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The dynamic properties of the atomic nucleus depend strongly on correlations between the nucleons.
We present a combined analysis of inelastic electron-scattering data and electron-induced proton
knockout measurements in an effort to obtain phenomenological information on nucleon-nucleon
correlations. Our results indicate that the ratio of radial wave functions extracted from precise
19B(e, e') and'°B(e, e’ p) measurements evolve from an interior depression for sBEglicharacteristic
of short-range correlations, to a surface-peaked enhancement for kgygecharacteristic of long-
range correlations. This observation can be interpreted in terms of the nucleon effective mass.
[S0031-9007(98)06023-2]

PACS numbers: 25.30.Fj, 14.20.Dh, 25.30.Dh, 27.20.+n

The independent-particle shell model (IPSM) of thesured by Bobeldijket al.[9], for example, extend up to
atomic nucleus is remarkably successful in describing @,, = 500 MeV/c. Comparison of these data with vari-
variety of nuclear properties. In particular, IPSM waveous theoretical predictions [10—16] indicated that, whereas
functions give a good account of single-nucleon transfeL RC were essential for understanding results obtained for
and knockout measurements, such as obtained with tHew-lying final states irt’’ TI, SRC had little or no effect.
quasielastide, e’ p) reaction [1-3], up to the Fermi mo- On the other hand, for continuum final states [17}%T]
mentum £y = 250 MeV/c). Nonetheless, single-particle the inclusion of both LRC and SRC seemed necessary to
spectroscopic factors deduced fréee’ p) data are found bring the calculations closer to the data, although a dis-
to be systematically smaller than IPSM predictions [4—6].crepancy persists that increases with excitation energy.
This quenching has led to notions such as quasiparticle In this Letter we present a novel approach for com-
wave functions and effective masses, concepts for descrilparing radial wave functions extracted from inelastic
ing the effects of nuclear binding and correlations betweemlectron-scattering data and from electron-induced proton
nucleons that spread out the spectroscopic strength ovknockout data. Consider a pubg) transition, such as the
large energy and momentum ranges [7,8]. M3 transition from the3* ground state to the* excited

The local effective nucleon masa*(r, E)/m may state of'°B at 1.74 MeV. In the single-particle model the
be defined as the product of two components, the ground state is described by a stretcliggs »)*> configu-
mass and theE mass, according tom*(r,E)/m = ration, and the excited state is reached by inverting the
[my(r,E)/m][mg(r, E)/m]. The k mass takes into ac- angular momentum of one nucleon. Thus, in the absence
count the nonlocality of the nuclear mean field by mean®f = 2o admixtures, the magnetic form factor for this
of an additional energyH) dependence, and resemblestransition is determined by a single-nucleon radial wave
the well-known Perey factor. Th& mass describes the function, here denoted & ./(r), such that
coupling of hole states to low-lying collective excitations %
of the target nucleus (long-range correlations, LRC) as Fus(q) « q] [Reo'(r)Pjalgr)r*dr, (1)
well as the effect of short-range correlations (SRC) and 0
of tensor correlations. In the dispersion-relation model ofwhereq is the momentum transfer. This equation can be
Mahaux and collaborators [7#; has the same radiat) inverted by standard techniques based on Fourier-Bessel
dependence as the Hartree-Fock potential, whergais  transforms [18,19] to yiel®R, .(r). The results of such

enhanced at the nuclear surface. an analysis, including corrections for meson-exchange
Only recently have(e, e’p) data become available at currents, were published recently [20,21].
large missing momentum,, (corresponding to a large ini-  Similarly, in the plane-wave impulse approximation

tial momentum of the struck proton) where such theoreticalPWIA) the (e,e’p) missing-momentum distribution
ideas can be tested. THEPh(e, ¢/p) cross sections mea- for single-nucleon knockout from the same orbital is
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described by the Fourier transform of an overlap function, Separate runs were performed to calibrate the beam

here denoted aB, ./, (r), such that energy, spectrometer acceptances, and coincidence effi-
% 2 ciency. The data were analyzed using methods described

p(pm) = [ Re,e/,,(r)jl(p,,,r)r2 dr| . (2) elsewhere [24], yielding a total systematic uncertainty of
0 5%—6%. The reduced cross section, defined as the sixfold

Thus, the radial overlap function can also be extractedlifferential cross section divided by the off-shell electron-
from (e, e’p) using Fourier-Bessel techniques. The de-proton cross sectionggl as given by De Forest [25] and
pendence oR, ./,(r) on the final state of the residual nu- by the appropriate kinematic factor, is shown in Fig. 1.
cleus, with missing energg,,, remains implicit. The spectrum exhibits two sharp peaks, corresponding
At the level of the mean-field approximation, bothto the 3~ ground state and thé~ state at 2.429 MeV
radial functions would have the same form, such thain °Be, followed by broad, overlapping resonances. A
Reo(r) = Reerp(r) = ¢(r) where ¢(r) is a normalized detailed analysis [23] showed that the spectrum is domi-
eigenfunction of the mean field. However, nonlocality nated by¢ = 1 knockout up toE, = 19 MeV, and by
corrections, correlations, and nuclear dynamics may have = (0 knockout above that value.
different effects on the radial functions appropriate to Figure 2 shows momentum distributions obtained by
these two reactions. Hence, it is useful to introducentegrating over the six maifi = 1 structures in the spec-
correction factors such th&, (r) = \/n.(r) ¢(r), where  trum. These are compared to two distorted-wave impulse
a distinguishes between reactions, namefy,e’) or  approximation (DWIA) calculations [26—28] using dif-
(e,e’'p). For example, according to Ma and Wambachferent phenomenological and microscopic potentials [29].
[15,16] one should identifyn. ., with an effective- For each of th& = 1 transitions it was found that the rms
mass correction to the quasiparticle wave functionyadius extracted for the overlap wave function was insen-
m*(r,E,)/m. Similarly, one could argue that the form sitive (<3%) to the description of final-state interaction
factor measured by electron scattering should be com@Si) or other subtle effects. This lends confidence to the
pared with a Hartree-Fock wave function, including thedegree of model independence achieved in the determina-
nonlocality correction represented by tikemass, that tion of overlap wave functions from théB(e, ¢/p) data.
optimizes the single-particle model such that, cor- The next step in the analysis was to transform the data
responds ton,(r)/m. Although we cannot justify such for the six¢ = 1 structures to- space. Distortions were
interpretations rigorously without further developments infirst removed by multiplying thee, ¢’p) data with the
many-body theory, it is reasonable to expect that ¢he ratio of PWIA to DWIA calculations, where the micro-
factors for both reactions should approach unity at verycopic potential was used to compute the proton distor-
large distances. Therefore, we define the nonlocality ratitions. The resulting “plane wave” momentum distribution
Newp(r) Reerp(r) 2 was then transformed using the Fourier-Bessel (FB) trans-
k(r) = — o (R’ B ) (3) formation coderouBes[18,19]. Since thep,, range of
Me.e'tT ee'\V our '°B(e, ¢’p) data is rather smalbg-1.35 fm~!) only a
as the ratio between these factors and requirec —  few FB coefficients are determined by the data. This can
1 for r — . Thus, if .. % m(r)/m and n.., =  partly be remedied by choosing a large value for the cutoff
m*(r,E,)/m, we would expect to find that the ratio radius,R. = 11 fm. Furthermore, the shapes of the fitted
of radial functions extracted fronge,e’) and (e, e’'p)
experiments resembles tlie mass, such that(r, E,,) o«
mg(r,E,)/m.

T T T T
3/ 5/2 10B(e,e'p) -

The '°B(e,¢’p) data employed to investigate these 3 . E, = 407.3 MeV. |
ideas were taken from an experiment performed at theZ (712) E.., = 120 MeV
Q§ <p,> = 80 MeV/c

medium-energy electron accelerator at NIKHEF. The 3 10t}
energy, duty factor, and average current of the beamZ |
were 407.3 = 0.2 MeV, 1%, and1.5 uA, respectively.

The target consisted of boron powder, enriched in
0B, hot pressed with 2% polystyrene binder into a
1.3 X 3.8 cnm? wafer of thicknessl01.6 mg/cn?. Scat-

tered electrons and knocked-out protons were detecte
using two high-resolution magnetic spectrometers [22].
The measurements were performed in parallel kinemat- |
ics, where the ejected proton is detected parallel to the 5 : m m
momentum transfeg. The outgoing proton energy in Excitation energy [MeV]

the center of momentum frame was kept constant ¥G. 1. 0B(e, ¢’p) excitation energy spectrum obtained at a

Temn = 120 MeV.  Further details can be found else- missing momentum(p,,) = 80 MeV/c. The main structures
where [23]. are labeled by their (tentative) spin-parity assignments.
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FIG. 3. The 1p§ wave functions extracted from the

1°B(e, e’p) data and(e,e’) data (bottom curve) by means of
the Fourier-Bessel technique for variod% intervals. The

106 - abscissa represents the relative core-particle separation, and
\ | \ | . the normalization is such thatm [([R(r)*r*dr = 1. The
0 100 200 ,e'p) curves are offset by successive powers of 10.
¥ Mevic] (e e'p) y p

FIG. 2. '°B(e, ¢’p) momentum distributions for various, in-

tervals, offset by successive powers of 10. The curves represeliE€ parameterss, (E,,) and B,(E,) represent volume
optical-model calculations performed with microscopic (solid@nd surface effects, respectively. The normalization of
lines) and phenomenological potentials (dashed lines). R..»(r)/R. . (r) was also treated as a free parameter and

used to enforce the constrairtr, E,) — 1 for larger.

wave functions have been biased with a Woods-Saxon dd order to obtain good fits to the data the radius parame-
pendence beyond = 6 fm in order to damp oscillations t€r R, contained ing(r), must be allowed to increase
that would occur in an unconstrained FB analysis. with E,, (from 2.6 to 3.4 fm). In Fig. 4 the experimen-
The results are shown in Fig. 3, together with ﬂhﬁg tal ratios for the six¢ = 1 regions are compgred to fits
wave function extracted from théB(e, ¢') data [20,21]. based on Eg. (4). Note that th(_e uncertainties related to
Different radial sensitivities are observed for tAB(e, ¢’y ~ the treatment of the FSI (see Fig. 2) and exchange cur-
and (e, ¢'p) data. By virtue of the existence of form rents [27,25_3] are small Compared.to the error bars dis-
factor data up to high momentum transfer= 4 fm~!, played in F_lg. 4. For smalE,, we find thgt the.volume_ _
the (e, ¢') wave function is well determined in the nuclear €ff€Ct dominates and that the nonlocality ratios exhibit
interior. The(e, ¢’p) wave functions, on the other hand, & surpnsmgly strong central depression. As the missing
are better determined at the nuclear surface. energy increases, a strong enhancement ofidfreE,,)
Finally, the nonlocality ratiosc(r, E,,) were obtained develops at thg surface _vvhllg _the interior depression
by evaluating the experimental ratid..,(r)/Re../(r). decreases. This observation is independent of the nor-
The «(r, E,,) data were fitted using a parametrization of malization ofR, ., Although this surface enhancement

the effective E ted by M d Wamb s qualitatively similar to the effectiv& mass proposed
[12 166]e§1:\c/:$1 thg:ass suggested by Ma an am aCthy Ma and Wambach fot”®Pb and*°Ca [15,16], the ef-

) fect we find for'°B is considerably stronger. These re-

K(r,Ep) =1+ By(En)g(r) + Bs(En)g'(r),  (4)  suits suggest that coupling to surface modes is stronger for
where g(r) is a Fermi function that approximately fol- light, highly deformed nuclei than for medium to heavy
lows the radial density of'°B. In this model, the spherical nuclei.
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In summary, it has been shown that ratios 1gf;»
radial wave functions derived from preciseB(e, ¢'p)
and!°B(e, ¢/) data evolve from an interior depression for
small E,, to a surface-peaked enhancement for laiggr

ratio x(r, E,,) extracted from
The variousk, intervals are vertically
Also shown are fits
based on a parametrization of the nucleon effective mass from
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