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Quantum Statistical Mechanics for Nonextensive Systems:
Prediction for Possible Experimental Tests
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The traditional basis of description of the many-particle systems in terms of the Green functions is
here generalized when the system is nonextensive by incorporating the Tsallis form of the density
matrix, indexed by a nonextensive parametgr, This extension enables us to predict possible
experimental tests for the validity of this framework by expressing some observable quantities in terms
of the ¢ averages. [S0031-9007(98)05936-5]
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Ever since Tsallis [1,2] proposed his maximumen- GO, 18, pn) = ,L<T[\I'(1)\If*(1’)]>q
tropy for examining nonextensive systems by employing ih
g-mean values so as to obtain thermostatistics about a
decade ago, it has spawned a large number of investiga-
tions on a wide variety of topics in this subject. Here we
cite a representative set of such works of current interest
in physics: Lévy superdiffusion [3] and anomalous cor-,here
related diffusion [4], turbulence in two-dimensional pure
electron plasmdqg = 1/2) [5], dynamic linear response P(H,N;q,B,n) =[1 — B(1 — ¢q)

1 PN
= ?TrP(H,N;q,,B,,u)
i

X T[V()wT)], (1)

theory [6], perturbation and variation methods for calcu- ro o fe/(—q) q
lation of thermodynamic quantities [7], thermalization of X (H = pN)] A /(Zq)A ’ (2)
electron-phonon systefg > 1) [8], low-dimensional dis- Z, =Tl - B(1 —q)(H — wi]/ =9,

sipative systemség < 1) [9], and some astrophysical ap- . . .
plications [10]. In this list given here, thg values were Equation (.2). |s_the consequence of the Tsallis en-
tropy maximization stated above. Herg and u

either fitted to experiment or obtained from computer o . .
are the Lagrange multipliers associated with the two

simulation or from theoretical model calculation. The traint dh th anifi -
purpose of this paper is to generalize the thermodynami‘(‘fOnS rainis and have e same signilicance as Inverse
temperature and chemical potential in the usual de-

Green function theory of the quantum statistical mechan-"""+" ) .
ics of many-particle systems [11] when they are nonexten‘f'cr'rf['on' Here 1 rgfers to the space-time of a partlcle
sive in thisg formalism. This generalization then leads 2t (71, 1), and ;I' s the USU?I ,W'Ck tlme-c/)rderlng
us to propose possible experimental tests of nonextensivsé/mEOI/ Tw)wiIn] - YW for t]} =z 1 and
features predicted in such a formalism by calculating mea=¥' (10W(1) for #; <. The creation¥'(;/,') and

surable quantities such as momentum distribution functio@nnihilation¥ (7, 7) operators obey the canonical commu-
for electrons measurable in a positron annihilation andation rules (CCR) at equal timeg¥ (7,1), V(. 1)]s =
x-ray Compton scattering experiments [12], Bose condenf¥ t(r/, 1), W1(7,1)]z =0, and [¥(F,1), ¥I(+'.1)]s =
sation in confined small number of atoms [13], and cross$(7 — r’), where [A,B]z = AB ¥ BA. In the above
sections for scattering by external probes, such as neand in subsequent analysis, the upper sign refers to
trons, photons, etc. [14], in terms of themean values. bosons and the lower to fermions. The definitions for
We adopt the second-quantized particle-creation andther multiparticleg-Green functions follow in the same
annihilation operators in the Heisenberg representation gashion. We may also note that the conventional grand
in Kadanoff and Baym (KB) [11] to describe a many- canonical ensemble results given in KB are obtained
particle system whose Hamiltonian operator As and  when we take the limiy = 1 in these expressions.
whose number operator 6. In this way we describe the ~ There is a useful trick to calculaté, in terms of a
nonextensive systems at arbitrary temperatures, and f@arametric integral over the usual grand canonical par-
boson or fermion systems in equilibrium by maximizing tition function, Z; = Tr exd—B8(H — wN)] which now
the Tsallis entropys, = (1 — Trp9)/(¢ — 1), Trp =1,  depends on the parameter multiplied by a kernel. The
p is the system density matrix, subject to the constraintsirst such proposal by Hilhorst (private communication to
of fixed g-mean valuesfl), = Trlp4, (N), = TrNp9.  Tsallis [15]) was valid forg > 1, which was extended
Thus, we define the one-particdeGreen function, for ¢ <1 by Prato [16]. We employ here a contour
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integral representation from which the above represeng'V(1,1’; 8, u) is the usual grand canonical one-particle
tations as well as others are obtained by suitable defoiGreen function given in KB. Similar expressions hold for
mation of the contour [17]. We express theGreen the multiparticle g-Green functions. Also the dynamic
function in terms of a parametric integral over a dif- linear response function derived in [6] will be reexpressed
ferent form of the kernel multiplied by the usual grandin terms of the parametric integral over the usual time-
canonical Green function which now depends on thigesponse functions [11]. It should be noted that in all
parameter. The general contour integral form is [18]subsequent analysis the choice of the deformations of the
ib'* [o(du/2m)e **(—u)~* = 1/T'(z), where the con- contour in theu integration is such that the resulting
tour C starts from+o on the real axis, encircles the ori- integrals are all convergent and this feature gives us the
gin once counterclockwise and returnstee, and here conditions ory discussed in detail by Lenzi [17].
Rez > 0. Bytakingb =1 — (1 — ¢)8(H — uN) and Following KB, introduce correlation functions
z =1+ 1/(1 — q), we obtain the expression fa,, and G\ (1,1/; 8, u) = (—i/R)(T(1)W¥t(1"), and c¥a,1,
by takingz = 1/(1 — ¢), we obtain the corresponding g ,) — (Fi/R)(WHA)W(1)),. The notation >
expression for thg-Green function, ar(1d) < is intended to exhibit the feature that
_ ) _ _ G991, 18,m) =G> (1,1;8,u) for 1 >1 and
Za(B. 1) [cdqu W2i(=pull = q).p), ©) G9(1,1; B8, p) = G(f)(l,l’;ﬁ,,u) for t; <. Using
(4), we may similarly expresé;(f) and G(<q) in terms of
G115, p) = f du KP () Z1(—Bu(l — q), 1) the corresponding grand canonical correlation functions.
¢ The spectral weight function in frequency space by taking
x GW(1,1;—Bu(l — q).n). (4) the Fourier transform with respect to time differences
A(#1, 71; w) introduced in KB reflects only the properties

KD(u) = —MK(D(M) of the Hamiltonianl. The average occupation number
1 (z)e 1 in the grand canonical ensemble of a mode with energy
_ L ra/a -q) -, 1 (l=g) w, f(w,B) =[exp(B(w — w)) ¥ 1]7!, takes account

= 27(Z,)1 e “(—u) - (3  of the basic permutation symmetry of the system. We
| can thus expres€(>q) andG(<q) in terms of the following:
inGY (71,7 w3 B, p) = fc du KD )1+ flo,=Bull = q), WIAG, 7{; @)Zi(=Bu(l = q),pn),  (6)
inGE (71,7 w3 B p) = = jc du K2 ) f (@, —Bu(l = q), WA, 7; 0)Z1(~Bu(l — @), u), (7)
ifGY (71,7 03 B, ) — G (1, 7 03 B, w)] = [C du KP WA, 73 )Z1(~Bu(l = q), ). 8)

We deduce from (8) an important sum rule

(T do (@), - @)= - . .
lﬁf_ E[Gg (Fi, /w3 B, 1) — GL (7 ws By w)] = 8 — i)y = 87 — FD[1 + (1 — 9)S,],  (9)

where we have made use of the sum rule for the specltral (N(w)), = ivf du K(2>(u)zl(_'3(1 — Qu, )
weight given in KB and expressed), in terms of the ! c 1 e Plraulem) ]
Tsallis entropyS, = [1 — TrP(H,N;q, B, x)1/(q — 1). dPp
This is just an expression of the equal time CCR of the Q)P
particle fields. For a uniform system, we can take Fourier
transforms with respect to, — 7{ in Eq. (7) and express HereV is the volume of thed dimensional space in which

the one-particle momentum distribution functidﬁ(ﬁ»q the particles reside. The chemical potential is determined
in terms of the spectral weight function of theparticle by the expression for thg-mean value of the total number

A(p; w). (11)

system, operator¥,
N “ dw (W) “ dow d®p
_ o quk® f do _q:i] @) f do
W, = = [ auk@ [ 52 == kP [ 52 [ Sk
A(p;w)Zi(=B(1 — qu, u) Zi(=B( — Qu,u) .
X e BU—qulo—u) T 1 . (10) X e-BU—quo—w T | A(p; w). (12)

Similarly the one-particle frequency distribution function So far we have discussed the one-particle properties.
(N(w))q is given by We now turn our attention to rewriting the dynamic
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response and the scattering cross section inytf@mal- 1.0x10*
ism in terms of the integrals over the usual ones as was ‘
done above. We now relate the scattering function de- Ik
fined, for example, in Lovesey [14] in theformalism as \
SO (w, B) = [*..(dt/2m)e (A (0)AW)), where is ‘ T M=
the operator which affects the change in the states of the ~ 8%1%° ] v <My =100
system in a scattering process. Here the supers@r)pt '
denotes canonical ensemble instead of the grand canoni {
cal ensemble used earlier. This is equivalent formally to _ ‘\
setting u = 0 in the earlier development. Then, using A, 6.0x10° '
our transformation, we express this scattering function ing '
terms of the usua} = 1 scattering function

$OEwip) = [ akPwzi(-pull = )

<N(kp)>,/ <

x SO, 0:—Bu(l — q)).  (13) 400" \
From the Ref. [6], by takingd = AT, we have that the |
imaginary part of they susceptibility,/\/g);\(lz, w; B), can ] \\
be expressed in terms of tlge= 1 scattering function k

@ @ 20x10° 1 )
mxiltoo:8) = 7 | dukS @21 (~putt = q)
X (1 _ e*ﬁu(l*q)w) T N
X SD(k, w;—Bu(l — q)). (14) 00 . .
. : , : . :
We have thus expressed thescattering function as well 00 05 1.0 15 20
as the imaginary part of the associatedusceptibility in q

terms of the parametric integrals over a kernel multiplied W), ) .

by the usual scattering function which now depends orf G- 1-  Plot ofigg5 as a function ofg for (N); = 50 and

this parameter as displayed above. We will now discusd00. Note that the value gt= 1 is unity.

three suggestions for possible experimental investigation i

of the validity of the ¢ framework for nonextensive ber.of atoms of the order of 100 to_l?O confined toa}gmgll

systems based on the results obtained here. region of space by magnetlc trap_p_lng. We here revisit this
(A) Electron system-—The momentum distribution for problem by caICL_JIatl.ng the transition tgmperature and the

electrons is given by Eq. (10) with the lower sign. ThisMomentum distribution near the transition temperature to

function is directly observable in positron annihilation S€€ if one could discern the dependence. For this pur-

experiments [12]. We use free electron spectral weighP©oS€; We use Eg. (12) with the upper sign, pertinent to

function, A(p; w) = 278(w — p2/2m), in this calcula- bosons.ﬁ We also take fre§2part|cle spet_:tral weight func-

tion for simplicity of presentation. Details of the actual ion, A(p; @) = 2m8(w — p=/2m), and find forq less

calculation will be given elsewhere. We first observethan 1. (@32 g

that the zero temperature result for tgemean value (V)q (ﬁ) I'(=y)

of the total number has the same form as for the usually ) 1 — g)u/2ar3e 4 L

g =1 case. Thus(N(k,)), = V3 [ [ %2 (R(k)),. WhAr ( A PTG fq)) 3

From this, we have obtained the usual Fermi sphere re- w11+ (N1 4(5/2) (Te

sult for ¢ < 1, so that in terms of the Fermi sphere ra- (1 =)0 ¢3/2) \ !

dius ¢ = 1, the positron annihilation is found to be of 1y 1 1=y

the same form but with g-dependent correction. For % F(ﬁ +2) _ F(ﬁ (15)

small (N), as for the small systergs )rznegltioned above, F(% +2) qF(f:—Z N %) .

we find (N(k.)), < (ki — k)[1 + 52 (W) In . ) e

Fig. 1 we gisplaqy a plot of the dependence of the ratio (JI? F({? 2 we display a plot of(N)¢/(N)1 versus

(N (k.)), /(N (k.)); for two representative values ¢f),  Tc /Tc " for two representative values o), for g =

to represent the expected change in the number distrd.4 and 0.8. Curilef [19] calculatear(q)/Tc(l) for g = 1

c

bution that may be found in either positron annihilationand found it increasing foiV), /(') equal to unity; from
or x-ray Compton scattering experiment [12] for smallour Fig. 2, we see a similar increasing trend as we go from
systems withV); = 50 and 100. g = 0.4 t0 0.8 as(N); goes from 75 to 150.

(B) Boson system-The recent work on Bose conden- (C) Scattering experiments-The fabrication of
sation of atoms [13] involves condensation of a small numguasiperiodic superlattices was successfully realized as
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