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Vortex Formation in Dilute Inhomogeneous Bose-Einstein Condensates
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We solve the time-dependent Gross-Pitaevskii in 2D to simulate the flow of an object throug
dilute Bose-Einstein condensate trapped in a harmonic well. We demonstrate vortex formation
study the process in terms of the accumulation of phase slip and the evolution of the fluid velo
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PACS numbers: 03.75.Fi, 67.40.Vs
e-
n-
he
en-
re
de-

or

d

re-

-

m

.

cle

s-
e
-

al
d,

f
17],
1.
The origin of drag in quantum liquids is central to the
understanding of superfluidity [1]. For a weakly interact
ing fluid, Bogoliubov showed that macroscopic occupa
tion of the ground state leads to a linear dispersion cur
and, hence, superfluidity for motion slower than a crit
cal velocity. However, for liquid helium, the transition to
normal flow is observed at a much lower velocity than ca
be explained by the dispersion curve. This led Feynma
[2] to suggest that the onset of dissipation may arise d
to vortex shedding, but experimental verification of thi
idea has been impeded by the two-fluid nature of liqu
helium, which complicates quantitative comparison wit
theory.

The recent experimental discovery of Bose condensati
in dilute alkali vapors [3–5] presents a near-perfect syste
for the study of quantum fluids: The condensates are
most pure and sufficiently dilute so that the interactions ca
be accurately parametrized in terms of a scattering leng
As a result, a relatively simple nonlinear Schrödinge
equation (NLSE), known as the Gross-Pitaevskii equatio
[6], gives a precise description of condensate dynamic
Experiments have confirmed that the NLSE is remarkab
accurate in the limit of low temperature [7–9].

Recent experiments have also demonstrated that far-
resonant laser light may be used to split [10], excite [11
trap [12], shape and pierce [13] dilute alkali vapor conden
sates. The question arises whether such light forces m
be used to study the phenomenon of vortex formation, a
thereby shed some light on the issue of superfluidity.
this paper, we simulate the motion of an “object” throug
a dilute atomic condensate. The object corresponds to
potential barrier produced by a far-off resonant blue
detuned laser beam. The laser beam is focused at the c
ter of the trap producing a toroidal condensate in 3D [13
A quasi-2D configuration could be realized with the lase
propagating along the minor axis of an oblate spheroid co
densate. We solve the time-dependent NLSE in 2D a
show that vortices are produced when the object is tran
lated faster than a critical speed. For homogeneous flu
flow past an impenetrable cylindrical obstacle, it has bee
shown that the critical velocity is proportional to the spee
of sound [14,15]. However, for the inhomogeneous con
densate and penetrable object treated here, the situatio
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considerably more complex because both the critical v
locity and the sound speed are functions of position. Co
sequently, the conditions for vortex creation depend on t
shape of the condensate and the form of the object pot
tial. For example, even for low object speeds, vortices a
created towards the edge of the condensate due to the
crease in the speed of sound.

The 2D NLSE in thexy plane may be written as

i≠tc ­ s2=2 1 V 1 Cjcj2dc . (1)

We use scaled harmonic oscillator units (h.o.u.), i.e., f
a symmetric harmonic trap with angular frequencyv

and particles of massm, the units of length, time, and
energy aresh̄y2mvd1y2, v21, andh̄v, respectively. The
nonlinear coefficientC ­ 8pNa, whereN is the number
of atoms per unit length along thez axis anda is the s-
wave scattering length. The potential term,

V ­
1
4 sx2 1 y2d 1 a expf2bx2 2 bs y 2 ytd2g ,

describes a symmetric harmonic trap with a light-induce
“Gaussian” potential barrier, moving with velocityy. We
have considered a variety of obstacle parameters but p
sent detailed results forC ­ 500, a ­ 30, and b ­ 3.
We first calculate the wave function with a stationary ob
ject centered ats0, 0d and then, att ­ 0, begin to propagate
the solution for a moving object. The eigenvalue proble
c ­ fsx, yde2imt (wherem is the chemical potential and
y ­ 0) is easily solved using finite difference methods
With a ­ 0, we find m ­ 9.003. The depletion of den-
sity in the trap center due to the presence of the obsta
(a ­ 30, b ­ 3, y ­ 0) raises the chemical potential to
m ­ 9.208.

A change in the object potential creates a local di
turbance which propagates through the fluid. The tim
evolution ofc was determined by the split-operator tech
nique [16]. Instantaneous turn off of the object potenti
excites sound waves [11], which propagate with spee
c ­

p
2Cjcj2 (,4.3 at the peak density). Translation o

the object displaces the condensate center of mass [
and leads to vortex-pair creation as illustrated in Fig.
The object and vortex pair are centered ats0.0, 6.0d and
s62.0, 3.5d, respectively.
© 1998 The American Physical Society 3903
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FIG. 1. Contour plot of the condensate densityjcsx, y, 3.0dj2

for y ­ 2.0. There are 25 contours, equally spaced betwe
0.0 and 0.0182. The object and vortex pair are centered
s0.0, 6.0d ands62.0, 3.5d, respectively.

Figure 2 shows cuts through the object and vortex pair
t ­ 3.0. The half-width of the vortex core is comparable
to the healing lengthl , C21y4. We have simulated the
free expansion of the condensate and observe that
vortices also expand, permitting experimental detectio
using optical imaging.

One can gain insight into the process of vortex formatio
by studying the evolution of the fluid velocity and the

FIG. 2. Plot of the condensate density fory ­ 2.0 passing
through the vortex pairjcsx, 3.5, 3.0dj2 (bold curve) and the
object jcsx, 6.0, 3.0dj2.
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FIG. 3. Plot showing the fluid velocity,ys, in the vicinity of
the object, fort ­ 3.0 and y ­ 2.0. ys in h.o.u. is given by
the arrow lengthy40.

phase of the wave function. Figure 3 shows a quive
plot of the fluid velocity,ys ­ scp===c 2 c===cpdyijcj2,
in the vicinity of the object, fort ­ 3.0 andy ­ 2.0 (as in
Figs. 1 and 2). One sees that vortices are formed in pa
with opposing vorticity, and that the circulating velocity
is inversely proportional to distance from the vortex line
as expected. Two pairs are discernible in Fig. 3: one
y ­ 3.5, which corresponds to the density zeros in Fig. 2
and a second aty ­ 5.9 (not visible in Fig. 2, because
it has yet to separate from the object). The second p
appears due to the rapid accumulation of phase slip at
edge of the condensate, as discussed below.

FIG. 4. Time evolution of the maximum phase slip,DSmax,
for y ­ 1.3 (top), y ­ 2.0 (middle), andy ­ 3.0 (bottom).
For y ­ 2.0 we show an additional curve forC ­ 200
(dotted), illustrating that vortices are produced faster when th
speed of sound is slower.
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FIG. 5. Plot showing the velocity field in the vicinity of the
object for y ­ 2.0, at times spanning the instant of vortex
formation: For t ­ 1.0 (top), the on-axis flow is backwards
as the fluid attempts to fill the void left by the departing objec
At t ­ 1.1 (middle), the fluid begins to skirt around the objec
and fill the hole with a forward flow. The wave-function node
(separated by less than one grid point at this stage) are pu
apart due to the gradient in the object potential. Byt ­ 1.2
(bottom), their separation is comparable to the healing leng
and the pattern of vortex flow is beginning to emerge.ys in
h.o.u. is given by the arrow lengthy10.

By calculating the wave-function phase,Ssx, y, td, one
may verify that the phase changes by2p on circulation of
the vortex line [1]. In addition, the evolution of the phas
illustrates the time scale for vortex formation. Att ­ 0.0,
the phase is uniform. Subsequently, the motion induce
dephasing or “phase slip” centered on the object. T
phase slip between two neighboring points along t
y axis is defined asDSs y, td ; arghcs0, y 1 Dy, tdj 2

arghcs0, y, tdj, with 2p , arghzj # p . The maximum
phase slip,DSmax, occurs at ay coordinate close to the
center of the object. Figure 4 shows a plot ofDSmax for
different object speeds.

For y ­ 2.0 and 3.0, the phase slip accumulates grad
ally, reaching a value ofp, and then changing sign. The
sign change coincides with a reversal of the flow, and m
be taken to define the moment of vortex creation. The ra
of change of the phase slip is related to the speed of sou
which determines the time scale over which the conde
sate can respond to an external perturbation. For a sma
nonlinear coefficient, i.e., lower sound velocity, the pha
slip accumulates more rapidly and the vortex pair is cr
ated earlier (compare curves forC ­ 200 and C ­ 500
in Fig. 4). After the vortices are created, the phase s
builds again until a second pair forms, and so on. For lo
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object speed (e.g.,y ­ 1.3, upper plot in Fig. 4) the phase
slip initially saturates and then increases towards the e
of the condensate, where the density and hence the lo
speed of sound are lower. This explains the sudden f
mation of a vortex pair as the object leaves the condens
(e.g., the second pair fory ­ 2.0 appearing in Figs. 3 and
4). Fory ­ 3.0, a third pair is created att ­ 2.5: The ob-
ject is still surrounded by condensate at this time beca
of a motion-induced “stretching.”

The evolution of the velocity field while the vortex is
forming is shown in Fig. 5. One sees that the vortic
emerge from a point and then separate. For longer tim
they drift towards the edge of the condensate.

In summary, we have solved the time-dependent NLS
in 2D to simulate the flow of an object through a dilut
Bose-Einstein condensate trapped in a harmonic well. W
find that the vortices emerge from a point close to t
center of the object, and that the vortex shedding frequen
is higher when the speed of sound is lower. We expe
that our 2D simulations should correspond to the 3D ca
where an oblate spheroid condensate is pierced by a tig
focused laser beam.

A complete description of dilute atomic vapors shou
also include the effects of the noncondensate dens
finite temperature, and dissipation. To what extent t
NLSE provides an accurate description of vortex formati
requires quantitative comparison between simulation a
experiment. Such a comparison will provide the focus f
future work.
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