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We show theoretically and experimentally that a basic pattern formation mechanism in hydrodynam-
ics, the Faraday instability, can be observed in optics (for modulated classB lasers with inhomogeneous
broadening). As for the Faraday problem, stationary waves are excited parametrically and wave num-
bers are selected by the dispersion curve of the medium. The mechanism is evidenced by a multiple-
scale analysis of the physical laser model, and is confirmed experimentally using a Nd-doped fiber
laser. [S0031-9007(98)05957-2]

PACS numbers: 47.54.+r, 42.65.Sf
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Pattern formation has been the subject of intensi
investigations during the past decade. A number
universal mechanisms for morphogenesis have be
identified, which has led to distinct criteria for wave
length selection as a result of a primary instability. Th
selection can be determined by geometrical constrain
as in fluid convection, or by intrinsic properties as i
the Turing instability [1]. A third mechanism is the
excitation of waves by an externalspatially uniform
modulation. This is the case of the Faraday instabilit
known since the 19th century [2]. In an open contain
of fluid, modulation of the vertical position at a frequenc
vm can typically induce a wave at the subharmon
vmy2, resulting from a parametric instability. The wave
numberkc of this wave is related directly to the modu-
lation frequency through the linear dispersion relatio
of the medium:vmy2 ­ fskcd [1,3,4]. Studies on this
subject from the point of view of nonlinear dynamics
have led to an impressive set of new observatio
[5], in particular the evidence of spatiotemporal chao
[6,7], spatiotemporal intermittency [8], and quasicrys
talline waves [9]. However, the generality of thes
results exceeds the domain of surface waves dynam
as shown explicitly by Coulletet al. [10]. These
phenomena belong to the more general class
dispersion-induced patterns. The conditions for such
instabilities to occur are the following: (i) The system
must be a (discrete or continuous) propagation mediu
(for example, a chain of coupled oscillators) and (ii) th
external modulation must affect the systemuniformly.
The last condition allows a parametric excitation of th
waves. Although these conditions seema priori not
too severe, Faraday-like instabilities have rarely be
observed in areas different from hydrodynamics, exce
for spin waves [11,12], and crystallization dynamics [13

In this Letter, we report the observation of dispersion
induced patterns in the optical spectrum of a laser. A
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inhomogeneously broadened class-B laser can behave as a
chain of coupled oscillators, each being associated to o
longitudinal mode [14]. It can therefore be considered
a spatiotemporal system for which the (discrete) spat
variable is the mode indexj, and the information that
propagates is the mode intensity. Thanks to the loc
coupling, linear damped waves can propagate in this
of modes (and thus in the optical spectrum). Since t
dispersion relation of the waves is known [14], and glob
modulation of the laser is easily achieved by modulatin
the pump, this laser is a good candidate for the observat
of dispersion-induced (“Faraday-like”) instabilities.

Our study of the problem will be the following.
From the physical model of the laser [14–16], we fir
determine long-time amplitude equations using a multipl
scale analysis. We then analyze the primary instabili
The properties of the bifurcation are compared to th
known properties of the Faraday experiment (i.e., wav
number selection, temporal period and stationary wa
nature). Finally, we verify our analytical predictions
numerically and experimentally, using a Nd-doped fib
laser subjected to pump modulation.

We consider an inhomogeneously broadened classB
laser without phase-sensitive interactions. The state
such a laser can be described by a set of mode intensi
sjstd, and a continuous set of population inversiondsj, td
[15–17]. In dimensionless form, the model reads

≠tsj ­ 2sj 1 sj

Z 1`

2`
bsjj 2 jddsjddj , (1a)

≠td ­ g

∑
gsjdd0std 2

µ
1 1

X
l

bsj 2 jldsl

∂
d

∏
.

(1b)
In these equations, the emission optical frequencies as
ciated with each population classj, and to each mode
jj , play the role of “spatial” variables (not time vari-
ables). The intensities and populations evolve with a tim
© 1998 The American Physical Society
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scale much slower than the optical ones: The timet is
measured in units of the cavity lifetimetc, typically in
the microsecond range. The parameterg is the popula-
tion inversion rate normalized by the photon decay ra
1ytc sg ø 1d. d0std ­ Af1 1 m cossvmtdg denotes the
modulated pumping rate whereA, m, and vm represent
its average, amplitude, and frequency, respectively.vm

andm are our main control parameters, andvm is chosen
close to the relaxation frequencyvR ­

p
gsA 2 1d [14]

(typically in the kHz-MHz range).
The cross-saturation coupling coefficients are defin

by bsjd ­ f1 1 s j

D d2g21ypD, where D is the homo-
geneous width. The Lorentzian shape ofbsjd ensures
a local coupling with an interaction rangeD. Nonuni-
formities of the laser spectrum are modeled by the s
lective pumpinggsjd. In the theoretical work, we will
consider an infinite medium withgsjd ­ 1. In the nu-
merical simulations,gsjd will be taken Gaussian:gsjd ­
e2sj2j0d2y2s2

, with s ­ 30D.
We propose a bifurcation analysis of Eq. (1), usin

the modulation amplitude as the control parameter, a
for vm close to vR. Considerable simplification of
the mathematical problem is achieved by taking th
continuous limit D21 ! 0 for the mode intensitiessj .
This limit is motivated by the large number of mode
per homogeneous widthD, observed in our experiments
discussed below. We thus approximate the sum in (
by a Riemann integral. We next consider the ca
gsjd ­ 1, and introduce the following useful change o
variables [18]:s ­ sA 2 1d s1 1 Xd, d ­ 1 1 vRY , and
t ­ tyvR . We obtain

≠tX ­ s1 1 Xd
Z 1`

2`
bsj 2 j0dY sj0ddj0 , (2a)

≠tY ­ 2

µ
1 1

2e

F
Y

∂ Z 1`

2`
bsj 2 j0dXsj0ddj0

2 2eY 1 d cosVmt , (2b)
where F ­ AysA 2 1d. We then note that the laser
parameters are grouped into three parameterse, d, and
Vm defined as

e ­
A
2

r
g

A 2 1
, d ­

mA
A 2 1

, and Vm ­
vm

vR
.

(3)
The first parameter is small and measures the damping
the laser-free relaxation oscillations in units ofvR . The
second and third parameters are the normalized amplitu
and frequency of the modulation.

The small dissipation coefficiente and the fact that
Vm ø 1 suggest that one should apply a multiple-sca
perturbation analysis [19]. After introducingT ­ Vmt,
slow time and space variablesu ­ et, z ­ eD21j, we
seek a solution of Eq. (2) of the form,

XsT , u, j, z , ed ­ eX1sT , u, j, z d 1 . . . , (4a)

YsT , u, j, z , ed ­ eY1sT , u, j, z d 1 . . . . (4b)
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We assumeVm ø 1 and d small, and introduce the fol-
lowing expansions of the parameters:Vm ­ 1 1 s1e 1

. . . and d ­ 16e2d2 1 . . . . After substituting these
expansions into Eq. (2), we obtain a sequence of line
problems to solve. The leading order problem admits t
solution,

X1sjd ­ 4ifUeiT 1 ReisTy22k0jd 1 LeisTy21k0jdg 1 c.c.,

(5a)

Y1sjd ­ 24fUeiT 1 ReisTy22k0jd 1 LeisTy21k0jdg 1 c.c.,

(5b)

where the amplitudes of the uniform componentU, and
of the wavesR andL, depend on the slow variablesu and
z . sVmy2, k0d satisfies the dispersion relation [14],

Vmy2 ­ e2jk0jD. (6)

The unknown amplitudesU, R, and L are obtained
from higher order solvability conditions, and satisfy th
following amplitude equations:

≠uR 2
1
2 ≠z R ­ 2R 1 ULp, (7a)

≠uL 1
1
2 ≠z L ­ 2L 1 URp, (7b)

≠uU 1 is1U ­ 2U 2 2RL 2 d2 . (7c)

As for the Faraday instability, we note from Eqs. (7
that the amplitudesR andL of the two waves (with group
velocities 21y2 and 11y2, respectively) areparametri-
cally excitedby the uniform amplitudeU [i.e., R ­ L ­
0 is always a solution of Eqs. (7)]. Moreover, it is worth
noticing that Eqs. (7) are similar to equations for the op
cal parametric oscillator [20,21].

From an analysis of the solutions of Eq. (7), w
find a bifurcation to a stationary wave that satisfie
all Faraday conditions. Indeed, we note that (i) the
uniform statesR ­ L ­ 0d becomes unstable at a period
doubling bifurcation point, (ii ) the bifurcation leads to a
stable stationary wavesjRj ­ jLjd, and (iii ) the selected
wave number is determined by the dispersion relati
(6). Indeed, introducingR ­ aeidKz andL ­ Rpeif into
Eq. (7) leads to the following expression of the critica
modulation amplitude:

mcsdKd ­
16
F e2

p
1 1 dK2

q
1 1 sVm 2 1d2ye2

1 Ose3d . (8)

From (8), we note that the first instability of the uniform
solution occurs asdK ­ 0. This means that the first
instability corresponds to a critical wave numberkc ­ k0,
which satisfies the dispersion relation (6).

The experimental setup used for verifying these pr
dictions is based on the laser described in Ref. [14].
consists basically of a multimode Nd-doped fiber las
cooled at 77 K, with an emission width50 Å, much larger
than the homogeneous widthD ø 0.8 Å. Concerning the
cavity, the only technical difference with Ref. [14] lies
3969
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FIG. 1. Evolution of the mode intensities just above th
instability threshold (m ­ 0.12, vm ­ vR , andA ­ 2.3). Tm
is the modulation period. (a) ExperimentsvR ­ 62 kHzd;
(b) numerical integration of Eqs. (1) withe ­ 0.0365 and
s ­ 30D. One optical spectrum is sampled at each modulatio
period. The average spectrum has been subtracted from
spectrochronogram, and white corresponds to high intensities

in the reflection coefficient of the output coupler (80%
here). However, the laser is now investigated in utter
different conditions from [14] (where only the linear re
sponse was considered). Here, we concentrate on the n
linear response to a sinusoidal modulation of pump pow
For this purpose, we modulate sinusoidally the current i
jected into the diode laser. The mode evolution is mon
tored on a silicium CCD array, and one optical spectru
is recorded at each modulation period.

Pattern formation appears above a critical thresho
and satisfies the Faraday instability scenario. Just abo
threshold, this pattern consists of a stationary wa
oscillating with frequencyvmy2 [Fig. 1(a)]. In order
to determine whether it is actually a dispersion-induce
pattern, we examine its Fourier transform in both “spac
and time (Fig. 2). We observe two peaks, located
s6kc, vmy2d, which satisfies the dispersion relation (6
or, equivalently, vskd ­ vR exps2jkjDd [14]. These
results are well reproduced by numerical integration
3970
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FIG. 2. Fourier transform in both space and time of the ex
perimental regime shown in Fig. 1(a). The Nyquist tempo
ral frequency isvmy2, and black is associated with high
power spectral densities. The linear dispersion curve [vskd ­
vR exps2jkjDd, with D ­ 0.8 Å] is superposed. Note thatv
is NOT an optical frequency (see text).

the model equations (1), for the same values of th
parameters. We have used a pseudospectral method [2
and, becauseD ø 2000 ¿ 1, we have approximated the
discrete sum by an integral. The pattern displayed i
Fig. 1(b) clearly exhibits the same stationary wave, with
frequencyvmy2. Moreover, the Fourier transform reveals
the same agreement with the dispersion relation (6).

We also examined the quantitative agreement betwee
the theoretical predictions, and the experimental values
the bifurcation point. Figure 3 represents the experimen
tal dependence of the threshold modulation amplitudemc,
with respect to the frequencyvm, together with the least-
squares fit of the theoretical function (8). This fit yields to
the values ofvRy2p ­ 129 kHz ande ­ 0.048, which
compare well with their actual values of 132 kHz and
0.047, respectively [23]. We also note that qualitative
and quantitative agreements remain good even in regio
where the near-resonance and low-amplitude condition
are poorly satisfied.

FIG. 3. Instability threshold (critical modulation amplitude)
versus modulation frequency. Dots: experimental resultssA ­
5.5d; solid line: fit of the theoretical resultmcs0d given by
Eq. (8).
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In conclusion, modulation of an inhomogeneous
broadened multimode laser can excite dispersion-induc
patterns in its spectrum of emission. We call th
bifurcation a Faraday instability, because it verifies th
following three points: (a) The bifurcation leads to
stationary waves, (b) wavelength selection is related to
the modulation frequency through the linear dispersio
curve of the medium, and (c) the bifurcation is the result
of a parametric instability, meaning that the uniform
state sk ­ 0d is still a solution of the problem. The
perspectives of our paper are twofold. Investigations
secondary instabilities observed experimentally for high
modulation amplitudes will tell us how generic is th
Faraday mechanism. In particular, we are interested
determining the effects offinite rangecoupling [24] (one
mode is not only coupled to its nearest neighbors but a
to others within a rangeD). A second perspective of our
paper is to understand the effects of space dependenc
the control parameters in dispersion-induced instabiliti
(for example, the effect of inhomogeneous pumpin
which are always present in the experiments.
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