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Structure and Phase Transition of Josephson Vortices in Anisotropic High-Tc Superconductors

Xiao Hu and Masashi Tachiki
National Research Institute for Metals, Tsukuba 305, Japan

(Received 20 November 1997)

Monte Carlo simulation is performed on high-Tc superconductors in a magnetic field'ĉ. By
monitoring the temperature dependence of the helicity modulus and the specific heat, we have
demonstrated a second-order phase transition, in the universality class of the 3DXY model, between
phases of finite resistivity and of zeroab-plane resistivity. Josephson-vortex lattice, glass, and
chains waving along thec axis are obtained at lower temperatures depending on the anisotropy
and the magnetic field. These results are discussed in consistency with experimental observations.
[S0031-9007(98)05984-5]

PACS numbers: 74.60.Ge, 74.20.De, 74.25.Bt, 74.25.Dw
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According to the pioneering work of Abrikosov [1], un-
der an external magnetic field between the lower and up
critical fields, vortex lines penetrate into a type-II supe
conductor, and arrange themselves into a regular-trian
lattice in a cross section perpendicular to the field. A
though it has been successful in describing the mixed st
of conventional superconductors, this theory becomes
sufficient for high-Tc superconductors, where the uppe
critical field disappears. It is now well accepted that th
lattice of pancake vortex lines induced by the external ma
netic field along thec axis is melted into vortex liquid
via a first-order thermodynamic phase transition in the
anisotropic superconductors [2–5]. The instability of th
pancake vortex lattice is caused by thermal fluctuation
The anisotropy of the high-Tc superconductors enhance
the effect of thermal fluctuations, and makes the phase tr
sition first-order. When the external magnetic field is a
plied parallel to theab plane, the effect of anisotropy to
the flux state of a high-Tc superconductor is multiple, and
thus more complicated. In high-Tc superconductors the
superconducting order parameter is finite only in the ve
vicinity of the CuO2 layers. When an external magneti
field above the lower critical field is applied parallel to
theab plane, the fluxons, Josephson vortices, penetrate
sample through the blocking layers in order to reduce t
loss of superconducting cohesive energy. The layer str
ture of the high-Tc superconductor crystal itself works a
natural pinning centers, as first discussed by Tachiki a
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Takahashi [6]. In the presence of the intrinsic pinning, th
instability of the conventional triangular flux lattice come
from the anisotropy, the competition between intervorte
forces and the layer structure, as well as thermal fluctu
tions. Therefore, to clarify the temperature and magne
field dependence of the mixed state in the external ma
netic field parallel to theab plane is very important in a
viewpoint of the theory for the mixed state of type-II super
conductors. This physics situation has been investigat
experimentally and theoretically [7–10]. Comparing with
the much more studied case of the external magnetic fie
applied along thec axis, there are many aspects to be ex
plored for the mixed state in the external magnetic fie
parallel to theab plane. In this Letter, we present for the
first time the results of a systematic Monte Carlo (MC
simulation for this problem. We have found that there i
a thermodynamic, second-order phase transition betwe
a high-temperature phase of finite resistivity in all of th
directions and a low-temperature phase of zero resistiv
in theab plane. The ground state of the Josephson-vort
system takes an ordered flux lattice for certain ranges
the anisotropy, whereas a glass and an ensemble of w
ing chains are taken for other ranges of anisotropy. The
phenomena can be well understood from the intrinsic pi
ning effect of the layered structure.

In order to describe the mixed state of a high-Tc

superconductor to the strongly layered limit, we use th
following 3D anisotropic, frustratedXY model [11,12]:
H ­ 2 J
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which can be derived from the Ginzburg-Landa
Lawrence-Doniach free-energy functional [13,14]. Th
y direction is along the external magnetic field, an
ŷ'ĉ'x̂. The lattice spacing along thec axis corresponds
to the distance between the nearest neighboring Cu2
u
e
d

O

planes in a cuprate, and thus in our model Hamiltonian th
discreteness along thec axis is intrinsic. The underlying
square lattice in thex andy directions, which are parallel
to the ab plane, are introduced merely for implementing
simulation. The effect of the fictitious pinnings in the
© 1998 The American Physical Society
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FIG. 1. Temperature dependence of the helicity moduli f
G ­ 10. The solid curve is given by an indexy ­ 2y3, which
is expected to be the critical exponent of the 3D classicalXY
model. The system size isLx 3 Ly 3 Lc ­ 48 3 40 3 48.

x and y directions can be made very small by using
low filling of flux lines such asf ­ 1y24 in the present
Letter. The anisotropy constantG is a parameter control-
ling the ratio between the couplings in theab plane and
along thec axis. For smallG the system should behave
similar to a 3D anisotropic, continuous superconduct
However, for largeG the effect of the layer structure in
the c direction is much enhanced and comes to play
important role in determining the vortex structure. Ther
fore, the system of a large anisotropy constant is expec
to be a good model of high-Tc superconductors. The
system size isLx 3 Ly 3 Lc ­ 48 3 40 3 48. We
have checked the system-size dependence of the sim
tion results, adoptingLx 3 Ly 3 Lc ­ 96 3 40 3 96
and Lx 3 Ly 3 Lc ­ 48 3 80 3 48. The number of
MC sweeps per degree of freedom and per temperatur
50 000 for equilibration and 100 000 for sampling. MC
sweeps are taken up to two million for the system
Lx 3 Ly 3 Lc ­ 48 3 40 3 48 around the transition
temperature. See Ref. [12] for more detailed conditio
in simulation. We investigate both the thermodynam
behavior of the system upon sweeping the temperatu
and the low-temperature phases of the Josephson-vo
system for various values of anisotropy.

Figure 1 shows the temperature dependence of the
licity moduli [15,16] for the system of the anisotropy
constantG ­ 10. Above the critical temperatureTs .
1.06JykB, there is no long-range order in all of the di
rections, characteristic of the liquid of Josephson vortic
Upon cooling across the critical temperatureTs, the helic-
ity modulus along the field and that along thex axis grow
simultaneously. The superconductivity in a mixed sta
of a type-II superconductor is destroyed by a current p
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pendicular to flux lines if there is no pinning. The helic
ity modulus perpendicular to the external magnetic fie
should vanish in such a case. Therefore, the finitene
of the helicity modulus along thex direction is nothing
but the result of the intrinsic pinning effect of the laye
structure along thec direction, because of the property
of the Lorentz force. The zero helicity modulus alon
the c axis shows very clear evidence that the flux line
are free of pinning along thex direction, as it should be.
We have also monitored the specific heat and observe
peak aroundTs, as shown in Fig. 2. Therefore, atTs the
system experiences a thermodynamic phase transition
tween the phase of finite resistivity, normal phase, and
phase of zeroab-plane resistivity, superconducting phase

Let us pay attention to the nature of the phase transiti
at Ts. The continuous onset of the helicity modul
below Ts and the enhancement of thermal fluctuation
around Ts signaled by the peak of the specific heat,
typical critical phenomenon, indicate clearly a secon
order phase transition in the Josephson-vortex syste
This fact is consistent with the transport experime
by Kwok et al. [9], in which the resistivity disappears
continuously as the temperature approaches the criti
point from above. The second-order phase transition
high-Tc superconductors in an external magnetic fie
parallel to theab plane has been discussed theoretica
by Balents and Nelson [10], and is attributed to th
nematic-to-smectic transition. By constructing a mod
free energy and appealing to a renormalization-gro
analysis, the authors conclude that the phase transition
in the universality class of the 3D classicalXY model.

FIG. 2. Temperature dependence of the specific heat
fluxon per length ofdgyG along the external magnetic field
for G ­ 10. Results for different system sizes in simulatio
are denoted byLx 3 Ly 3 Lc. The inset is for the vicinity
around the critical point.
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Our simulation results are consistent with this theoretic
discussion presuming the critical exponenty ­ 2y3 for
the helicity modulus: First, as shown in Fig. 1, ou
numerical results for the helicity moduli in theab plane fit
a single power function in the vicinity below the critica
point YsTdyYs0d , s1 2 TyTsdy with y ­ 2y3; second,
from the Josephson scaling lawy ­ 2 2 a 2 2n and the
hyperscaling relationa ­ 2 2 Dn [16,17] with D the
spatial dimension andn the exponent for the correlation
length, one obtainsa ­ 0 for the specific heat from
D ­ 3 andy ­ 2y3. This value ofa is consistent with
the data shown in Fig. 2 since the peak in the specific h
at Ts does not grow with the system size. It is, howeve
still difficult to estimate the critical exponents numericall
from the present data.

It is worthwhile to notice that, in the system of th
same anisotropy but with the external magnetic fie
applied along thec axis, the first-order melting transition
occurs at a temperatureTm . 0.18JykB [18], much lower
than Ts . 1.06JykB. The relationTssB'ĉd . TmsB k
ĉd establishes generally.

We then turn to see variations in the structure
Josephson vortices at low temperatures as the anisotr
is tuned. In the present study, flux lines are along t
y direction where the external magnetic field is applie
The alignment of Josephson vortices in anxc plane nor-
mal to the field is the issue we address in what follow
Increasing the anisotropy constantG from unity up to
Gc1 . 1.6, we obtain lattices of Josephson flux lines
sufficiently low temperatures. In Fig. 3(a) we display th
structure factorSskxc, y ­ 0d for the case ofG ­ 1.6.
The Voronoi cell is a triangle elongated in thex direc-
tion. After a scaling of thex axis, namely, dividing the
distance in thex direction with the anisotropy constant

FIG. 3. Structure factorsSskxc, y ­ 0d for the Josephson
vortices at low temperatures.
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the distorted-triangle lattice is transformed to the regula
triangle lattice up to the precision of unit mesh. Ther
fore, for 1 # G # Gc1 the intrinsic pinning effect of the
layer structure can be neglected. ForGc1 , G , Gc2
with Gc2 . 3.0, no lattice of the Josephson flux line
can be observed, and the low-temperature phase of
system seems to be a glass. This is understood as
result of the frustration from the competition betwee
the intervortex repulsive forces and the intrinsic pinnin
effect of the layer structure. ForGc2 # G , Gc3 with
Gc3 . 3.6, the commensuration between the vortex alig
ment determined by the intervortex repulsive forces a
the layer structure is achieved, and a lattice structure is
covered. Figure 3(b) is the structure factorSskxc, y ­ 0d
for G ­ 3. For these values of anisotropy, however, th
scaling of the distance according to the anisotropy co
stant is broken. This fact indicates clearly that in th
region of anisotropy the intrinsic pinning effect of th
layer structure plays an important role in determining t
alignment of the Josephson vortices. ForGc3 # G , Gc4
with Gc4 . 5.0, the low-temperature phase is glass aga
Note that the values of the critical anisotropies are up to
precision of 0.1. The above variations of the Josephs
vortex system at low temperatures with the anisotropy
similar to those with the magnetic field proposed by B
lents and Nelson [10]. We notice that the magnetic fie
and the anisotropy constant in simulation can be rela
to each other byB ­ ff0Gyd2g, with d the distance
between the nearest-neighboring superconducting lay
and g ­ lcylab, with lc and lab being the penetration
depths parallel to thec axis and theab plane. The trans-
formation of the system to the solid phases seems to
a crossover, since no anomaly in the specific heat can
observed below the critical temperatureTs as in Fig. 2.

As mentioned above, the structure factor in the ran
1 # G # Gc1 can be well understood in terms of a
anisotropic, continuum superconducting system, in whi
the underlying lattice is not important. AsG increases,
the distance among the vortices in thex direction becomes
larger, whereas that along thec axis becomes smaller.
The fictitious pinning effect along thex direction becomes
less, and the intrinsic pinning effect along thec direc-
tion becomes more important. Therefore, the possibil
of the fictitious pinning effect in theab plane on the struc-
ture of the Josephson vortex system can be excluded.
conclude that the variations of the low-temperature st
obtained in the present study are the result of the co
petition between the anisotropic, repulsive force amo
the vortices and the intrinsic pinning effect of the laye
structure.

When we increase the anisotropy constant furth
a drastic change takes place in the structure of
Josephson-vortex system at low temperatures. Figure 3
is the structure factorSskxc, y ­ 0d of Josephson vortices
at a low temperature forG ­ 5. While Bragg peaks
associated with the local, distorted-hexagonal Voron
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FIG. 4. Real-space distribution of Josephson vortices f
Fig. 3(c).

cells are observed, the overall structure is characteris
of one dimension. The distribution of Josephson vortic
in real space is shown in Fig. 4. The vortices are muc
nearer to each other in thec direction than in theab
plane, and thus manifest themselves as chains of flux lin
[19]. The chains separate from each other with equ
distance in thex direction. In detail, the vortices sit in
every other layer in each individual chain, and shift b
one layer in the neighboring chains. These properti
can be understood by the anisotropy of interactions.
these chains were to stretch in a fixed direction, a shea
triangular lattice would be formed. However, the vorte
chains wave along thec axis as in Fig. 4, and the
uniform triangular lattice is broken. Although we canno
completely exclude the possibility of a triangular lattice a
zero temperature, it is safe to say that the shear modu
for the triangular lattice would be very small [20], so tha
it is unstable against thermal fluctuations. Waving chai
of Josephson vortices are observed at low temperatu
for the anisotropyG $ Gc4 in the present simulation.

The waving of the vortex chains along thec axis is
consistent with the Bitter-pattern observation by Dola
et al. [7]. This phenomenon was discussed by Ivlev an
Campbell in terms of a London model, and the mechanis
of the instability of the Abrikosov lattice was attributed
to the existence of a twin boundary [8]. In contrast, ou
simulation results indicate that the waving of the vorte
chains exists without any twins. As revealed by th
present MC simulation, thermal fluctuations enhance t
instability of the triangular lattice and make the wavin
chains of vortex more favorable thermodynamically a
finite temperatures.
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In summary, by using the MC simulation, we have
observed a second-order phase transition between pha
of finite resistivity and of zeroab-plane resistivity. The
simulation data are consistent with that of the phas
transition belonging to the universality class of the 3D
classicalXY model. We have obtained Josephson-vorte
lattice as the ground state in certain ranges of anisotrop
while we have obtained a glass for other ranges. Chai
waving along thec axis are obtained for large anisotropy

The authors thank R. Ikeda and S. Shafranjuk fo
stimulating discussions. The present simulation is pe
formed on the Numerical Materials Simulator (SX-4) o
National Research Institute for Metals (NRIM), Japan.
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