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Stable Characteristic Evolution of Generic Three-Dimensional Single-Black-Hole Spacetimes
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We report new results which establish that the accurate three-dimensional numerical simulation of
generic single-black-hole spacetimes has been achieved by characteristic evolution with unlimited long
term stability. Our results include distorted, moving, and spinning single black holes, with evolution
times up to60 000M. [S0031-9007(98)05970-5]
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Accurate numerical simulation of black holes is nece
sary to calculate gravitational waveforms in the nonline
regime that cannot be approximated by perturbatio
theory. Calculation of the waveforms from the inspira
and merger of binary black holes is important to the su
cess of the LIGO gravity wave detector and is the prim
goal of the Binary Black Hole Grand Challenge Alliance
[1]. The Alliance is developing a code consisting of
Cauchy module matched to an outer boundary modu
using either a characteristic or perturbative method. F
reports on the Cauchy and perturbative modules see
and [3], respectively. Here we report two new tes
of a three-dimensional characteristic evolution modu
[4,5] that establish its unlimited capability to accuratel
simulate a generic single-black-hole spacetime and th
establish a calibrated tool to attack the binary problem
(i) We have evolved a black hole of massM moving
with periodic time dependence induced by a coordina
wobble for a time of60 000M; and (ii) we have evolved
an initially distorted, spinning black hole up to the fina
equilibrium state, which remains stationary to within
machine round-off error and is a discretized version
the Kerr black hole spacetime. (In natural units wit
Newton’s constantG ­ 1 and the speed of lightc ­ 1,
M ; GMyc3 is a time.)

In the 1970s and 1980s, the difficulty of stably simula
ing even a strictly spherical (one spatial dimension) sing
black hole led to the formulation of “the Holy Grail of
numerical relativity”; a list of requirements for “a code
0031-9007y98y80(18)y3915(4)$15.00
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that simultaneously (i) avoids singularities, (ii) handle
black holes, (iii) maintains high accuracy, and (iv) run
forever” [6].

The results reported here definitely achieve this go
in the three-dimensional, single-black-hole case. Th
challenge for the 1990s and beyond is the binary bla
hole problem. The results here may become direct
applicable to thatmultipleblack hole stage.

The characteristic algorithm is a new computationa
treatment of hyperbolic systems. The theoretical fram
work is the characteristic initial value problem, pioneere
by Bondi et al. [7] and Penrose [8] in the 1960s. Al-
most all numerical modeling of hyperbolic systems ha
been based upon the Cauchy initial value problem, whic
evolves fields on spacelike hypersurfaces along a discr
sequence of time steps. The major new idea in the char
teristic approach is to evolve fields on outgoing (or ingo
ing) light cones along a sequence of retarded (or advanc
time steps. Figure 1 shows the schematic setup for t
outgoing case. A world tubeG has been placed as an in-
ner boundary on the light cones (characteristics) to exci
caustics from the evolution domain. Boundary data onG

and data on the initial light coneN0 determine a unique
exterior evolution.

Characteristic evolution has several advantageous fe
tures [9]: The evolution variables reduce to one comple
function related to the two gravitational polarization
modes; the Einstein equations reduce to propagati
equations along the light rays; and there are no constrai
© 1998 The American Physical Society 3915
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FIG. 1. The outgoing formulation: The exterior ofG is
covered by a sequence ofoutgoinglight cones.

on the initial data. Furthermore, because the light con
are the spacetime hypersurfaces along which wav
propagate, such propagating disturbances appear fa
smooth along them. This feature allows implementatio
of Penrose’s spacetime compactification [8] to include gr
points at future lightlike infinity (in the case based on ou
going light cones), where the waveform is calculated. Th
major disadvantage is the difficulty in treating caustic
One early strategy for a characteristic algorithm propos
tackling the caustics head on as part of the evolution [10
But to date this has been accomplished only for poi
caustics in axisymmetric spacetimes [11]; and the exte
sion to 3D would be prohibitive on present-day machine
Cauchy-characteristic matching is a strategy for combinin
the complementary strengths of Cauchy and characteris
evolution.

The implementation and calibration of the 3D characte
istic module has been described elsewhere [4,12]. Fo
grid of discretization sizeD, the numerical solutions con-
verge in the continuum limit to exact analytic values i
a wide variety of test beds, withOsD2d error. The long
term stability of theoutgoingproblem has also been estab
lished [4]. In these studies, the inner world tubeG was
chosen to be the ingoing branch of ther ­ 2M horizon in
a Schwarzschild spacetime. The initial data consisted
a pulse of ingoing radiation onN0. This set the data for
the scattering of a pulse of radiation by a Schwarzsch
black hole, the classic problem first studied perturbative
by Price [13]. The angular momentum of the ingoing puls
leads to a final black hole with spin. The pulse is partial
transmitted into the black hole and partially scattered
(compactified) infinity along outgoing light cones, wher
its waveform is obtained. The evolution handles high
distorted black holes with backscattered radiation a tho
sand times more massive than the initial black hole a
with a peak powerø105 in dimensionless units (equiva-
lent to conversion of our Galaxy’s mass into gravitationa
waves in 1 sec).

The calculation of the waveform at infinity for the
binary problem can be posed in a similar way by matchin
a Cauchy interior module matched at a world tubeG to a
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characteristic outer module. (See [3] for an alternativ
perturbative matching scheme.) In model 3D nonlinea
problems, Cauchy-characteristic matching dramatical
outperforms other existing outer boundary conditions fo
Cauchy evolution [14]. It has been successful in 1D
general relativity [15,16], but its efficacy in 3D genera
relativity is yet to be determined, because a stab
matching scheme has not yet been found.

A simple transformation switches anoutgoingcharacter-
istic evolution module into aningoing module [5,16]. In
this case, to uniquely define a black hole spacetime, boun
ary data is prescribed on an outer world tube and on a
incoming light cone (G andN0 in Fig. 2); and in order to
excise the singular region interior to the black hole, an in
ner boundary is constructed at a world tube traced out b
a marginally trapped surface(T in Fig. 2). This extends
to characteristic evolution the strategy initially propose
by Unruh (see [17]) for Cauchy evolution of black holes.

This strategy is based upon the properties oftrapped sur-
faces[18]. Normally, the light rays emitted in the outward
normal direction to a (topologically) spherical surface form
an expanding beam. But strong gravitational lensing ca
make such an outgoing spherical beam convergent eve
where. Such a surface whose outgoing and ingoing ra
all converge is called trapped. Amarginally trapped sur-
face (MTS) is the borderline case in which the outwar
light cone neither expands nor converges. Under reaso
able assumptions, a MTS cannot lie outside a black ho
(see [19]). Consequently, if the world tubeG in Fig. 2 is
outside the black hole, then the ingoing light coneN0 must
extend some finite distance inward fromG before reaching
a MTS (S in Fig. 2). In all known examples of black holes
the singularities are located inside a MTS. Excision of th
interior of the MTS, thus, protects the evolution from en
countering a singularity.

In order to implement this strategy (i) the evolution
module must be equipped with an MTS finder, and (ii) th
singular region inside the MTS must be excised from
the computational grid without influencing the exterio

FIG. 2. The ingoing formulation: The interior ofG is covered
by a sequence ofingoing light cones. The interior ofT is
excised from the evolution.
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evolution. In a characteristic evolution, item (i) is facili-
tated by locating the MTS in a natural way by deformin
an initial guess along the ingoing light rays [5]. Similarly
item (ii) is facilitated because the excision of the interio
of the MTS reduces to a one-dimensional problem wi
respect to a radial grid variable. There is no need for a
further boundary condition on the MTS: By construction
waves emitted from its surface cannot expand into the e
terior region. This theoretical property is built into the
characteristic algorithm.

Details of the calibration of theingoing module, of the
excision of the singularity, and of the boundary condition
are given in [5]. To simulate a nonspinning black hole
data onG was induced from the exterior geometry of a
Schwarzschild spacetime and initial data onN0 consisted
of a Schwarzschild black hole of massM distorted by
a pulse of radiation. The world tubeG was also placed
in motion relative to the static symmetry of the exterio
Schwarzschild spacetime to produce a time depend
location of the black hole in the numerical grid. The
dynamics was monitored by tracking the surface areaA

of the MTS. For a nonspinning black hole in equilibrium
this surface area equals its Schwarzschild valueAS ­
16pM2. Calculation ofA is an especially demanding
test when the world tube is offset from the spherica
symmetry of the Schwarzschild exterior and then place
in a periodic circular orbit. This periodic wobble of the
coordinates leads to a periodic time dependence of bo
the metric and the location of the MTS, even in th
final state of intrinsically static equilibrium. In addition,
grid points are continually excised from (or added to
the evolution as they enter (or leave) the MTS. Th
area of a MTS determines its Hawking mass [20] an
gives a useful measure of the energy inside it. Initially
A , AS due to the energy content of the initial pulse
on N0. The MTS grows as this energy falls into it. Fo
a nonspinning black hole,A ! AS as the MTS settles
into equilibrium, even though the metric and the locatio
of the MTS vary periodically (see Fig. 3).

It is important to establish that the ingoing characteri
tic module hasno long term instabilities,and that it can
handlespinning black holes.We now present two new
tests which demonstrate that it can essentially evolve
generic black hole “forever.”

Since forever cannot be rigorously attained in an
finite simulation, we appeal to a characteristic tim
necessary to obtain accurate waveforms for the inspi
and merger of two black holes. If one of the holes
small then the test particle approximation can be use
Consider a test particle in a quasicircular orbit about
Schwarzschild black hole, where the final stable orb
is at r ­ 6M. From the quadrupole approximation (se
[19]), the radiation rate per orbit isø1022 of the binding
energy, suggesting hundreds of orbits for the transitio
from inspiral to merger. The period measured by a
observer at infinity is12p

p
6 M ø 90M for this orbit

so that the decay time would beø10 000M. For black
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FIG. 3. Surface area vs time for a wobbling hole (wit
rotation frequency 0.1, offset 0.1, and mass 0.5) and an initia
distorted spinning hole (Kerr mass 0.5). The inset shows th
different snapshots of the MTS in the case of the “wobble.”

holes of comparable mass, perturbation theory can
reliably treat the regime intermediate between an orbi
separation of12M and merger. However, as estimated
[21] the decay time for this stage isø1500M and to join
the evolution smoothly to a post-Newtonian orbit at20M
would require an evolution time ofø10 000M.

In our first test, we have successfully evolved an in
tially distorted, moving (but nonspinning) Schwarzschi
black hole for a time of60 000M, clearly as long as
needed for a smooth transition from the post-Newtoni
regime to merger, if this success could be duplicated
the ultimate binary code. The run was terminated b
cause it had achieved a steady state, with no sign of
stability, and could be extended farther. It was carri
out in a wobbling coordinate system (see Fig. 3) whic
induces an “artificial” time dependence. (The wobble
the outer world tubeG in the vicinity of r ­ 7M is the
only time dependence seen at late times in the evolutio
This capability is important, because it may not be po
sible to simulate a binary in coordinates which becom
exactly stationary after the merger and ring-down to fin
equilibrium.

Our second test establishes that the ingoing characte
tic module handlesspinningblack holes. The outer world
tube data is induced from the exterior geometry of a Ke
spacetime with massM and angular momentum paramete
a ­ My5 (spin equal toM2y5). The metric is written in
the Cartesian Kerr-Schild form [22]

ds2 ­ 2dt2 1 dx2 1 dy2 1 dz2 1 2Hkmkndxmdxn,
(1)

wherekm is tangent to an ingoing congruence of twistin
light rays, andH is a potential (which equalsMyr in the
a ­ 0 nonspinning case). The outer world tubeG is lo-
cated atx2 1 y2 1 z2 ­ 49M2. The module requires this
world tube data in Bondi coordinates, which are spheric
coordinates based upon the light cones emanating inw
from G (advanced time coordinates). The transformati
from Cartesian Kerr-Schild coordinates to spherical Bon
3917
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FIG. 4. A matching scheme for two orbiting black holes (in
a corotating frame which eliminates the major source of tim
dependence).

coordinates is carried out numerically in the neighborhoo
of the world tube by an extraction module which forms
part of the Alliance’s Cauchy-characteristic matching pro
cedure [12,23]. The initial data for a Kerr black hole on
the ingoing light coneN0 is complicated to specify ana-
lytically (the geodesic equation leads to elliptic integrals
Instead, we choose initial data which approximates Ke
data but distorts the black hole. The amount of disto
tion can be measured in terms of the initial surface are
(Hawking mass) of the MTS as compared with the Ker
valueAK ­ 8pMsM 1

p
M2 2 a2d. In Fig. 3, we plot

A vs time for both the initially distorted Kerr and wob-
bling Schwarzschild cases. Tests show that at late tim
A converges to the exact (Kerr or Schwarzschild) valu
as the discretization sizeD ! 0.

The Kerr evolution was run for a time of15 000M,
at which the only changes were at machine round of
As apparent from Fig. 3, the final Kerr equilibrium is
effectively reached at20M.

The success of the ingoing characteristic module su
gests a possible strategy for excising the singularities
the binary case (see Fig. 4). Two disjoint characterist
evolutions based upon ingoing light cones are matche
across world tubesG1 and G2 to a Cauchy evolution of
the shaded region between them. The ingoing light con
are each truncated at a MTS surrounding the singularitie
The outer boundaryG of the Cauchy region is matched to
an exterior characteristic evolution based upon outgoin
light cones extending to infinity, where the waveform is
calculated. This global strategy has been successfully im
plemented for spherically symmetric self-gravitating scala
waves evolving in a single-black-hole spacetime [24].

Just as several coordinate patches are necessary
describe a spacetime with nontrivial topology, an effectiv
attack on the binary black hole problem could be t
patch together regions of spacetime handled by differe
algorithms. The Cauchy-characteristic modules are
place and calibrated for accuracy. The Alliance’s Cauch
module [2] has evolved a Schwarzschild black hole fo
a time of 475M. Its performance and stability are now
3918
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being studied in a wide variety of tests. (For Cauch
evolution of a black hole with another 3D code, see [24]
The key missing ingredient is the long term stability o
matching, which is a major current project.
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