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Semiclassical Theory of Magnetotransport through a Chaotic Quantum Well
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We develop a quantitative semiclassical formula for the resonant tunneling current through a quan
well in a tilted magnetic field. It is shown that the current depends only on periodic orbits within t
quantum well. For example, the theory explains the puzzling evolution of the data near a tilt angl
30± as arising from an exchange bifurcation of the relevant periodic orbits. [S0031-9007(98)05527
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The resonant tunneling diode (RTD) in a magnetic fie
tilted with respect to the tunneling direction has been e
tensively studied in recent years as a simple experimen
system which manifests the quantum signatures of clas
cal chaos [1–7]. The measuredI-V characteristics show
resonance peaks which evolve in a complex manner
magnetic fieldB and tilt angleu are varied [1,2]. The
existence and periodicity of these peaks in the various p
rameter intervals have been associated with the existe
of certain periodic orbits [1] and their bifurcations [2,3]
The link to quantum mechanics has been made by int
tive appeals to Gutzwiller oscillations of the density o
states [1], scaling analyses of the exact quantum spectr
[4], and the numerical discovery of sequences of wa
functions scarred by periodic orbits [6]. However, prev
ous to this work, it has not been shown that periodic o
bits indeed determine the quantum tunneling oscillatio
in the semiclassical limit. Below we derive a quantita
tive semiclassical formula for the tunneling current whic
demonstrates that the current is dominated by periodic
bits and apply the formula to previously unpublished da
which reveals an interestingexchange bifurcationinvolv-
ing four period-two orbits.

In an RTD under a bias voltageV , tunneling current
flows from the emitter state through the double barrie
confining the quantum well. The data presented are fro
an RTD with a 120 nm wide well and experimental detai
are given in Ref. [2]. When a large magnetic fields.1 Td
is applied, the emitter state is quantized into the first fe
Landau levels. The electric field is normal to the barrie
(E  Eẑ), while the magnetic field is tilted in they-z
plane,B  cosuẑ 1 sinuŷ.

After tunneling into the well through the emitter barrier
the electron will typically begin to lose kinetic energy
by optic phonon emission after only 4–5 collisions with
the barriers, but will traverse the well hundreds of time
before tunneling out. Therefore, the tunneling is sequent
and the resonances are substantially broadened byh̄ytopt,
where the phonon emission time is,0.1 ps [1]. For
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describing this limit the Bardeen tunneling Hamiltonia
formalism is appropriate [8,9]. Using this approach, an
the approximation that the tunneling rate through th
emitter barrier is much less than the rate through t
collector barrier (which describes the recent experimen
[1,2]), one finds that the current is determined solely b
the tunneling rate through the emitter barrier [10]We!w ,

j  neeWe!w , (1)

wherene is the electron density in the emitter layer.
We!w can be calculated from the Fermi’s “golden rule

with the coupling given by the square of the matri
element [8,9] between the wave functionsCe and Cw ,
corresponding to theisolated emitter andisolated well,
respectively. In the limit when the height of the emitte
barrier is much larger than the injection energy´i , the
cyclotron energy and the voltage drop across the barr
this matrix element can be simplified to

Me!w
nk 

h̄2

m

Z
dSCe

nsx, y, 0d
≠C

w
k sx, y, 0dp

≠z
, (2)

where the integration is performed over the inner surfa
of the emitter barrierz  0.

Because of the translational invariance in th
x direction, the classical dynamics within the we
can be reduced to 2 degrees of freedom,y, z, [2–5] with
an effective potentialV sy, zd. The well wave functions in
Eq. (1) can be reexpressed in terms of the Green funct
of the isolated well,Gsy1, z1  0; y2, z2  0; ´d, which
is then replaced by its semiclassical approximation [11
determined byall classical trajectories connecting th
points sy1, 0d; sy2, 0d ; sy 2 Dyy2, 0d; sy 1 Dyy2, 0d.
The emitter stateCe in Eq. (2) involves only the few
lowest single-particle levels and can be calculated acc
rately using a variational approach [12].Cesyd is then
a linear combination of the lowest few Landau level
and has spatial extent of order the magnetic leng
lB ;

p
h̄yeB , h̄1y2.

We then obtain for the oscillatory part ofWe!w
Wosc 
Z

dpy

Z
dy fW sy, pyd

X
g

spg
z dispg

z df

smpd2

Z
dDy 3 R

(
8D1y2

g
p

2p h̄i
exp

"
2

tg

topt
1 i

Sg 2 pyDy

h̄

#)
, (3)
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whereSg ; Sgsy 2 Dyy2, 0; y 1 Dyy2, 0; ´d is the ac-
tion of the classical trajectory indexed byg, tg is the
classical propagation time,Dg is the appropriate (com-
plex) amplitude [11], andp

g
i and p

g
f correspond to the

initial and final momenta of the trajectory.
We have also introduced in Eq. (3) the Wigne

transform of the emitter wave function,fW sy, pyd 
h21

R
dDyCesy 2 Dyy2, 0dCp

esy 1 Dyy2, 0d expsipy 3

Dyyh̄d; this function describes the distribution in trans
verse position and momentum of electrons injected in
the well. SinceCesyd has a width,lB, the integrand
will be small for Dy . lB , h̄1y2. Finally the factor
exps2tgytoptd represents the effect of phonon emission.

Consider first the integration overDy in Eq. (3). Since
Dy , h̄1y2, in the semiclassical limith̄ ! 0, one can
expandSgsy 2 Dy, y 1 Dyd retaining only terms up to
second order, and perform exactly the resulting Gauss
e

c
c

m

o

r

-
to

ian

integral. Alternatively, we can employ the approach o
Berry [13] and perform this integration by stationary
phase, which will initially lead to an expression in term
of nonclosed orbits which satisfy the “midpoint rule,”
and then reexpress this answer to the same accuracy
h̄ using Dy ,

p
h̄ to arrive at the same result involving

only families of closed orbits.
The y integration now involves the rapidly varying

phase expfiSgsy, ydyh̄g for closed orbits beginning and
ending aty. Typically these orbits occur in families around
a discreteperiodic orbit m at whichSgsy, yd is stationary
[11]. SincefW syd varies on the same spatial scale,h̄1y2,
we cannot immediately perform they integral by stationary
phase (as is done to derive the trace formula for the to
density of states [11]). However, here we can represe
all closed orbits to the required accuracy by quadrat
expansion ofSg aroundthe discrete set of periodic orbits.
One then finds
Wosc 
Z

dy
Z

dpyf
sed
W sy, pyd

X
m

16pm
z exps2Tmytoptd

mp

q
jm

m
11 1 m

m
22 1 2j

cos

∑
Sm

h̄
2

pnm

2
1 Qmsdy, dpyd

∏
, (4)
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where

Qm


2
h̄

m
m
21sdyd2 1 smm

22 2 m
m
11ddydpy 2 m

m
12sdpyd2

smm
11 1 m

m
22 1 2d

.

Here m labels the periodic orbit,dy  y 2 ym, dpy 
py 2 spmdy, the integernm is the topological index [11]
of the periodic orbit, and the2 3 2 monodromy matrix
[11] smm

ijd is calculated at the contact point at the emitt
barrier. We have thus shown that the tunneling curre
depends only on the periodic orbits in the well.

The summation in Eq. (4) is performed over all isolate
periodic orbits, both stable and unstable. Near stable
lands the motion is regular and we expect semiclassi
quantization to yield discrete energy levels and sequen
of eigenfunctions localized on the islands [14]. In con
trast, near unstable orbits the motion is chaotic and se
classical theory does not yield discrete levels [11]. Th
difference can be displayed explicitly by performing ex
actly the summation over repetitions of the primitive per
odic orbits in Eq. (4), yielding

W 
8
m

X
m

spmdz

X
,

D

√
Tm

t
m
eff

,
Sms´,d

h̄
2

pnm

2

!

3
Z

dy
Z

dpyfe
W sy, pydgm,6

, sy, pyd , (5)

where Dss, rd  sinhssdyfcoshssd 2 cossrdg, and the
index 1 or 2 denotes stable or unstable orbits. Th
quantity h̄yt

m
eff is an effective level broadening which

differs in the two cases.
Note that the functionD has a peak every time the

semiclassical quantization conditionSms´ld  2p h̄sn 1

nmy4d is satisfied, and these peaks become delta functi
as t

m
eff ! `. For stable orbits we find thatt

m
eff  topt,
r
nt
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so if we neglect phonon scattering (topt ! `) we do
recover perfectly discrete contributions to the tunneling
current. In the stable case the argument ofSm in Eq. (5)
is ´

1
, ; ´ 2 h̄v

m,1
' s, 1 1y2d which may be interpreted

as the energy of longitudinal motion along the orbit.
Because of the harmonic approximation the quantizatio
of the transverse oscillations around the periodic orb
simply yields equally spaced levels [14] with spacing
h̄v

m,1
' , where the frequencyv' ; fmyTm, fm is the

winding number [11], andTm the period of the orbit. So
the discrete energies at which tunneling occursare the
correct semiclassical energy levels of the well.

The amplitude of each contribution is given by the
coefficient functionsg, in Eq. (5), which are the Wigner
transforms of the harmonic oscillator wave functions
corresponding to these transverse modes

g
m,1
, sy, pyd  s21d,L,s2jQ̃mjd exps2jQ̃mjd , (6)

where L, is the Laguerre polynomial and̃Qm  j2 1

TrfMgj1y2j2 2 TrfMgj21y2Qm.
Since the result (6) is based on the harmonic approx

mation within a stable island, we may include only mode
up to ,max, which is given by the ratio of the island area
to h̄. Phonon scattering smears out each of these discre
contributions toWosc over an energy rangēhytopt.

In contrast, for unstable periodic orbits we find that
t

m
eff  toptys1 1 ,lmtoptd, where lm is the Lyapunov

exponent near the orbitm. Hence this time is finite and
equal to1ylm in the absence of phonon scattering. There
fore, instability acts as a sort of intrinsic level broadening
and each periodic orbit (PO) describes a contribution du
to a cluster of levels. The peak of the functionD in Eq. (5)
corresponding to the mean energy of the cluster is give
4025
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by Sms´d  2p h̄sn 1 nmy4d. The weight functions

g
m,2
, sy, pyd  s21d,R

Ω
L,s2iQ̃md expsiQ̃md

3

µ
1 1 i

sinsSmyh̄ 2 pnmy2d
sinhsTmyt

m
effd

∂æ
(7)

are related to Wigner functionsaveraged[13] over the
eigenstates of the cluster. For each unstable PO the h
, contributions are exponentially damped, and th
main contribution to the tunneling rate is given by th
,  0 term.

We now have a rigorous criterion for which periodi
orbits contribute substantially to the tunneling current
Eq. (5). The injection functionfW sy, pyd is centered on
yi and py  0 with widths ,lB, h̄ylB in y, py. Weight
functionsgm are centered atym, spydm with widths,lm 
s2h̄jm

m
12jd1y2j4 2 Tr2fMmgj21y4 and h̄ylm, respectively.

When the real and momentum space peaks of the
two functions overlap the PO is semiclassically “acce
sible” and makes a substantial contribution to the tu
neling current. This criterion is illustrated for relevan
period-two orbits in Fig. 1. Given the relevantclassical
information for any periodic orbit reaching the emitte
its contribution to the tunneling current can be calculate
from Eqs. (5)–(7) [15]. We now apply this formulation
to understand aspects of the experimentally observedI-V
characteristics.

In the recent periodic orbit theory [5] it was shown tha
within the set of POs which collide with the collectorn
times (period-n orbits), there exist orbits which collide
with the emitterm times, wherem # n, and it is useful
to classify POs by the two integerssm, nd. At u  0 the
only resonances observed in theI-V characteristic are as-
sociated with Bohr-Sommerfeld quantization of thes1, 1d
orbit which traverses the well with zero cyclotron en
ergy. Whenu fi 0, additional resonances appear corr
sponding to doubling or tripling of the frequency of peak
[2]. These new peaks are associated with the existence
period-two and period-three orbits which appear and d
al
FIG. 1(color). Bifurcation diagrams for the four period-two orbits relevant to the peak doubling in the intervalu  29± 34±

(see text). Colored lines indicatey coordinate of the single collision with the emitter; these lines coincide at bifurcations.u  29±

(a) indicates behavior before the exchange bifurcation;u  31± (b) and34± (c) after. Shading represents the localization lengthslm

associated with the relevant orbits [s1, 2d2 ands1, 2dp
1 for (a), ands1, 2d2 ands1, 2d1 for (b),(c)]. Hatched region denotes semiclassic

width of emitter state; overlap indicates a large contribution to the tunneling current.
4026
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appear as a result of bifurcations [5]. Here we focus o
the peak doubling in the interval29± , u , 34±, where
there are four most relevant orbits [5], denoted bys1, 2d1,
s1, 2d2, s1, 2dp

1, s1, 2dp
2.

The evolution of these orbits with magnetic field o
voltage is represented by the four colored lines in Fig.
We recall [3–5] that under experimental conditions th
classical mechanics depends only on two parametersb 
c0By

p
V [wherec0 ø 3.1seympd1y2d andd  120 nm is

the width of the well] and the tilt angleu. As b increases
from zero for fixedu, these fours1, 2d orbits appear in
bifurcations [5,7] and then disappear pairwise at high
b in the inverse tangent bifurcations already mentione
These orbits can be specified by the coordinateym of
their one collision with the emitter (which is~ yx; see
Fig. 1). The most relevant orbits here are thes1, 2d2 and
s1, 2dp

1. The semiclassical widthlm of these orbits around
ym is denoted by the gray-scale regions (calculated f
B  8 T). The width of the injection functionfW s yd is
denoted by the hatched regions. Whenever these regio
overlap for some value ofb the orbit is accessible
and Eq. (5) predicts that a peak-doubling region wi
appear in theB-V parameter space along the parabo
corresponding to that value ofb (see Fig. 2).

Figures 1(a)–1(c) depict a fascinating feature of th
classical dynamics, noted in Ref. [5], which occurs nea
u  31± for the parameters of Ref. [2]. Atu  29±

the accessibility intervals for thes1, 2d2 orbit and the
s1, 2dp

1 cover the entire interval4.3 , b , 10.9 overlap-
ping briefly aroundb  7.5. Thus, one expects a large
region of peak doubling in theB-V plane with no gaps
as observed [2]. However, we can now see that the lo
voltage and high voltage oscillations are due to these tw
differentorbits, and we expect an abrupt amplitude chang
aroundb ø 7.3 (V ø 0.44 V for B  8 T). This is ob-
served clearly in the data of Fig. 2(a), where the amplitud
change is compared to theory. The theory is found to pr
dict the ratio of the amplitudes between the low and hig
voltage regions (above0.45 V) with only 25% mean error.
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FIG. 2. (a),(d): Resonant tunnelingI-V traces foru  31±, u  34± at B  8 T. Trace (1) is raw experimental data, trace (2) i
same data, filtered to retain only period-two oscillations, trace (3) is semiclassical prediction from Eq. (5). The modest discre
in the shape of the envelope of the amplitude of the oscillations is due to the inaccuracy of the quadratic semiclassical theo
the bifurcation which occurs around 0.3 V at 8 T. (b),(e): Peak positions vs voltage and magnetic field, determined from m
sets of experimentalI-V data atu  31±, 34±. (c),(f): SemiclassicalI-V oscillations for same, note gray scale indicates relativ
amplitudes, not just peak positions. Note disappearance of high voltage oscillations atu  34± due to movement ofs1, 2d2 orbit
away from accessibility after the exchange bifurcation [see Figs. 1(b), 1(c), and text].
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At u ø 31± the four orbits undergo an exchange
bifurcation [16] so that thes1, 2d1 is paired withs1, 2dp

2,
whereas thes1, 2dp

1 orbit is now paired with thes1, 2d2
[see Fig. 1(b)]. Asu is slightly increased to34± the
s1, 2dp

1-s1, 2d2 pair which gives rise to the high voltage
oscillation moves away from semiclassical accessibility
with the emitter [see Fig. 1(c)]. At the same time
the s1, 2d1 orbit replaces thes1, 2dp

1 orbit and is still
highly accessible at low voltages (highb). Thus we
expect the high voltage oscillations to disappear atu 
34± while the low voltage oscillations persist. This is
seen clearly in Fig. 2(d), again in good qualitative and
quantitative agreement with theory. In Figs. 2(b) and
2(e) the peak position data are plotted in the entir
B-V plane against the semiclassical prediction based o
the contributions of these periodic orbits. Again good
agreement is found [17] demonstrating the possibility of
quantitative semiclassical description.
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