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Interference of Mode Instabilities and Pattern Formation in Anharmonic Lattices

Victor M. Burlakov
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On an example of optically excited Klein-Gordon lattice, a striking new feature of anharmonic lattices
related to dynamical coherent structure (pattern) formation is reported. It is shown that two factors are
important for pattern formation: (i) lattice discreteness, which strongly reduces the number of lattice
spatial modes among which the energy of external field is shared, and (ii) destructive interference
of modulation instabilities of these modes resulting in stability of the pattern. Possible experimental
realization is discussed. [S0031-9007(98)05985-7]

PACS numbers: 63.20.Ry

Dynamics of anharmonic lattices have been extensively Un(t) = ! s[Veexpliowtr + i@) + c.cl, 2
studied in relation to energy sharing between lattice modes
and recurrence phenomena [1-7], properties of |ntr|nS|c
localized modes (ILMs) [4,8—13], and modulation msta—
bility (MI) of running and standing waves [14—20]. In the !
present Letter a striking new feature of periodically driven
anharmonic lattices is described: coherent dynamical struc-
ture (pattern) formation resulting from Ml of excited lat-

where V¢ and ¢ are real amplitude and phase angle, re-
pect|vely Forw < w( the dependencB. o« E, shown
n Fig. 1(a) reveals bistability and can be subdivided into

tice spatial mode (LSM). So far patterns have been studied 0,15} 5

basically in continuous systems (see Ref. [21], and refer- / _____ pa—
ences therein) and recently in granular materials [22—25]. e 3
Some localized structures (one may call them “simplest 0,10 B 1

patterns”) have also been found in driven lattices: kinklike o
. N
structures were observed in the damped and parametri-

cally driven lattice of coupled pendulums [26] and ana- 0,05} /
lyzed theoretically in the Klein-Gordon (KG) lattice [27]; o '
ILM-like structures were described in both KG [28] and 0,00 | c/ a

Fermi-Pasta-Ulam (FPU) lattices [29].

On an example of optically driven KG lattice with
quartic anharmonicity, | show that the MI mediated pattern
is actually formed by a small (3—5) number of LSMs, and E
its stability results from destructive interference of Mls of
these LSMs. The interference effect in the Ml is possible
because of one and the same frequency of viscous vibration
for all LSMs. It turned out that the stable pattern does
exist in a rather broad region of the system and the driving
force parameters. The analytical results are verified by 0,1+t
numerical experiment, where the patterns have been found
also in the quasi-two-dimensional KG and FPU lattices.

MI of the carrier LSM in the optically driven KG
lattice.—Motion equation fornth particle of unity mass 0,0
and charge in the KG lattice is
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where y is a phenomenological damping constaa,  FIG. 1. (@)Vc = E plotfor @ = 0.9, y = 0.05w, (solid

L . . - line), ® = 1.05w,, and vy = 0.15w, (dashed line); symbols
K4 are in site,K; is intersite force constants, arfg is mark the numbered points at which (b) the calculated relative

the external field amplitude. The solution of Eq. (1) forjncrement I (g)/w] for a perturbation LSM is shown.
small anharmonicity can be found within the rotating waveHere, and for other figuresy, = 200/7, K, = 6 X 10*, and

approximation (RWA) K, = —37%wj.
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three regionsOA, AB, andB~, while for w > w this de-
pendence is monotonous. To study Ml of the solution (2, 920
we add the perturbation 015 [
, - .
SU, = % codgn) [Vprexdi(w — Q)t] 3 A ?{1’2’3’4}
i(—w — =010} ‘ K
+ Vprexdi(—w — Q)t] + c.c], _ | é&j\du
(3) 0.05 L ) 5 10 ) ;) {4}
whereVp; is the complex amplitude, angland(} are the - j\j\/\j\f\/\f\f
wave vector and the complex frequency of the perturbatior 0,00 | R
wave, respectively. The latter can be determined from th: 75'00 - 80|00 P '00
equation, obtained after substitution of (2) with perturba- 5
tion (3) into Eq. (1) E,, arb.un.
[0} — (0 + Q) — iy(e + Q)] X FIG. 2. Boundary curves restricting thé, pattern stability
2 2 . 3 N2 region in the(y, E;) space. In the stretched region there are
[wi = (@ = Q)" +iy(e — Q)] = (7 KiVe), both stable®, and unstableb, patterns. Typical shapes of the

(4) @, and ®, patterns are shown in the inset. Numbers denote
5 ) ] 3 ) ) the points at which the calculated[If2a(¢)/w] are presented in
where w; = wj + 4K,sin(q/2)* + 5K4Ve.  Relative  Fig. 3.

increment INiQ(¢)/w] is plotted in Fig. 1(b) for thew

and V¢ values corresponding to the numbered points i 1 . .

Fig. 1(a). In the regiorOA of the @ = 0.9w, curve in U, (0) = 3 [Ver eXp(’wa +ign)

Fig. 1(a) IMQ(g)] = —y/2,i.e., the carrier LSMis stable. + Ve cod5 n)expliotr + i)

In the AB and B regions the carrier LSM possesses Ml + Vescodmn) expliot + igs3) + c.c], (5)

(Im[Q(g # 0)/w] > 0), besides the unstable amplitude ) )

value(Im[Q(0)/w] > 0) in the first region (curves 1 and Where againV¢; are real amplitudes ang; are phase

2 in Fig. 1(b), respectively). Fap = 1.05w, the carrier angles. According taw = 1.05w, andy values a single

LSM possesses MI at anfj, value [curve 3 in Fig. 1(b)]. stable nontrivial (allV¢; # 0) solution ®; of the form
Pattern solutions—At ¢+ = 0 there is a seeding LSM- (5) was found in the region between the solid curves in

codgn) in the lattice. Under action of the external field Fig- 2. Outside this region the solutioh, is unstable
E = Egel®’, the system will pass through two stages:in the sense discussed below. An additional and strongly

(a) excitation ofk = 0 carrier LSM: (b) growing up of unstable solutionP, exists in the stretched part of tidg

the seeding LSM due to MI of the carrier LSM and gen-Stability region. The time-averaged amplitude/, (1)]):
eration of other LSMs due to four-wave mixing. We re- for the ®; and , solutions is presented in the inset in
strict our consideration by the total number of the LSMsFi9- 2, which shows that bottb; and &, form coherent
Nism = 3: with wave vectorsk; = 0, k, = /2, and dynamical structures (patterns) with symmetry different
k; = m (lattice constanz = 1). Because of the sym- from that of the external field. This property has been
metry arguments only standing waves (LSMs) are considPointed out recently for a three-particle anharmonic lattice
ered. No new LSMs important within RWA will appear [12]. Note that theb, pattern can be regarded as a lattice
due to four-wave mixing of the three chosen. Thus, the M°f intrinsic localized vibrations of the odd parity [8,9].

of the k = 0 carrier LSM must have a maximum around Patterns stability—For linear stability analysis of the
gmax = /2. This is the condition forE, or, in other @, and ®, solutions within RWA, a total perturbation
words, for the carrier LSM amplitud&:. Note thatv. ~ Must contain all perturbation waves coupled to each other

strongly increases with increasing,, therefore, the case Via four-wave mixing, i.e., all spatial harmonics resulting
of Nism = 2 (gmax = ) drops out of the RWA. The trial from a product of any two carrier LSMs from (5) on a
solution for the pattern in our case is perturbation wave. One can see that a set of waves with

| k,=*q + Zm(m =0,1,and 2)

8U, = 3 (extli(w — Q)i]{Vp1 cosqn) + Vp3 c0d(5 — g)n] + Vps cod(5 + q)n] + Vi cod(m — g)nl}
+ exfli(—w — Q)t|{Vpy codgn) + Vpscog(5 — q)n] + Vps c04(5 + g)n] + Vpgcod(m — g)nlt + c.c)
(6)
fulfills this condition. Indeed, all the aforementioned products result in a set of spatial harmonics with wave vectors
k,=*q + Fm = Z1( = 0,1, and 2) which obviously can be reduced to (6). The system of eight linear equations
derived after substitution of (5) and (6) into Eq. (1) was solved numerically to detefXigpe The In{Q(g)/w] curves

for the &, solution are shown in Fig. 3(a). One can see that for@amy[Q(g)/w] < 0 at E, = 8000 is the evidence
for stability of thed®, pattern. AtE, = 7750 andE, = 8250, the d, pattern is unstable.
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/ FIG. 4. Particle positions vs time from numerical experiment
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’ ; : i i in Fig. 2, andg = 7 /2 seeding LSM. Inset shows the pattern
, ) , . . . @, at point 2 in Fig. 2 calculated (solid line) and obtained from
00 02 04 06 08 1,0 numerical experiment (solid circles).
g/n

FIG. 3. (a) Relative increment If2(¢)/w] demonstrating the the case ONLSM =3 _An example_ of th_ebl-type pqttgrn
stability /instability of the®, pattern for Eo; = 7750, E,, =  Observed in the quasi-2D KG lattice with harmonic inter-

8000, and Ey; = 8250 corresponding to the points 1, 2, and chain coupling is shown in Fig. 5. The 2D pattern in this
3, respectively, in Fig. 2; (b) that of thé, (1 {4}) and®,  case shows periodicity in both parallel and perpendicular

(2 {4}) patterns at point 4 in Fig. 2. Curves 3 and 4 show ; ; ; ;
the Im{€2(q)/w] for the isolatedk — 0 and k — /2 LSMs to E_dlrectlons. Detailed study of the 2D patterns will be
published elsewhere.

forming the®, pattern at point 4 in Fig. 2. Thke = 7 LSM : . . . .
is stable. Curve 5 corresponds to tdg pattern, but with Optical intensity required for the pattern generation.
0y — @y + 7/16. Our numerical experiments show that to reach the thresh-

old for the pattern formation in our system with sy = 4,
the particles in the carrier LSM must vibrate with the am-

The increments for thé>; and @, solutions at point 4 plitude A, = 0.05a. The electric field strength of the
in Fig. 2 are shown by symbols and dotted line, respecpptical excitation atw = 1.05w¢ = 10> cm™! can then
tively, in Fig. 3(b). One can see the strong instability ofpe estimated using the motion equation in the harmonic
the @, pattern while theb, patternis quite stable. Theiso- gpproximation. Suggesting = 5 A and y = 0.05w,
lated constituent LSMs with = 0 andk = 7/20ofthe®,  one obtains E, = Apmymy[(05 — 0?)? + (yw)?]'/?/
pattern at pOInt 4 are Unstable. SInCd:ﬁniq)/w] > 0 fOI’ (epee) ~ mp/ep [V/Cm]’ Where mp and e[) are the
someq values [curves 3 and 4 in Fig. 3(b)]. One can con-particle mass and the charge measured in the free electron
clude, therefore, that thé, pattern stability results from ynits 14, and e,, respectively. Accordingly, the field
destructive interference of instabilities of the constituentstrength is of the order of V/cm for light particles like
LSMs. Indeed, a small deviation of the phase angle®n
7 /16 from its value leads to the dramatic increase of the
increment [curve 5 in Fig. 3(b)].

Figure 4 demonstrates spontaneous pattern formatic
observed in numerical experiment in the KG lattice. Start-'g
ing from seeding LSMWp = 0.0001 cog 7 n) atr = 0,the 3
®, pattern formation is completed after about 35 periods
of external field vibration. The final shape of the particle 8
vibration nearly coincides with that calculated for this case © -
from (1) using (5) (see inset of Fig. 4). In the stretched re- 1 6 11 16 21 26
gion in Fig. 2 the unstable solutioh, violates the stable
@, pattern formation and leads to a chaotic behavior of particle number
the system.  In the case .MLSM = 4 or 5 the stable pa.lt_ FIG. 5. The(|U,|); pattern obtained from numerical experi-
tern can be formed starting even from a small-amplitude, o \with a quasi-2D KG lattice fap ~ 1.05w0, ¥ = 0.05w0,
noise rather than from a seeding wave and can be founghd £, = 600. Nearest neighbor particles in the adjacent
in a much broader region of the system parameters than ichains are coupled via harmonic force constéint = K,/4.
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