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Semiclassical Theory of Magnetotransport through a Chaotic Quantum Well
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We develop a quantitative semiclassical formula for the resonant tunneling current through a quantum
well in a tilted magnetic field. It is shown that the current depends only on periodic orbits within the
guantum well. For example, the theory explains the puzzling evolution of the data near a tilt angle of
30° as arising from an exchange bifurcation of the relevant periodic orbits. [S0031-9007(98)05527-6]

PACS numbers: 73.20.Dx, 05.45.+b, 72.15.Gd

The resonant tunneling diode (RTD) in a magnetic fielddescribing this limit the Bardeen tunneling Hamiltonian
tilted with respect to the tunneling direction has been exformalism is appropriate [8,9]. Using this approach, and
tensively studied in recent years as a simple experimentdéihe approximation that the tunneling rate through the
system which manifests the quantum signatures of classemitter barrier is much less than the rate through the
cal chaos [1-7]. The measuréd/ characteristics show collector barrier (which describes the recent experiments
resonance peaks which evolve in a complex manner g4,2]), one finds that the current is determined solely by
magnetic fieldB and tilt angled are varied [1,2]. The the tunneling rate through the emitter barrier [19].,,,
existence and periodicity of these peaks in the various pa- .
rameter intervals have been associated with the existence J = neeWe—n, (1)
of certain periodic orbits [1] and their bifurcations [2,3]. wheren, is the electron density in the emitter layer.

The link to quantum mechanics has been made by intui- W,_,, can be calculated from the Fermi’s “golden rule”
tive appeals to Gutzwiller oscillations of the density of with the coupling given by the square of the matrix
states [1], scaling analyses of the exact quantum spectrugiement [8,9] between the wave functiods and ¥,

[4], and the numerical discovery of sequences of waveorresponding to thésolated emitter andisolated well,
functions scarred by periodic orbits [6]. However, previ-respectively. In the limit when the height of the emitter
ous to this work, it has not been shown that periodic orbarrier is much larger than the injection energy the

bits indeed determine the quantum tunneling oscillationgyclotron energy and the voltage drop across the barrier,
in the semiclassical limit. Below we derive a quantita-this matrix element can be simplified to
tive semiclassical formula for the tunneling current which 5 w B
demonstrates that the current is dominated by periodic or- p7¢™" = h_[ dS¥e(x,y,0) M 2)
bits and apply the formula to previously unpublished data m 92

which reveals an interestingxchange bifurcatioinvolv-  where the integration is performed over the inner surface
ing four period-two orbits. of the emitter barrier = 0.

In an RTD under a bias voltagg, tunneling current Because of the translational invariance in the
flows from the emitter state through the double barrierst direction, the classical dynamics within the well
confining the quantum well. The data presented are froncan be reduced to 2 degrees of freedony, [2—5] with
an RTD with a 120 nm wide well and experimental detailsan effective potentiaV (y, z). The well wave functions in
are given in Ref. [2]. When a large magnetic figlell T)  Eg. (1) can be reexpressed in terms of the Green function
is applied, the emitter state is quantized into the first fewof the isolated well,G(y1,z1 = 0;y2,22 = 0; ¢), which
Landau levels. The electric field is normal to the barrierdgs then replaced by its semiclassical approximation [11],
(E = Ez), while the magnetic field is tilted in the-z  determined byall classical trajectories connecting the
plane,B = cosfz + singy. points  (y1,0); (y2,0) = (y — Ay/2,0);(y + Ay/2,0).

After tunneling into the well through the emitter barrier, The emitter state¥, in Eq. (2) involves only the few
the electron will typically begin to lose kinetic energy lowest single-particle levels and can be calculated accu-
by optic phonon emission after only 4-5 collisions with rately using a variational approach [12}¥,(y) is then
the barriers, but will traverse the well hundreds of timesa linear combination of the lowest few Landau levels,
before tunneling out. Therefore, the tunneling is sequentigind has spatial extent of order the magnetic length,
and the resonances are substantially broadeneg/ by, Iz = \//i/eB ~ i'/>.
where the phonon emission time is0.1 ps [1]. For |  We then obtain for the oscillatory part &f.—.,,

A
Wose ]dp}]dyfw(y P})Z (pZ)(pZ )f]dAy X ‘%L/ Topt %:“’ )
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whereS, = S,(y — Ay/2,0;y + Ay/2,0;¢) is the ac- integral. Alternatively, we can employ the approach of
tion of the classical trajectory indexed by, ¢, is the Berry [13] and perform this integration by stationary
classical propagation timed), is the appropriate (com- phase, which will initially lead to an expression in terms
plex) amplitude [11], ang] and p; correspond to the of nonclosed orbits which satisfy the “midpoint rule,”

initial and final momenta of the trajectory. and then reexpress this answer to the same accuracy in
We have also introduced in Eq. (3) the Wigners usingAy ~ /i to arrive at the same result involving

transform of the emitter wave functiorfw(y,p,) =  only families of closed orbits.

R [dAyW,(y — Ay/2,00Wi(y + Ay/2,0) explip, X The y integration now involves the rapidly varying

Ay/h); this function describes the distribution in trans- phase exs, (y,y)/#] for closed orbits beginning and
verse position and momentum of electrons injected int@nding aty. Typically these orbits occur in families around
the well. SinceW,(y) has a width~Iz, the integrand a discreteperiodic orbit u at whichS, (y,y) is stationary
will be small for Ay > Iz ~ i'/2. Finally the factor [11]. Sincefw(y) varies on the same spatial scaté'/?,
exp(—1,/7opt) represents the effect of phonon emission. we cannotimmediately perform tlyentegral by stationary
Consider first the integration ovéry in Eq. (3). Since phase (as is done to derive the trace formula for the total
Ay ~ 172, in the semiclassical limiti — 0, one can density of states [11]). However, here we can represent
expandS,(y — Ay,y + Ay) retaining only terms up to all closed orbits to the required accuracy by quadratic
second order, and perform exactly the resulting Gaus?iaaxpansion ofS, aroundthe discrete set of periodic orbits.
One then finds

(e) 16p'“eX[i—T /7'0 t) S mn
Wose Z[d)’[dpyfw ()’»Py)z = m ’l; L co 7'“ - 2# + Qp,((sy,(spy) 5 (4)
I m*\/lm“ + my + 2|
where | so if we neglect phonon scattering,§ — «) we do
0. recover perfectly discrete contributions to the tunneling

P ) “ “ P ) current. In the stable case the argumens pfin Eq. (5)
_ 2 ma(dy)” + (m22u_ m“l)fyapy — m2(dpy) . isef =& — hw' (€ + 1/2) which may be interpreted
h (miy + my +2) as the energy of longitudinal motion along the orbit.
Here w labels the periodic orbitéy =y — y,, py =  Because of the harmonic approximation the quantization
py — (pu)y, the integem,, is the topological index [11] of the transverse oscillations around the periodic orbit
of the Eer_iodic orbit, and th@ X 2 mono_dromy matri>_< simply yields equally spaced levels [14] with spacing
[11] (m;;) is calculated at the contact point at the emltterﬁwfﬁ where the frequencyo, = ¢,/T,, ¢, is the

barrier. We have thus §ho_wn that_the tunneling Cu”e”\t/vinding number [11], and’,, the period of the orbit. So

depends only on the periodic orbits in the well. the discrete energies at which tunneling occars the
The summation in Eq. (4) is performed over all isolated;qrect semiclassical energy levels of the well.

periodic orbits, both stable and unstable. Near stable is- ¢ amplitude of each contribution is given by the

Iands.the_ motion is rggular and we expect semiclassicayefficient functionse, in Eq. (5), which are the Wigner

quantization to yield discrete energy levels and sequencggnsforms of the harmonic oscillator wave functions

of eigenfunctions localized on the islands [14]. In coNn-corresponding to these transverse modes
trast, near unstable orbits the motion is chaotic and semi-

classical theory does not yield discrete levels [11]. This géﬁ(y’py) = (-1)Le210, ) exp—10,.D), (6)
difference can be displayed explicitly by performing ex-
actly the summation over repetitions of the primitive peri-where L, is the Laguerre polynomial an@, = 2 +

odic orbits in Eq. (4), yielding Te[M])V2]2 — Tr[M]I‘l/zQM.
8 T, Su(e) Thy Since the result (6) is based on the harmonic approxi-
W= %:(p#)z ; A P mation within a stable island, we may include only modes

up to €ax, Which is given by the ratio of the island area
< f dyf dpyfS(y, py)gg’i(y’ py). (5 to 7. _Phpnon scattering smears out each of these discrete
contributions toW,. over an energy range/ rp;.
where A(o, p) = sinh(o)/[cosio) — codp)], and the In contrast, for unstable periodic orbits we find that
index + or — denotes stable or unstable orbits. Therl, = Topt/(1 + €A, Top), Where A, is the Lyapunov
quantity 7/ is an effective level broadening which exponent near the orbjt. Hence this time is finite and
differs in the two cases. equal tol /A, in the absence of phonon scattering. There-
Note that the functioA has a peak every time the fore, instability acts as a sort of intrinsic level broadening,
semiclassical quantization conditidf),(¢;) = 27/i(n +  and each periodic orbit (PO) describes a contribution due
n,/4) is satisfied, and these peaks become delta functions a cluster of levels. The peak of the functidrin Eq. (5)
as 74 — . For stable orbits we find thatl = Topt»  COrresponding to the mean energy of the cluster is given
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by S,.(e) = 2@wh(n + n,/4). The weight functions appear as a result of bifurcations [5]. Here we focus on
o ‘o x a the peak doubling in the intervab® < ¢ < 34°, where
ge” (y,py) = (=1 g‘{Lé’(ZlQu)eXp(lQu) there are four most relevant orbits [5], denoted(by2);,
- (1,2), (1,2)7, (1,2)3.
X <1 + ism(S#/ﬁ _ 77”“/2)>} 7) The evolution of these orbits with magnetic field or
SINN(T,,/7etr) voltage is represented by the four colored lines in Fig. 1.

are related to Wigner functionaveraged[13] over the We recall [3—5] that under experimental conditions the
eigenstates of the cluster. For each unstable PO the higbtassical mechanics depends only on two paramgtets
¢ contributions are exponentially damped, and thecoB/+/V [wherecy = 3.1(e/m*)"/?d andd = 120 nm is
main contribution to the tunneling rate is given by thethe width of the well] and the tilt anglé. As B increases
€ = 0 term. from zero for fixedd, these four(1,2) orbits appear in

We now have a rigorous criterion for which periodic bifurcations [5,7] and then disappear pairwise at higher
orbits contribute substantially to the tunneling current ing in the inverse tangent bifurcations already mentioned.
Eq. (5). The injection functiorfw (y, py) is centered on These orbits can be specified by the coordingteof
yi and p, = 0 with widths ~Ip,%/lp in y, p,. Weight their one collision with the emitter (which is v,; see
functionsg,, are centered at,, (p,), with widths~/, =  Fig. 1). The most relevant orbits here are the2), and
QAlmi,) 2|14 — Tr[M, ]I~ and /1, respectively. (1,2)]. The semiclassical width, of these orbits around
When the real and momentum space peaks of thesg, is denoted by the gray-scale regions (calculated for
two functions overlap the PO is semiclassically “acces8 = 8 T). The width of the injection functiorfy (y) is
sible” and makes a substantial contribution to the tundenoted by the hatched regions. Whenever these regions
neling current. This criterion is illustrated for relevant overlap for some value of3 the orbit is accessible
period-two orbits in Fig. 1. Given the relevadassical and Eq. (5) predicts that a peak-doubling region will
information for any periodic orbit reaching the emitter, appear in theB-V parameter space along the parabola
its contribution to the tunneling current can be calculateccorresponding to that value ¢f (see Fig. 2).
from Egs. (5)—(7) [15]. We now apply this formulation  Figures 1(a)—1(c) depict a fascinating feature of the
to understand aspects of the experimentally obsefvEd classical dynamics, noted in Ref. [5], which occurs near
characteristics. 6 = 31° for the parameters of Ref. [2]. A® = 29°

In the recent periodic orbit theory [5] it was shown thatthe accessibility intervals for thél,2), orbit and the
within the set of POs which collide with the collectar  (1,2); cover the entire intervat.3 < 8 < 10.9 overlap-
times (periods orbits), there exist orbits which collide ping briefly aroundB = 7.5. Thus, one expects a large
with the emitterm times, wheren =< n, and it is useful region of peak doubling in th&-V plane with no gaps
to classify POs by the two intege(s:, n). At 6 = 0the as observed [2]. However, we can now see that the low
only resonances observed in thé characteristic are as- voltage and high voltage oscillations are due to these two
sociated with Bohr-Sommerfeld quantization of fHel)  differentorbits, and we expect an abrupt amplitude change
orbit which traverses the well with zero cyclotron en-aroundg = 7.3 (V = 0.44 V for B = 8 T). This is ob-
ergy. Whend # 0, additional resonances appear corre-served clearly in the data of Fig. 2(a), where the amplitude
sponding to doubling or tripling of the frequency of peakschange is compared to theory. The theory is found to pre-
[2]. These new peaks are associated with the existence dfct the ratio of the amplitudes between the low and high
period-two and period-three orbits which appear and disvoltage regions (abow&45 V) with only 25% mean error.

-0.2 0 0.2
-0.2 0 0.2

(V)e/Vo = y cost/R,

FIG. 1(color). Bifurcation diagrams for the four period-two orbits relevant to the peak doubling in the inlervdl9°—34°
(see text). Colored lines indicatecoordinate of the single collision with the emitter; these lines coincide at bifurcatiéns.29°

(a) indicates behavior before the exchange bifurcatlor: 31° (b) and34° (c) after. Shading represents the localization lengths
associated with the relevant orbits,[2), and(1, 2)] for (a), and(1,2), and(1, 2), for (b),(c)]. Hatched region denotes semiclassical
width of emitter state; overlap indicates a large contribution to the tunneling current.
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FIG. 2. (a),(d): Resonant tunnelidgV traces ford = 31°,0 = 34° atB = 8 T. Trace (1) is raw experimental data, trace (2) is

same data, filtered to retain only period-two oscillations, trace (3) is semiclassical prediction from Eq. (5). The modest discrepancies
in the shape of the envelope of the amplitude of the oscillations is due to the inaccuracy of the quadratic semiclassical theory near
the bifurcation which occurs around 0.3 V at 8 T. (b),(e): Peak positions vs voltage and magnetic field, determined from multiple
sets of experimental-V data atd = 31°,34°. (c),(f): Semiclassical-V oscillations for same, note gray scale indicates relative
amplitudes, not just peak positions. Note disappearance of high voltage oscillatiéns at° due to movement ofl1, 2), orbit

away from accessibility after the exchange bifurcation [see Figs. 1(b), 1(c), and text].
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