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Interference of Mode Instabilities and Pattern Formation in Anharmonic Lattices
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On an example of optically excited Klein-Gordon lattice, a striking new feature of anharmonic lattices
related to dynamical coherent structure (pattern) formation is reported. It is shown that two factors ar
important for pattern formation: (i) lattice discreteness, which strongly reduces the number of lattice
spatial modes among which the energy of external field is shared, and (ii) destructive interferenc
of modulation instabilities of these modes resulting in stability of the pattern. Possible experimenta
realization is discussed. [S0031-9007(98)05985-7]
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Dynamics of anharmonic lattices have been extensive
studied in relation to energy sharing between lattice mod
and recurrence phenomena [1–7], properties of intrins
localized modes (ILMs) [4,8–13], and modulation insta
bility (MI) of running and standing waves [14–20]. In the
present Letter a striking new feature of periodically drive
anharmonic lattices is described: coherent dynamical stru
ture (pattern) formation resulting from MI of excited lat-
tice spatial mode (LSM). So far patterns have been studi
basically in continuous systems (see Ref. [21], and refe
ences therein) and recently in granular materials [22–25
Some localized structures (one may call them “simple
patterns”) have also been found in driven lattices: kinklik
structures were observed in the damped and parame
cally driven lattice of coupled pendulums [26] and ana
lyzed theoretically in the Klein-Gordon (KG) lattice [27];
ILM-like structures were described in both KG [28] and
Fermi-Pasta-Ulam (FPU) lattices [29].

On an example of optically driven KG lattice with
quartic anharmonicity, I show that the MI mediated patter
is actually formed by a small (3–5) number of LSMs, an
its stability results from destructive interference of MIs o
these LSMs. The interference effect in the MI is possib
because of one and the same frequency of viscous vibrat
for all LSMs. It turned out that the stable pattern doe
exist in a rather broad region of the system and the drivin
force parameters. The analytical results are verified b
numerical experiment, where the patterns have been fou
also in the quasi-two-dimensional KG and FPU lattices.

MI of the carrier LSM in the optically driven KG
lattice.—Motion equation fornth particle of unity mass
and charge in the KG lattice is

≠2Uny≠t2 1 g ≠Uny≠t 1 v2
0Un 1

K2s2Un 2 Un21 2 Un11d 1 K4U3
n ­ E0eivt 1 c.c.,

(1)

where g is a phenomenological damping constant,v
2
0 ,

K4 are in site,K2 is intersite force constants, andE0 is
the external field amplitude. The solution of Eq. (1) fo
small anharmonicity can be found within the rotating wav
approximation (RWA)
0031-9007y98y80(18)y3988(4)$15.00
ly
es
ic
-

n
c-

ed
r-
].

st
e
tri-
-

n
d
f
le
ion
s
g
y
nd

r
e

Unstd ­
1
2 fVC expsivt 1 iwd 1 c.c.g , (2)

whereVC and w are real amplitude and phase angle, r
spectively. Forv , v0 the dependenceVC ~ E0 shown
in Fig. 1(a) reveals bistability and can be subdivided in

FIG. 1. (a)VC ~ E0 plot for v ­ 0.9v0, g ­ 0.05v0 (solid
line), v ­ 1.05v0, and g ­ 0.15v0 (dashed line); symbols
mark the numbered points at which (b) the calculated relati
increment ImfVsqdyvg for a perturbation LSM is shown.
Here, and for other figures,v0 ­ 200

p
p, K2 ­ 6 3 104, and

K4 ­ 2 8
3 p2v

2
0 .
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three regions:OA, AB, andB`, while for v . v0 this de-
pendence is monotonous. To study MI of the solution (
we add the perturbation

dUn ­
1
2 cossqnd fVP1 expfisv 2 Vdtg

1 VP2 expfis2v 2 Vdtg 1 c.c.g ,
(3)

whereVPj is the complex amplitude, andq andV are the
wave vector and the complex frequency of the perturbati
wave, respectively. The latter can be determined from t
equation, obtained after substitution of (2) with perturba
tion (3) into Eq. (1)

fv2
k 2 sv 1 Vd2 2 igsv 1 Vdg 3

fv2
k 2 sv 2 Vd2 1 igsv 2 Vdg ­ s 3

4 K4V2
Cd2,

(4)

where v
2
k ­ v

2
0 1 4K2 sinsqy2d2 1

3
2 K4V 2

C. Relative
increment ImfVsqdyvg is plotted in Fig. 1(b) for thev
and VC values corresponding to the numbered points
Fig. 1(a). In the regionOA of the v ­ 0.9v0 curve in
Fig. 1(a) ImfVsqdg ­ 2gy2, i.e., the carrier LSM is stable.
In the AB andB` regions the carrier LSM possesses M
sssImfVsq fi 0dyvg . 0ddd, besides the unstable amplitude
valuesssImfVs0dyvg . 0ddd in the first region (curves 1 and
2 in Fig. 1(b), respectively). Forv ­ 1.05v0 the carrier
LSM possesses MI at anyE0 value [curve 3 in Fig. 1(b)].

Pattern solutions.—At t ­ 0 there is a seeding LSM,
cossqnd in the lattice. Under action of the external field
E ­ E0eivt, the system will pass through two stages
(a) excitation ofk ­ 0 carrier LSM; (b) growing up of
the seeding LSM due to MI of the carrier LSM and gen
eration of other LSMs due to four-wave mixing. We re
strict our consideration by the total number of the LSM
NLSM ­ 3: with wave vectorsk1 ­ 0, k2 ­ py2, and
k3 ­ p (lattice constanta ­ 1). Because of the sym-
metry arguments only standing waves (LSMs) are cons
ered. No new LSMs important within RWA will appear
due to four-wave mixing of the three chosen. Thus, the M
of the k ­ 0 carrier LSM must have a maximum around
qmax ­ py2. This is the condition forE0 or, in other
words, for the carrier LSM amplitudeVC . Note thatVC

strongly increases with increasingqmax, therefore, the case
of NLSM ­ 2 (qmax ­ p) drops out of the RWA. The trial
solution for the pattern in our case is
2)
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FIG. 2. Boundary curves restricting theF1 pattern stability
region in thesg, E0d space. In the stretched region there ar
both stableF1 and unstableF2 patterns. Typical shapes of the
F1 and F2 patterns are shown in the inset. Numbers deno
the points at which the calculated ImfVsqdyvg are presented in
Fig. 3.

Unstd ­
1
2 fVC1 expsivt 1 iw1d

1 VC2 coss p

2 nd expsivt 1 iw2d
1 VC3 cosspnd expsivt 1 iw3d 1 c.c.g , (5)

where againVCj are real amplitudes andwj are phase
angles. According tov ­ 1.05v0 andg values a single
stable nontrivial (allVCj fi 0) solution F1 of the form
(5) was found in the region between the solid curves
Fig. 2. Outside this region the solutionF1 is unstable
in the sense discussed below. An additional and strong
unstable solutionF2 exists in the stretched part of theF1

stability region. The time-averaged amplitudekjUnstdjlt

for the F1 and F2 solutions is presented in the inset in
Fig. 2, which shows that bothF1 and F2 form coherent
dynamical structures (patterns) with symmetry differen
from that of the external fieldE. This property has been
pointed out recently for a three-particle anharmonic lattic
[12]. Note that theF1 pattern can be regarded as a lattic
of intrinsic localized vibrations of the odd parity [8,9].

Patterns stability.—For linear stability analysis of the
F1 and F2 solutions within RWA, a total perturbation
must contain all perturbation waves coupled to each oth
via four-wave mixing, i.e., all spatial harmonics resulting
from a product of any two carrier LSMs from (5) on a
perturbation wave. One can see that a set of waves w
kp ­ 6q 1

p
2 m (m ­ 0, 1, and 2)
ectors
tions
dUn ­
1
2 s expfisv 2 Vdtg hVP1 cossqnd 1 VP3 cosfs p

2 2 qdng 1 VP5 cosfs p

2 1 qdng 1 VP7 cosfsp 2 qdngj
1 expfis2v 2 Vdtg hVP2 cossqnd 1 VP4 cosfs p

2 2 qdng 1 VP6 cosfs p

2 1 qdng 1 VP8 cosfsp 2 qdngj 1 c.c.d
(6)

fulfills this condition. Indeed, all the aforementioned products result in a set of spatial harmonics with wave v
kp ­ 6q 1

p
2 m 6

p
2 l (l ­ 0, 1, and 2) which obviously can be reduced to (6). The system of eight linear equa

derived after substitution of (5) and (6) into Eq. (1) was solved numerically to determineVsqd. The ImfVsqdyvg curves
for the F1 solution are shown in Fig. 3(a). One can see that for anyq ImfVsqdyvg , 0 at E0 ­ 8000 is the evidence
for stability of theF1 pattern. AtE0 ­ 7750 andE0 ­ 8250, theF1 pattern is unstable.
3989
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FIG. 3. (a) Relative increment ImfVsqdyvg demonstrating the
stability /instability of theF1 pattern for E01 ­ 7750, E02 ­
8000, and E03 ­ 8250 corresponding to the points 1, 2, and
3, respectively, in Fig. 2; (b) that of theF1 s1 h4jd and F2
s2 h4jd patterns at point 4 in Fig. 2. Curves 3 and 4 show
the ImfVsqdyvg for the isolatedk ­ 0 and k ­ py2 LSMs
forming theF1 pattern at point 4 in Fig. 2. Thek ­ p LSM
is stable. Curve 5 corresponds to theF1 pattern, but with
w2 ! w2 1 py16.

The increments for theF1 andF2 solutions at point 4
in Fig. 2 are shown by symbols and dotted line, respe
tively, in Fig. 3(b). One can see the strong instability o
theF2 pattern while theF1 pattern is quite stable. The iso-
lated constituent LSMs withk ­ 0 andk ­ py2 of theF1

pattern at point 4 are unstable since ImfVsqdyvg . 0 for
someq values [curves 3 and 4 in Fig. 3(b)]. One can con
clude, therefore, that theF1 pattern stability results from
destructive interference of instabilities of the constituen
LSMs. Indeed, a small deviation of the phase anglew2 on
py16 from its value leads to the dramatic increase of th
increment [curve 5 in Fig. 3(b)].

Figure 4 demonstrates spontaneous pattern format
observed in numerical experiment in the KG lattice. Star
ing from seeding LSMVP ­ 0.0001 coss p

2 nd att ­ 0, the
F1 pattern formation is completed after about 35 period
of external field vibration. The final shape of the particl
vibration nearly coincides with that calculated for this cas
from (1) using (5) (see inset of Fig. 4). In the stretched re
gion in Fig. 2 the unstable solutionF2 violates the stable
F1 pattern formation and leads to a chaotic behavior
the system. In the case ofNLSM ­ 4 or 5 the stable pat-
tern can be formed starting even from a small-amplitud
noise rather than from a seeding wave and can be fou
in a much broader region of the system parameters than
3990
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FIG. 4. Particle positions vs time from numerical experimen
with the KG lattice with parameters, corresponding to point
in Fig. 2, andq ­ py2 seeding LSM. Inset shows the pattern
F1 at point 2 in Fig. 2 calculated (solid line) and obtained from
numerical experiment (solid circles).

the case ofNLSM ­ 3. An example of theF1-type pattern
observed in the quasi-2D KG lattice with harmonic inter
chain coupling is shown in Fig. 5. The 2D pattern in thi
case shows periodicity in both parallel and perpendicul
to E directions. Detailed study of the 2D patterns will be
published elsewhere.

Optical intensity required for the pattern generation.—
Our numerical experiments show that to reach the thres
old for the pattern formation in our system withNLSM ­ 4,
the particles in the carrier LSM must vibrate with the am
plitude Ap . 0.05a. The electric field strengthE0 of the
optical excitation atv ­ 1.05v0 . 102 cm21 can then
be estimated using the motion equation in the harmon
approximation. Suggestinga ­ 5 Å and g ­ 0.05v0,
one obtains E0 ­ Apmpmefsv2

0 2 v2d2 1 sgvd2g1y2y
sepeed . mpyep fVycmg, where mp and ep are the
particle mass and the charge measured in the free elect
units me and ee, respectively. Accordingly, the field
strength is of the order of1 Vycm for light particles like

FIG. 5. The kjUnjlt pattern obtained from numerical experi-
ment with a quasi-2D KG lattice forv ø 1.05v0, g ø 0.05v0,
and E0 ­ 600. Nearest neighbor particles in the adjacen
chains are coupled via harmonic force constantKint ­ K2y4.
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electrons and of the order of105 Vycm for ionic solids.
The latter value ofE0 can be reached in the laser pulse
Obviously the pulse durationT must be enough for the
pattern to be generated and detected. The generation s
lasts over 30–40 periods of vibration, and 10–20 perio
are probably needed for the pattern detection in total th
meansT . 20 ps. Thus, for the pattern formation in an
electronic system (e.g., charge-density wave conduct
the IR laser pulses of energyW . 10211 mJ focused into
,0.01 cm2 are required. The pattern formation in an ioni
system needs much higher pulse energyW . 0.1 mJ,
unless the smaller focusing area is used.

The pattern formation under the action of the simp
periodic field is, in fact, a way for the ILMs optical
generation alternative to that proposed by Rössler and P
and based on use of the suitably controlled sequence
short laser pulses [30]. Although theE0 values in both
methods are very close, the parameters of the genera
pattern, which are built ofequal ILMs, are well defined,
in contrast to those of the set of ILMs generated by th
short-pulse-sequence method. This fact can be import
in experimental detection of the ILMs, which in case of th
pattern can be based on effects of dynamical breaking
the lattice translational symmetry.

In conclusion, a first example of the MI mediated patte
formation in the anharmonic lattice is described. The re
son for the pattern stability is shown to be closely related
interference of modulation instabilities of constituent sp
tial modes. Experimental observation of the patterns in
real system would give indirect evidence for existence
intrinsic localized modes.
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