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Level-Spacing Distributions of Planar Quasiperiodic Tight-Binding Models
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We study statistical properties of energy spectra of two-dimensional quasiperiodic tight-binding
models. Taking into account the symmetries of models defined on various finite approximants
of quasiperiodic tilings, we find that the underlying universal level-spacing distribution is given
by the Gaussian orthogonal random matrix ensemble. Our data allow us to see the difference
to the Wigner surmise. In particular, our result differs from the critical level-spacing distribution
observed at the metal-insulator transition in the three-dimensional Anderson model of disorder.
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Following the pioneering works of Wigner and Dyson class of materials somewhere in between perfect crys-
[1], random matrix theory (RMT) has been successfullytals and amorphous systems. Besides quasicrystals with
applied to investigate a great variety of complex systemgosahedral symmetry [14], which are aperiodic in any di-
such as nuclear spectra, large atoms, mesoscopic solidgection of the 3D space, also dodecagonal [15], decagonal
and chaotic quantum billiards [2—5]. In such systems, if16], and octagonal [17] phases have been found, which
has been shown that spectral fluctuations can be modele@n be viewed as periodic stacks of quasiperiodic planes
by universal level-spacing distributions (LSD) such aswith 12-, 10-, and 8-fold symmetry, respectively. Struc-
e.g., Pcok(s) for the Gaussian orthogonal random matrixture models of quasicrystals are based on quasiperiodic
ensemble (GOE) [2]. tilings which can be constructed, e.g., by projection from

A natural application of RMT concerns disordered sys-higher-dimensional periodic lattices [18]. We emphasize
tems [6]. It has been shown that the metal-insulatothat such quasiperiodic tilings, albeit yielding perfect ro-
transition (MIT) in the three-dimensional (3D) Anderson tationally symmetric diffraction patterns, exhibitfold
model of localization is accompanied by a transition ofrotational symmetry in a generalized sense only. In par-
the LSD P(s) [7—9]. Here,s denotes the energy spac- ticular, there need not be a point with respect to which the
ing in units of the mean level spacing In the metallic tiling has anexactglobal n-fold rotational symmetry. If
regime,P(s) closely follows the Wigner surmiskw(s) =  such a point exists, it is unique.

s exp(—s?/4)/2, which is a good approximation of  In order to understand the transport properties of quasi-
Pcog(s) for which no closed formula is known [2]. crystals [13], TB models defined on aperiodic tilings
On the insulating sideP(s) is given by Poisson’s law (notably the Penrose tiling) have received considerable at-
Pp(s) = exp(—s). One important difference between the tention [11,19-25]. For a TB model defined on the oc-
two distributions is their smalt behavior [2]: Pgoe(s —  tagonal (Ammann-Beenker) tiling [26], the LSD has also
0) = 7%s/6 and Pp(s — 0) = 1, indicating level repul- been used to classify the spectrum [23—-25]. For periodic
sion and clustering, respectively. At the MIT, where theapproximants, level repulsion was observed [23,24], and
eigenstates are multifractal [10], another LIR(s), has  P(s) was argued to follow a log-normal distribution [24].
been observed [7-9]. However, a calculation for finite patches with an exact

Multifractal eigenstates—neither extended nor ex-8-fold symmetry yielded level clustering [25].
ponentially localized—have also been found in tight- In this Letter, we show that these somewhat diverging
binding (TB) models of quasicrystals. In fact, these seemesults become comprehensible when one realizes that the
predominant in 1D and 2D [11]; in 3D, the attainabletilings of Refs. [23—25] still retain nontrivial symmetries.
system sizes are yet too small for definite statements [12]n order to obtain the underlying universal LSD, one
The multifractality is assumed to be connected to the unshould consider the irreducible subspectra separately, or
usual transport properties of quasicrystals [13], e.g., theibreak the symmetry by, e.g., either choosing patches
resistivity increases considerably with decreasing temwithout symmetry or imposing suitable boundary shapes
perature and improving structural quality of the sampleas in quantum billiards or introducing disorder. It is a
Thus, one may speculate that the LSD in quasiperiodipeculiarity of the standard periodic approximants [23,24]
models is also distinct fronRgog (s) and Pp(s). that the rotational symmetry is violated only weakly, e.g.,

Quasicrystals lack the translational symmetry of pethe number of mismatches after a°9fbtation grows
riodic crystals, but still retain long-range (orientational) linearly in L for patches of sizeL X L. Even after
order and show noncrystallographic symmetries incomremoving their exact reflection symmetry [24], the LSD
patible with lattice periodicity. Thus, they constitute a may still show remnants of this almost exact symmetry.
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Taking this into account, we find that generically thetion steps of the inner shaded octagon. On this tiling,
underlying LSD of these nonrandom Hamiltonians iswe define the Hamiltoniarif = > ; » |i)(j| with free
neither Pp(s) [25] nor log normal [24] norP.(s), but  boundary conditions (BC)i) denotes the Wannier state
ratherPgog(s). at vertexi and({i, j) runs over all pairs of vertices con-

Let us reconsider [23—25] the octagonal tiling consist-nected by an edge of unit length.
ing of squares and rhombi with equal edge lengths as We diagonalize the Hamiltonian and study the LSD of
in Fig. 1(a). Besides the projection method mentionedhe full spectrum. Because of the bipartiteness of the
above, one may also use the self-similarity of the tiling totiling, the energy spectrum is symmetric abdtt= 0.
construct ever larger patches by successive inflation stefarthermore, a finite fraction of the states is degenerate at
[27]; e.g., the patch in Fig. 1(a) corresponds to two infla-E = 0 [19,22—-24]. These correspond to confined states
[19] limited to certain local environments; they do not
contribute to the LSD, and we neglect them. In agreement
with previous calculations [23], we find that the integrated
density of states (IDOS) is very smooth. This is different
from 1D quasiperiodic systems which typically have
singular continuous spectra [11]. Nevertheless, the IDOS
is not strictly linear as required by RMT, so we “unfold”
the spectrum by fitting the IDOS to a cubic spline [8]
and uses; = N, (E;+1) — N, (E;) for the level spacing
at the ith level with N,, the smoothed IDOS. We
remark that the LSD is not a bulk quantity sinde!
is proportional to the system size. In what follows,
we shall consider, instead d@(s), the integrated level-
spacing distribution (ILSD)I(s) = ff P(t)dt which is
numerically more stable [8,9]. For completeness, we also
compute the spectral rigidit;(L) defined in [2].

Figure 2(a) shows(s) obtained for an octagonal patch
with 157 369 vertices corresponding to three more infla-
tion steps of Fig. 1(a). At first glancé(s) seems to be
close to the integrated Poisson lay(s) = Pp(s) as in
Ref. [25]. However, this patch has the fully symme-
try of the regular octagon, hence the Hamiltonian matrix
splits into ten blocks according to the irreducible rep-
resentations of the dihedral groups: Using the rota-
tional symmetry, one obtains eight blocks, two of which
split further under reflection, while the remaining six
form three pairs with identical spectra. This gives a to-
tal of seven independent subspectra. As with the con-
fined states, we neglected the exact degeneracies induced
by symmetry in Fig. 2(a), since they only contribute
to P(0).

The ILSD of the seven independent subspectra are
shown in Fig. 2(b). We see that there are only very small
differences between the seven ILSD, whereas there are
slightly larger deviations to the integrated Wigner surmise
Iw(s) = exp(—ms2/4). In Fig. 3, we show the small-
and larges behavior in more detail, restricting ourselves
FIG. 1. (a) Octagonal cluster of the Ammann-Beenker tilingto one irreducible sector. We include data for patches of
with 833 vertices and exadbs symmetry around the central different sizes, corresponding to two, three, four, and five
vertex (x,y) = (0,0) as indicated by the solid and dashed jnfiation steps of the inner shaded octagon of Fig. 1(a)

lines. Shadings indicate successive inflation steps of the centrgl. ; :
octagon. The bold line circumferencesa-symmetric cut. flith 833, 4713, 27 137, and 157 369 vertices, respectively.

(b) Square-shaped cut with 496 vertices defined by x = L,  The convergence with increasing size is apparent for both
—L <y <3 with L =20. (c) Sinai billiard-shaped patch small and larges, but the small deviations frony (s)

with 246 vertices defined b = y = x = L andx? + y2 =  still persist. We show in the inset of Fig. 3 that our data
LTZ with L = 22. Gray edges correspond to the interior of the in fact follow Igok(s), obtained by expansion for small

circular arc; edges crossing the arc are deleted. s [2], much better than the approximaig (s). Thus,
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L As shown in Fig. 2(a), it is well approximated h}g)(s),
0 5 10 15 defined as the integral of the LSD,
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of k = 7 Wigner spectra, with erfc) the complementary
error function [2]. For largek, IgéE(s) and I\(;é)(s) ap-
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1.4 fossg
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10K - proach the Poisson la(s). This explains why a pre-
=08 vious calculation [25] found a Poisson-like distribution.
06 . O But our data clearly fit\?) (s) better than/p(s). We have
o e T ey also obtained similar results for circular patches, for which
0.4 — one has eitheDg or reflection or no symmetry, depend-
02— o evoes ing on the choice of the center. Thus, the LSD is well
oo L \ approximated b)P{Z;)(s), or P{f/)(s), or P&l,)(s) = Pw(s),
) 1 2 3 respectively.
s We can also approximate the octagonal tiling by patches

FIG. 2. ILSDI(s) for (a) the largestDs-symmetric octagonal Without any exact symmetries. In Fig. 1(b) we show
patch, crosses(X) indicate Ip(s), diamonds (¢) indicate  such a square-shaped patch cut out of the octagonal tiling.
IV (s); (b) the seven independent subspectra of the largeshlthough the quasiperiodic 8-fold order is restored in the
Dg-symmetric octagonal patchg)( square-shaped patches of infinite patch, there is never any exact symmetry present in
g:fftﬁreegt zizr%?ngi:izouét::?]t%ﬁ Séﬁg:j?gtlrzsyg)(th?nsiugisllii):r%tra the finite approximants. The LSD is of the GOE-type as
shaped 4pa);ches of Sifferent siges. th(e)‘? I(s) has been shown in Fig. 2(c) for p"?‘tChes with side lengths= 40,
shifted by multiples of 0.2 for clarity, circle¢O) indicate 60 and 80, qorrespondlng to 1980, 4392, and 7785 ver-
Iw(s). Inset: spectral rigidityA;(L) corresponding toh), (c),  tices, respectively. Thus, contrary to the case of a simple
and @); x (O) indicates Poisson (GOE) behavior. square lattice exhibiting level clustering, we find level
repulsion. Small deviations frory (s) are explained as
epreviously usinglcog(s). If one uses square-shaped
approximants with symmetries, for instance, the
D4-symmetric patch indicated in Fig. 1(a), the LSD
is again given by the superposition of the irreducible sub-
spectra. For the standard periodic approximants [23,24],

one finds an ILSD betweetigog(s) and Ig())E(s) due

to the almost exact symmetry mentioned above. Thus,

approaching the infinite tiling by square-shaped patches

only slightly shifted with respect to each other may give

- quite different LSD. We have checked that the results are

the same for free and periodic BC, e.g., the ILSD for the

five subspectra for th®,-symmetric square with 94 642

vertices and periodic BC is also closelt@:(s) as shown

in Fig. 2(d), but the finite-size corrections are slightly

larger than for free BC.

-3 Choosing patches with special boundary shapes is a
different way of excluding symmetries. In fact, this is
well known in the context of quantum billiards, where it

-4 has been used to construct quantum chaotic motion [4,5].

| ] | | One of the most prominent examples is the Sinai billiard

0.0 0.5 1 2 3 [4,5], which consists of /8 of a square and a circular arc
s s centered in the midpoint of the square. Because of these

FIG. 3. Smalls (left) and larges (right) behavior ofI(s) for ~ BC, the LSD follows the Wigner surmise even for free

one irreducible sector oDg-symmetric octagonal patches of electrons [4] instead of a Poisson law which is found for

different sizes. The bold line corresponds to the largest patchintegrable motion in simple square or circular billiards [2].

The three smallest and largest level spacings for each patch ajg Fig. 1(c), we show a Sinai billiard-shaped cut of the

denoted by triangles of different orientations. The cirdlés I . T
indicateIWXZs). Ir?set: blowup of the data region enclosed by octagonal tiling. Moving Sinai’s billiard table across the

the rectangle, showing only data for the largest patch. Square@ctagonal tiling, we can generate many different patches.
(O) indicatelgog(s). However, in contrast to the square-shaped boundary, we

we attribute the small deviations seen in Fig. 2(b) to th
difference betweetigog(s) andlw(s).

The ILSD of the complete spectrum shown in Fig. 2(a)
is given by the ILSDIgg)E(s) of a superposition of seven
independent subspectra, each of which folloigsg(s).

To

)

log[1-I(s)]
log[l(s)]
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