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Level-Spacing Distributions of Planar Quasiperiodic Tight-Binding Models
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We study statistical properties of energy spectra of two-dimensional quasiperiodic tight-bin
models. Taking into account the symmetries of models defined on various finite approxim
of quasiperiodic tilings, we find that the underlying universal level-spacing distribution is g
by the Gaussian orthogonal random matrix ensemble. Our data allow us to see the diffe
to the Wigner surmise. In particular, our result differs from the critical level-spacing distribu
observed at the metal-insulator transition in the three-dimensional Anderson model of dis
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Following the pioneering works of Wigner and Dyson
[1], random matrix theory (RMT) has been successful
applied to investigate a great variety of complex system
such as nuclear spectra, large atoms, mesoscopic so
and chaotic quantum billiards [2–5]. In such systems,
has been shown that spectral fluctuations can be mode
by universal level-spacing distributions (LSD) such a
e.g.,PGOEssd for the Gaussian orthogonal random matri
ensemble (GOE) [2].

A natural application of RMT concerns disordered sys
tems [6]. It has been shown that the metal-insulat
transition (MIT) in the three-dimensional (3D) Anderson
model of localization is accompanied by a transition o
the LSD Pssd [7–9]. Here,s denotes the energy spac
ing in units of the mean level spacingD. In the metallic
regime,Pssd closely follows the Wigner surmisePW ssd ­
ps exps2ps2y4dy2, which is a good approximation of
PGOEssd for which no closed formula is known [2].
On the insulating side,Pssd is given by Poisson’s law
PP ssd ­ exps2sd. One important difference between the
two distributions is their small-s behavior [2]:PGOEss !
0d ø p2sy6 and PPss ! 0d ø 1, indicating level repul-
sion and clustering, respectively. At the MIT, where th
eigenstates are multifractal [10], another LSD,Pcssd, has
been observed [7–9].

Multifractal eigenstates—neither extended nor ex
ponentially localized—have also been found in tigh
binding (TB) models of quasicrystals. In fact, these see
predominant in 1D and 2D [11]; in 3D, the attainabl
system sizes are yet too small for definite statements [1
The multifractality is assumed to be connected to the u
usual transport properties of quasicrystals [13], e.g., th
resistivity increases considerably with decreasing tem
perature and improving structural quality of the sampl
Thus, one may speculate that the LSD in quasiperiod
models is also distinct fromPGOEssd andPP ssd.

Quasicrystals lack the translational symmetry of pe
riodic crystals, but still retain long-range (orientationa
order and show noncrystallographic symmetries incom
patible with lattice periodicity. Thus, they constitute a
0031-9007y98y80(18)y3996(4)$15.00
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class of materials somewhere in between perfect cr
tals and amorphous systems. Besides quasicrystals w
icosahedral symmetry [14], which are aperiodic in any d
rection of the 3D space, also dodecagonal [15], decago
[16], and octagonal [17] phases have been found, wh
can be viewed as periodic stacks of quasiperiodic plan
with 12-, 10-, and 8-fold symmetry, respectively. Struc
ture models of quasicrystals are based on quasiperio
tilings which can be constructed, e.g., by projection fro
higher-dimensional periodic lattices [18]. We emphasi
that such quasiperiodic tilings, albeit yielding perfect ro
tationally symmetric diffraction patterns, exhibitn-fold
rotational symmetry in a generalized sense only. In pa
ticular, there need not be a point with respect to which t
tiling has anexactglobal n-fold rotational symmetry. If
such a point exists, it is unique.

In order to understand the transport properties of qua
crystals [13], TB models defined on aperiodic tiling
(notably the Penrose tiling) have received considerable
tention [11,19–25]. For a TB model defined on the o
tagonal (Ammann-Beenker) tiling [26], the LSD has als
been used to classify the spectrum [23–25]. For period
approximants, level repulsion was observed [23,24], a
Pssd was argued to follow a log-normal distribution [24]
However, a calculation for finite patches with an exa
8-fold symmetry yielded level clustering [25].

In this Letter, we show that these somewhat divergin
results become comprehensible when one realizes that
tilings of Refs. [23–25] still retain nontrivial symmetries
In order to obtain the underlying universal LSD, on
should consider the irreducible subspectra separately,
break the symmetry by, e.g., either choosing patch
without symmetry or imposing suitable boundary shap
as in quantum billiards or introducing disorder. It is
peculiarity of the standard periodic approximants [23,2
that the rotational symmetry is violated only weakly, e.g
the number of mismatches after a 90± rotation grows
linearly in L for patches of sizeL 3 L. Even after
removing their exact reflection symmetry [24], the LSD
may still show remnants of this almost exact symmetr
© 1998 The American Physical Society
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Taking this into account, we find that generically th
underlying LSD of these nonrandom Hamiltonians i
neither PP ssd [25] nor log normal [24] norPcssd, but
ratherPGOEssd.

Let us reconsider [23–25] the octagonal tiling consis
ing of squares and rhombi with equal edge lengths
in Fig. 1(a). Besides the projection method mentione
above, one may also use the self-similarity of the tiling t
construct ever larger patches by successive inflation ste
[27]; e.g., the patch in Fig. 1(a) corresponds to two infla

FIG. 1. (a) Octagonal cluster of the Ammann-Beenker tilin
with 833 vertices and exactD8 symmetry around the central
vertex sx, yd ­ s0, 0d as indicated by the solid and dashe
lines. Shadings indicate successive inflation steps of the cen
octagon. The bold line circumferences aD4-symmetric cut.
(b) Square-shaped cut with 496 vertices defined by0 # x # L,
2

L
4 # y #

3L
4 with L ­ 20. (c) Sinai billiard-shaped patch

with 246 vertices defined by0 # y # x # L and x2 1 y2 $
L2

4 with L ­ 22. Gray edges correspond to the interior of th
circular arc; edges crossing the arc are deleted.
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tion steps of the inner shaded octagon. On this tilin
we define the HamiltonianH ­

P
ki,jl jil k jj with free

boundary conditions (BC),jil denotes the Wannier stat
at vertexi and ki, jl runs over all pairs of vertices con
nected by an edge of unit length.

We diagonalize the Hamiltonian and study the LSD
the full spectrum. Because of the bipartiteness of t
tiling, the energy spectrum is symmetric aboutE ­ 0.
Furthermore, a finite fraction of the states is degenerat
E ­ 0 [19,22–24]. These correspond to confined sta
[19] limited to certain local environments; they do no
contribute to the LSD, and we neglect them. In agreem
with previous calculations [23], we find that the integrate
density of states (IDOS) is very smooth. This is differe
from 1D quasiperiodic systems which typically hav
singular continuous spectra [11]. Nevertheless, the ID
is not strictly linear as required by RMT, so we “unfold
the spectrum by fitting the IDOS to a cubic spline [8
and usesi ­ NavsEi11d 2 NavsEid for the level spacing
at the ith level with Nav the smoothed IDOS. We
remark that the LSD is not a bulk quantity sinceD21

is proportional to the system size. In what follow
we shall consider, instead ofPssd, the integrated level-
spacing distribution (ILSD)Issd ­

R`

s Pstddt which is
numerically more stable [8,9]. For completeness, we a
compute the spectral rigidityD3sLd defined in [2].

Figure 2(a) showsIssd obtained for an octagonal patc
with 157 369 vertices corresponding to three more infl
tion steps of Fig. 1(a). At first glance,Issd seems to be
close to the integrated Poisson lawIPssd ; PP ssd as in
Ref. [25]. However, this patch has the fullD8 symme-
try of the regular octagon, hence the Hamiltonian mat
splits into ten blocks according to the irreducible re
resentations of the dihedral groupD8: Using the rota-
tional symmetry, one obtains eight blocks, two of whic
split further under reflection, while the remaining s
form three pairs with identical spectra. This gives a t
tal of seven independent subspectra. As with the c
fined states, we neglected the exact degeneracies ind
by symmetry in Fig. 2(a), since they only contribut
to Ps0d.

The ILSD of the seven independent subspectra
shown in Fig. 2(b). We see that there are only very sm
differences between the seven ILSD, whereas there
slightly larger deviations to the integrated Wigner surmi
IW ssd ­ exps2ps2y4d. In Fig. 3, we show the small-
and large-s behavior in more detail, restricting ourselve
to one irreducible sector. We include data for patches
different sizes, corresponding to two, three, four, and fi
inflation steps of the inner shaded octagon of Fig. 1
with 833, 4713, 27 137, and 157 369 vertices, respective
The convergence with increasing size is apparent for b
small and larges, but the small deviations fromIW ssd
still persist. We show in the inset of Fig. 3 that our da
in fact follow IGOEssd, obtained by expansion for sma
s [2], much better than the approximateIW ssd. Thus,
3997
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FIG. 2. ILSD Issd for (a) the largestD8-symmetric octagonal
patch, crossess3d indicate IP ssd, diamonds sed indicate
I

s7d
W ssd; (b) the seven independent subspectra of the large

D8-symmetric octagonal patch; (c) square-shaped patches o
different sizes without internal symmetry; (d) the subspectra
of the D4-symmetric patch with periodic BC; (e) Sinai billiard-
shaped patches of different sizes. In (b)–(e), Issd has been
shifted by multiples of 0.2 for clarity, circlesssd indicate
IW ssd. Inset: spectral rigidityD3sLd corresponding to (b), (c),
and (e); 3 ssd indicates Poisson (GOE) behavior.

we attribute the small deviations seen in Fig. 2(b) to th
difference betweenIGOEssd andIW ssd.

The ILSD of the complete spectrum shown in Fig. 2(a
is given by the ILSDI s7d

GOE
ssd of a superposition of seven

independent subspectra, each of which followsIGOEssd.

FIG. 3. Small-s (left) and large-s (right) behavior ofIssd for
one irreducible sector ofD8-symmetric octagonal patches of
different sizes. The bold line corresponds to the largest pat
The three smallest and largest level spacings for each patch
denoted by triangles of different orientations. The circlesssd
indicate IW ssd. Inset: blowup of the data region enclosed b
the rectangle, showing only data for the largest patch. Squa
shd indicateIGOEssd.
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As shown in Fig. 2(a), it is well approximated byI s7d
W

ssd,
defined as the integral of the LSD,

P
skd
W ssd ­

d2

ds2

∑
erfc

µp
p

2
s
k

∂∏
k
,

of k ­ 7 Wigner spectra, with erfcstd the complementary
error function [2]. For largek, I

skd
GOEssd and I

skd
W ssd ap-

proach the Poisson lawIP ssd. This explains why a pre-
vious calculation [25] found a Poisson-like distribution.
But our data clearly fitI

s7d
W ssd better thanIP ssd. We have

also obtained similar results for circular patches, for whic
one has eitherD8 or reflection or no symmetry, depend-
ing on the choice of the center. Thus, the LSD is wel
approximated byP

s7d
W ssd, or P

s2d
W ssd, or P

s1d
W ssd ; PW ssd,

respectively.
We can also approximate the octagonal tiling by patche

without any exact symmetries. In Fig. 1(b) we show
such a square-shaped patch cut out of the octagonal tilin
Although the quasiperiodic 8-fold order is restored in the
infinite patch, there is never any exact symmetry present
the finite approximants. The LSD is of the GOE-type a
shown in Fig. 2(c) for patches with side lengthsL ­ 40,
60, and 80, corresponding to 1980, 4392, and 7785 ve
tices, respectively. Thus, contrary to the case of a simp
square lattice exhibiting level clustering, we find leve
repulsion. Small deviations fromIW ssd are explained as
previously usingIGOEssd. If one uses square-shaped
approximants with symmetries, for instance, the
D4-symmetric patch indicated in Fig. 1(a), the LSD
is again given by the superposition of the irreducible sub
spectra. For the standard periodic approximants [23,24
one finds an ILSD betweenIGOEssd and I

s2d
GOEssd due

to the almost exact symmetry mentioned above. Thu
approaching the infinite tiling by square-shaped patche
only slightly shifted with respect to each other may give
quite different LSD. We have checked that the results a
the same for free and periodic BC, e.g., the ILSD for th
five subspectra for theD4-symmetric square with 94 642
vertices and periodic BC is also close toIGOEssd as shown
in Fig. 2(d), but the finite-size corrections are slightly
larger than for free BC.

Choosing patches with special boundary shapes is
different way of excluding symmetries. In fact, this is
well known in the context of quantum billiards, where it
has been used to construct quantum chaotic motion [4,5
One of the most prominent examples is the Sinai billiar
[4,5], which consists of1y8 of a square and a circular arc
centered in the midpoint of the square. Because of the
BC, the LSD follows the Wigner surmise even for free
electrons [4] instead of a Poisson law which is found fo
integrable motion in simple square or circular billiards [2]
In Fig. 1(c), we show a Sinai billiard-shaped cut of the
octagonal tiling. Moving Sinai’s billiard table across the
octagonal tiling, we can generate many different patche
However, in contrast to the square-shaped boundary, w
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never find a case that retains any of theD8 symmetries.
We computedIssd for quasiperiodic billiards withL ­ 70,
80, 90, 100, and 110, corresponding to patches with 241
3146, 3969, 4892, and 5905 vertices, respectively. T
results presented in Fig. 2(e) followIW ssd, and, again, are
even closer toIGOEssd.

We emphasize that, apart from statistical fluctuation
at small and large values ofs as shown in Fig. 3, there
is no systematic size dependence ofIssd. This is in
contrast to the 2D Anderson model at weak disorder [28
where a qualitative change towards Poisson-like behav
for larger system sizes is observed, indicating a fini
localization length of the eigenstates. The present s
independence of the LSD is compatible with multifracta
and extended states.

In conclusion, we have shown that the energy level st
tistics of TB Hamiltonians defined on the octagonal tilin
with different boundary shapes is very well describe
by RMT. We can even see that our data fit the exa
ILSD IGOEssd better than the integrated Wigner surmis
IW ssd. This supports the applicability of RMT for such
completely deterministic Hamiltonians. Although there i
no randomness in these quasiperiodic models, one m
view the absence of translational symmetry as a sort
“topological disorder.” We clarify previous statement
[23–25] elucidating the importance of symmetry of th
finite approximants. We find that the universal LSD fo
irreducible blocks of a symmetric patch, or for patche
without any symmetry, isIGOEssd. Besides the octago-
nal tiling, we have also considered planar 10- and 12-fo
quasiperiodic tilings and obtained analogous results. O
the basis of these numerical results, we are led to co
clude that the statistical properties of energy spectra
2D quasiperiodic TB models are generically described b
the GOE of RMT. In particular, we never find a criti-
cal Icssd, distinct fromIGOEssd and IP ssd, as observed at
the Anderson MIT [9]. This is somewhat surprising sinc
eigenstates in these quasiperiodic tilings are multifrac
similarly to states at the MIT, and we could have expecte
that this is reflected in the LSD. Instead, we find that th
LSD is similar to the LSD on the metallic side of the MIT
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