-dimensional wave packet

the mixed state that protects against arbitrary single-wave-packet errors.
We show that this code (and, in fact, the entire class of

[ dx" dx dz i (x) " (x) pmeas (2) codes derived in this manner) is robust against imprecision

in the error syndromes. The potential implementation of

X |x = zx,x) (" = z,x,x'l. (17)  the proposed class of circuits in optical-field and ion-trap

Thus, unles .. (x) is alsonarrow compared to any im- setups is an additional incentive for further investigation of
portant length scales iff(x), decoherence will appear in the robust manipulation of continuous quantum variables.
the off-diagonal terms for wave packet 1 of the corrected This work was funded in part by EPSRC Grant
state (17). This second condition is also seen in the quariNo. GR/L91344. The author appreciated discussions with
tum teleportation of continuous variables due to inaccuN. Cohen, H. J. Kimble, D. Gottesman, and S. Schneider.
racies caused by measurement [13]. These conditions
roughly match those described by Lloyd and Slotine [12].
We note that any syndrome imprecision will degrade theo[l]
orcoded S, SMough i recson may e MBIV s o re Founcaions of Computer Sl b
y rep y o S. Goldwasser (IEEE Computer Society Press, Los Alami-
wave-packet example (8), syn.d_romes consist of sums of tos, CA, 1994), p. 124.
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