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Faraday Instability in a Multimode Laser
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We show theoretically and experimentally that a basic pattern formation mechanism in hydrodynam-
ics, the Faraday instability, can be observed in optics (for modulated RBlkssers with inhomogeneous
broadening). As for the Faraday problem, stationary waves are excited parametrically and wave num-
bers are selected by the dispersion curve of the medium. The mechanism is evidenced by a multiple-
scale analysis of the physical laser model, and is confirmed experimentally using a Nd-doped fiber
laser. [S0031-9007(98)05957-2]

PACS numbers: 47.54.+r, 42.65.Sf

Pattern formation has been the subject of intensivénhomogeneously broadened clads$aser can behave as a
investigations during the past decade. A number othain of coupled oscillators, each being associated to one
universal mechanisms for morphogenesis have beedongitudinal mode [14]. It can therefore be considered as
identified, which has led to distinct criteria for wave- a spatiotemporal system for which the (discrete) spatial
length selection as a result of a primary instability. Thisvariable is the mode index, and the information that
selection can be determined by geometrical constraintsropagates is the mode intensity. Thanks to the local
as in fluid convection, or by intrinsic properties as incoupling, linear damped waves can propagate in this set
the Turing instability [1]. A third mechanism is the of modes (and thus in the optical spectrum). Since the
excitation of waves by an externapatially uniform dispersion relation of the waves is known [14], and global
modulation. This is the case of the Faraday instabilitymodulation of the laser is easily achieved by modulating
known since the 19th century [2]. In an open containeithe pump, this laser is a good candidate for the observation
of fluid, modulation of the vertical position at a frequency of dispersion-induced (“Faraday-like”) instabilities.

w, can typically induce a wave at the subharmonic Our study of the problem will be the following.
/2, resulting from a parametric instability. The wave From the physical model of the laser [14-16], we first
numberk, of this wave is related directly to the modu- determine long-time amplitude equations using a multiple-
lation frequency through the linear dispersion relationscale analysis. We then analyze the primary instability.
of the medium:w,,/2 = f(k.) [1,3,4]. Studies on this The properties of the bifurcation are compared to the
subject from the point of view of nonlinear dynamics known properties of the Faraday experiment (i.e., wave-
have led to an impressive set of new observationsiumber selection, temporal period and stationary wave
[5], in particular the evidence of spatiotemporal chaosature). Finally, we verify our analytical predictions
[6,7], spatiotemporal intermittency [8], and quasicrys-numerically and experimentally, using a Nd-doped fiber
talline waves [9]. However, the generality of theselaser subjected to pump modulation.

results exceeds the domain of surface waves dynamics We consider an inhomogeneously broadened dkass-
as shown explicitly by Coulletetal.[10]. These laser without phase-sensitive interactions. The state of
phenomena belong to the more general class afuch a laser can be described by a set of mode intensities
dispersion-induced patterns The conditions for such s;(r), and a continuous set of population inversif(g, )
instabilities to occur are the following: (i) The system [15-17]. In dimensionless form, the model reads

must be a (discrete or continuous) propagation medium +oo

(for example, a chain of coupled oscillators) and (i) the ~ 9:5; = —s; + 5, B(&; — §)d(§)dé, (1a)
external modulation must affect the systamiformly. o
The last condition allows a parametric excitation of the 0

waves. Although these corr)1ditions seearpriori not y[g(f)d (t) = <1 * ;B(f B f’)sl>d]

too severe, Faraday-like instabilities have rarely been (1b)
observed in areas different from hydrodynamics, excepin these equations, the emission optical frequencies asso-
for spin waves [11,12], and crystallization dynamics [13].ciated with each population clags and to each mode

In this Letter, we report the observation of dispersion-¢;, play the role of “spatial” variables (not time vari-
induced patterns in the optical spectrum of a laser. Arables). The intensities and populations evolve with a time
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scale much slower than the optical ones: The timie  We assume,, = 1 andé small, and introduce the fol-
measured in units of the cavity lifetime., typically in  lowing expansions of the parametef3;, = 1 + o€ +

the microsecond range. The paramegeis the popula- ... and & = 16€28, + .... After substituting these
tion inversion rate normalized by the photon decay ratexpansions into Eq. (2), we obtain a sequence of linear
1/7. (y < 1). d°t) = A[l + mcoqw,t)] denotes the problems to solve. The leading order problem admits the
modulated pumping rate wherg m, and w,, represent solution,

its average, ampl_ltude, and frequency, resp_ectlvaly,, X,(£) = 4i[Ue' + RE(T/2-ké) 4 Lei(T/2+"°§)] +ecc.,
andm are our main control parameters, aag is chosen

close to the relaxation frequeneyz = /y(A — 1) [14] (5a)

(typically in the kHz-MHz range). _ iT | RA(T/27ké) | | @iT/2+ké)] 4
The cross-saturation coupling coefficients are definele(f) 4Ue Re Le I+cec,

by B(&) =[1 + (5)*]"!/=A, where A is the homo- (5b)

geneous width. The Lorentzian shape @f¢) ensures \ here the amplitudes of the uniform componént and

a local coupling with an interaction ranga. Nonuni- ot the wavesk andL, depend on the slow variablésand
formities of the laser spectrum are modeled by the S€7. (Q,,/2, ko) satisfies the dispersion relation [14],
lective pumpingg(¢). In the theoretical work, we will

consider an infinite medium witlg(¢) = 1. In the nu- Q)2 = e Wold, (6)
mﬁe(rigal)z%nlulat_ions(g(f) will be taken Gaussiang(¢) = The unknown amplitude#/, R, and L are obtained
e~ ETON2 with o = 30A. from higher order solvability conditions, and satisfy the

We propose a bifurcation analysis of Eq. (1), usingfo|lowing amplitude equations:
the modulation amplitude as the control parameter, and

1 *
for w, close to wg. Considerable simplification of d9pR — 7 9;.R = —R + UL", (7a)
the 'mathem_ati_cal problem is achieved_ by ta_king the 9oL + %a;L = —L + UR", (7b)
continuous limitA~! — 0 for the mode intensities;. .

This limit is motivated by the large number of modes dgU + iU = —U = 2RL — 6. (7c)

per homogeneous width, observed in our experiments  As for the Faraday instability, we note from Egs. (7)
discussed below. We thus approximate the sum in (Ljhat the amplitude® andL of the two waves (with group
by a Riemann integral. We next consider the caseelocities —1/2 and +1/2, respectively) argarametri-
g(£€) = 1, and introduce the following useful change of cally excitedby the uniform amplitudé’ [i.e., R = L =
variables [18]s = (A — 1)(1 + X),d = 1 + wgY,and (s always a solution of Egs. (7)]. Moreover, it is worth
t =1/wr. We obtain+ noticing that Egs. (7) are similar to equations for the opti-
. * / el cal parametric oscillator [20,21].
9,X = (1 +X) o B(& — £)Y(£)de, (2a) From an analysis of the solutions of Eq. (7), we
find a bifurcation to a stationary wave that satisfies

+0o0
9,Y = —<1 + 2—6Y> B(& — ENX(&NdE' all Faraday conditions. Indeed, we note thit the
F - uniform state R = L = 0) becomes unstable at a period-
— 2eY + 6cos),T, (2b)  doubling bifurcation point, i() the bifurcation leads to a

where F = A/(A — 1). We then note that the laser stable stationary wavgR| = |L|), and {ii) the selected
parameters are grouped into three paramet¢er§, and wave number is determined by the dispersion relation

Q,, defined as (6). Indeed, introducing@ = ae’® ¢ andL = R*¢'? into
A 5 mA w Eq. (7) leads to the following expression of the critical
€= "—4——, 6=——, and Q, = —. modulation amplitude:
2 VA -1 A-—1 wR
3) me(8K) = £ VT + 6K2/1 + (Q, — 1)2/€2
The first parameter is small and measures the damping of + 0(3). (8)

the laser-free relaxation oscillations in units®@f. The

second and third parameters are the normalized amplitude From (8), we note that the first instability of the uniform
and frequency of the modulation. solution occurs asK = 0. This means that the first

The small dissipation coefficient and the fact that nstability corresponds to a critical wave numligr= k,
Q,, ~ 1 suggest that one should apply a multiple-scalevhich satisfies the dispersion relation (6).

perturbation analysis [19]. After introduciry = €, 7, ~The experimental setup used for verifying these pre-

slow time and space variabl#s= e, ¢ = €A™' &, we dictions is based on the laser described in Ref. [14]. It

seek a solution of Eq. (2) of the form consists basically of a multimode Nd-doped fiber laser
X(T.0,6.0.€) = eX(T.0,£.0) + ..., (4a) cooled at 77 K, with an emission widf® A, much larger

than the homogeneous width~ 0.8 A. Concerning the
Y(T,0,¢,0,e) = €Y ((T,0,6,0) +.... (4b) cavity, the only technical difference with Ref. [14] lies
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FIG. 2. Fourier transform in both space and time of the ex-
perimental regime shown in Fig. 1(a). The Nyquist tempo-
ral frequency isw, /2, and black is associated with high
power spectral densities. The linear dispersion cutwé] =

wg exp(—|k|A), with A = 0.8 A] is superposed. Note thab

is NOT an optical frequency (see text).

the model equations (1), for the same values of the

: ! i | [ parameters. We have used a pseudospectral method [22]
OXILIRENN LAY and, becausd = 2000 > 1, we have approximated the

AULLLELRL '} 1 discrete sum by an integral. The pattern displayed in
Fig. 1(b) clearly exhibits the same stationary wave, with
frequencyw,,/2. Moreover, the Fourier transform reveals
the same agreement with the dispersion relation (6).

We also examined the quantitative agreement between
the theoretical predictions, and the experimental values of
the bifurcation point. Figure 3 represents the experimen-
tal dependence of the threshold modulation amplitude
FIG. 1. Evolution of the mode intensities just above theyith respect to the frequenay,,, together with the least-
instability threshold ¢ = 0.12, w,, = wg, andA = 2.3). T, . : . R
is the modulation period. (a) Experimefioy = 62 kHz): ~ Sduares fit of the theoretical function (8). This fit ylglds to
(b) numerical integration of Egs. (1) witle = 0.0365 and  the values ofwg /27 = 129 kHz ande = 0.048, which
o = 30A. One optical spectrum is sampled at each modulatiorcompare well with their actual values of 132 kHz and
period. The average spectrum has been subtracted from tf@®047, respectively [23]. We also note that qualitative
spectrochronogram, and white corresponds to high intensities. 5 quantitative agreements remain good even in regions
where the near-resonance and low-amplitude conditions

are poorly satisfied.
in the reflection coefficient of the output coupler (80% poorly

here). However, the laser is now investigated in utterly
different conditions from [14] (where only the linear re-

mode index & (A units)

'
[\
(9]

t/T

m

sponse was considered). Here, we concentrate on the non- 025 .

linear response to a sinusoidal modulation of pump power.

For this purpose, we modulate sinusoidally the current in- 020 7

jected into the diode laser. The mode evolution is moni-

tored on a silicium CCD array, and one optical spectrum & 0151 ]

is recorded at each modulation period. 0.10- |
Pattern formation appears above a critical threshold,

and satisfies the Faraday instability scenario. Just above 0.051 -

threshold, this pattern consists of a stationary wave

oscillating with frequencyw,,/2 [Fig. 1(a)]. In order Ul I ! I ! ! | 1]

to determine whether it is actually a dispersion-induced 120 130 140 150 160 170 180 190

pattern, we examine its Fourier transform in both “space” o, /2n(kHz)

aﬂd time (Fig. 2.)' We. (_)bserve t\.NO pe_aks, IOC.ated aI:IG. 3. Instability threshold (critical modulation amplitude)
(+ke, wn/2), which satisfies the dispersion relation (6) versus modulation frequency. Dots: experimental reults-

or, equivalently, w(k) = wg exp(—|k|A) [14]. These 55): solid line: fit of the theoretical resulin.(0) given by
results are well reproduced by numerical integration ofeqg. (8).
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