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First and Second Sound Modes of a Bose-Einstein Condensate
in a Harmonic Trap
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We have calculated the first and second sound modes of a dilute interacting Bose gas in a spherical
trap for temperature®.6 < T/T. < 1.2) and for systems with0* to 10® particles. The second sound
modes (which exist only beloW.) generally have a stronger temperature dependence than the first
sound modes. The puzzling temperature variations of the sound mode& nesrently observed at
JILA in systems with10® particles match surprisingly well with those of the first and second sound
modes of much larger systems. [S0031-9007(98)05981-X]

PACS numbers: 03.75.Fi, 05.30.Jp

Since the discovery of Bose-Einstein condensation irthe temperature variations of the observed sound modes
atomic gases of alkali atoms [1], there has been greahow up in the analogous modes of the larger systems in
interest in the broken gauge symmetry (i.e., the “phase”a spherical trap. In particular, the “mysterious” behaviors
of the condensate. In the case Ofle, its “phase” of the JILA (m = 0) and(m = 2) modes [2] in the range
dynamics leads to the existence of second sound, which5 < T/T., < 0.8 match closely with the behaviors of
is essentially the out of phase pressure and temperatutiee second sound modes of the larger systems in the same
oscillations. In a series of sound experiments,elial. at  temperature range, while the frequency and temperature
JILA [2] have observed a number of “puzzling” behaviors dependence of the observéd = 0) mode abovel. are
in the temperature dependence and the dissipation of thdentical to those of the first sound mode in the same
sound modes abov@.5T.. There are no explanations temperature range. (The temperatufgsandT,. are the
for these behaviors so far. Jigt al. have speculated transition temperature for the ideal Bose and the dilute
that the observedsri = 0” mode could be the “second interacting Bose gas, respectively [4]).
sound.” If this were true, it would be consistent with  Our choice of spherical symmetry is to keep the cal-
(though not a proof of) the broken gauge symmetryculations manageable. Moreover, as a first step, we
of the system. However, in the absence of a detailedhall ignore dissipation. While it is entirely feasible
calculation consistent with experiments, the identificatiorwithin our scheme to include dissipative effect, we feel
of the second sound mode would be difficult. that it is important (as in bulk*He) to first under-

To help identify the nature of the sound modes, we haveatand dissipationless hydrodynamics, so that one can
solved the linearized two-fluid hydrodynamic equationsclearly identify the dissipative effects later in a complete
of an interacting dilute Bose gas in a spherical harmonigolution.
trap. We have in mind systems that are sufficiently Linearized hydrodynamics-We begin with the
large so that the hydrodynamic approach is accuratevo-fluid hydrodynamic equations of Bosons with mass
[3]. It should be noticed that the recent experiments al in an external potentiakp(r) [5], Mn = =V - g,
JILA [2] were performed on small systems with a few g; = —nV;¢ — V;[[;;, §= -V - (sv,), and v, =
thousand atoms. While the hydrodynamic modes of a—%V(,u + ¢ + Mv, - vy), where n, g, [l;, s, u
large system may be different from the sound modesre the number density, the momentum density, the
of a small one, the study of the former is important instress tensor, the entropy density, and the chemical
its own right. After all, the number of atoms in the potential, respectively. Hers, andv, = (7/M)V0 are
Bose condensate has increased frodd to 10° within  the normal fluid and superfluid velocities, respectively,
six months after the initial discovery [1]. It would not where@d is the phase of condensate. For a spherical har-
be surprising if Bose condensates with’ atoms were monic trap with frequency wy, é(r) = %Mw%rz-
produced in the near future. On the other hand, then the presence of a condensate, g, and [];
hydrodynamic modes of large systeraee relevant for are of the form n =ng + n,, g= M(n,v, and
the sound modes of small ones, as the former mudf];; = P5;; + M(n,vuva; + nsvgvy;), Where ng and
evolve smoothly into the latter as the number of atoms is;, are the superfluid and normal fluid number densi-
decreased continuously. This suggests the possibility afes, andP is the pressure. Denoting the equilibrium
identifying the nature of sound modes of a small systenguantities by the subscripb”, we havev,, = v,, = 0,
by studying their hydrodynamic counterparts in a largevp, + n,V¢ = 0, and V(u, + ¢) = 0. Using the
one. Indeed, comparing our results (for systems with  Gibbs-Duhem relationdu = —odT + dP/n, where
to 10® atoms) with the JILA observations [2], we find that & = s/n is the entropy per particle, these equilibrium
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conditions implyVT, = 0, and hence perature rangeaA’n, < 1, whereA = 27 h%/MkpT is
an an the thermal wavelength. As shown by Lee and Yang [7],
Vn, = <§> vp, = —no<§> Vo, all thermodynamic quantities within this range can be cal-
fo fo culated analytically. With the coefficients of Egs. (2) and
_ (90, _ 1 fon (3) calculated in this manner, we then solve these equa-
Vo, = VP, = ——| — ¢, (1) . ; . o ) .
oP )T, n, \ 9T /P, tions numerically by discretizing them on a grid which is

where we have made use of the Maxwell relation™made finer as- — r*, wherer* is the interface between
(90 /9P)r = n2(9n/dT)p. the condensate and the normal cloud. Bearing in mind that

Denoting the deviation of any quantityfrom its equi- LDA collapses the interface into a single surface ‘atwe
librium valuex, aséx = x — x,, the hydrodynamic equa- model the interface and the behavior&® andsT as fol-

tions can be linearized about the equilibrium solutionloWs: The interface is modeled by three points- and

and written as 157 = =V - (n,v, + n,w), Il: n,v, + 7 »WhereA is the grid spacing. BotdP andsT as well

oW = —(8nVd + VEP)/M, Ill: v, = 1y ,OT — astheir derivatives are continuous #t, while the values
IZ_P)WN. 6’( _n —¢V - ))/where V_ M (o Usin of P andéT atr* + A andr* — A are determined by
n, 2 Ve OS5 = SoVn), W= Ve 7 Vs 9 their solutions inside and outsidé.

Eq. (1), I'and Il imply that Main results—Because of spherical symmetry,
MSi— ¥ - [noV<6—P> B 5Tn0V0'0:| —4A. (2 9P and3T can be decomposed d8P(r),S7(r)] =
D tnml8Pen(r), 8Te,(r)]Yen(f), where¢ is the angular
momentum and: is the radial quantum number. Each
(€,n) mode is2¢ + 1 fold degenerate. We have per-

o

Again using Eq. (1), Il and lll, we havé = — 322V ST.
By noting thats = o,n + n,0, it is easy to show from

: 2 a ave b
IV that & = —v, - Vo, — 2V - (n,,W), and hence form%d calculations fof’Rb(a = 58.2_ A) for N = 10
° ) to 10° atoms and have found identical general features.
1 o'tso i i i
Mé = — (Vo, 28T + —V - MolsoTo g op For all cases studiedthe frequencies of all first and
o Mno second sound are above the trap frequenay [3],
SP which is to be expected if the system is viewed as a
+ Vo, - V<n—> = B. (3) mechanical system with internal degrees of freedom in

a spherical harmonic potential. For concreteness, we
Expressing all quantities in terms 6" andsP, Egs. (2)  present the results fav = 10° particles in a trap, with
and (3) form a closed setis); 8P + (57)p8T = A/M,  w; /27 = 200 Hz, over the range.6 < T/T. < 1.2:
(‘;—;)TSP + (‘;—‘;),JST = B/M. To solve them, we have  A. First sound—These modes exist both above and
calculated the thermodynamic quantities in these equatioriselow 7.. They arein phasepressure and temperature

using local density approximation (LDA) [6] for the tem- oscillations that extend over the entire cloud, &1l has

/o _ /o, _ W/®, -
42 - LA 42 LS , 42 —
: =4 aoa 2t " on=
L ) i L ab A A A L ¢ i
3.9 : n,=4 39 , abba : 3.9 . nz_TZ n=
Aabl 8 A A ’: 2% 50 oo: o
86 o 4T 1868F B~ " n=3{36f i 1
! 3 o © 8300: e . ;
1 n.= 1 1
3.3 i ooo: o g 3] 3.3 . _ ; ] 33 | : n,=
o © %Y n=2 | s oogoo o o0
. I n,=2 l
30 r .‘n2=: 1 30 o oages o L7 g 30} 5
o | n1:2 ] . | n=1 '.4
27+ % fogad 0 8 o 27F A 1271 T et n=1
: | T II
L e ' J L | n=1 | | & o° 1 4
24 : 24 I o 2.4 [
1 | 1
L | n=1 1 | . _ I i L 1
21 o o 0009: o M= 21 . n=1 ! 2.1 !
1 | |
-3 A {18} l {118f 1 1
! | |
. n=1 ! ! !
15 - ! 4 15 ! 1 15 < < qqqﬁ; B "<v1=0
| < | 4 <®
| PRy =0 n=0
1.2 ! 112} - ! n,=0 1 12r¢ a
| 4 993 4 a4 A ]
0.9 1 1 1 L 0.9 L Il ] L 0.9 1 L L L
0.6 0.8 1.0 12 06 0.8 1.0 12 086 0.8 1.0 1.2
T, T, T,

FIG. 1. The frequenciesxi] and wf,lz are represented as open and filled symbols, respectivélyis the transition temperature
of the ideal Bose gas in the trap. The dotted lin®,&177,, indicates the critical temperatuf@ of the interacting model. For
the ¢ # 0 modes,r = 0 is not counted as a node. As far as we can tflo,,,—o = O .
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, but can also be obtained analytically from Egs. (2) and
(a) 1 (3). With 6T = 0, using the equilibrium relations given
by Egs. (1)—(3) can be shown to yieW(6P/n,) = 0,
and 9?(8P/n,) = —V¢ - V(8P /n,), which has the so-
1 lution given above. From the hydrodynamic equations |
to IV, it is also straightforward to show that for these
isothermal modesy, = v, below T,, and V - v, =0
both above and beloW..

The (¢ = 0,n; = 1) mode is also special. AboVE.,
00 100 200 300 400 it is a uniform temperature oscillatiorV87 = 0, but
with 6T # 0. This mode is “nonuniversal” because it
depends on interaction. The interaction effect, however,

®) is sufficiently weak so thatu(()g is very close to2wr
aboveT,.. Itis also straightforward to show that - v,
is constant but nonzero for this node. These results can
be established analytically using LDA and also emerge
as part of our numerical solutions. Beldi, 6T is no
longer uniform, andv - v, is not a constant [8]. All the
other sound mode, n; # 0) are nonisothermal.
B. Second sound-These modes exist only belof.
200 r/a; The frequencies of these modes faf = 0,1,2) and
(np = 0,1,2) are shown in Fig. 1t should be stressed
0.5 ' © that the second sound frequencies do not merge into the
first sounds frequencies a6 — T.. To illustrate this

0.2 becooocos clearly, we plotwff,izzl near7, (for € =0 to 2) as a

function of particle numbeN in Fig. 3. While wf,izzl

changes withV, the first sound frequencies (not shown
MMJI in Fig. 3) typically vary by about 2% o7 in the same
range of N. The eigenfunctions of théf = 1,n, = 2)
mode are shown in Fig. 2(b). An enlarged structure of
the interface of this mode at* is shown in Fig. 2(c).
The second sound modes have the following common

. . (1) . . .
FIG. 2. (a) The eigenfunctions @b, —, (marked asA in  features: (1)5P and 6T are “out of phase” inside the

Fig. 1): To magnify the features of the first sound, we have "
multiplied P and 8T by r? in (a). (b) The eigenfunctions condensate and become ‘in phase” as they leak out

of wéz:)lm:2 (marked asB in Fig. 1): These functions are into the normal region. The leakage reduces to zero as

not multiplied by r? as those in (a) because their features areT — T.. The q“a”t“"? n_umbenz counts the number
sufficiently clear. (c) The detailed structure in (b) near The ~ Of nodes ofsP or 87 inside the condensate. (2) The

filled point indicates the location of, andA is 0.005a;. The  wavelengths of the oscillations shrink as— r*. This
sharp change of slope at = A is expected as out boundary can be understood simply from LDA by recalling that
condition is meant to simulate the collapsing process of LDAthe second sound velocity, of a homogenous dilute
atr-. Bose gas is proportional tgn,,. The wavelengtR k!

is then2mwcy/w « Jn,,. Sincew ~ wr in our case,
one more node tha8T. The frequencies of these modes
(denoted asugz)l) are shown in Fig. 1 fof = 0, 1,2 and 35 ‘ ‘ .
n; = 0 to 4 wheren; counts the number of nodes of Second Sound n,=1

arbitrary units

arbitrary units

arbitrary units

5 1 ]
4.90 4.95 5.00 505 v/a;

/4

8P in the radial direction. While{wéﬁ} change with 3.0
temperature, their variations are small comparedv{o /o, 1
The eigenfunctions of th& = 1,n; = 2) mode atT = 25
0.84T., are shown in Fig. 2(a). They extend over the
entire cloud—a feature common to all first sound modes 20
above and belowW..
The n; = 0 modes are special. They are isothermal 15 : J N
modes of the formsP(r,t) = n,(r)riYe,(£), 6T = 0, 4.0 5.0 6.0 7.0 8.0

with wyy = wrv/E. They are also “universal” in the log;oN

sense that they aredependent of interaction_and stati_s- FIG. 3. TheN dependence o,f)éi)’::l modes(¢, n, = 1) near
tics. These results emerge from our humerical solutiong’.. The temperature is chosen so that= ay.
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and n,,(r) vanishes asr — r*, the local wavelength While we do not expect perfect agreement of our results
shrinks asr — r*. (3) Then, = 0 modes are different with the JILA observations [2] because of the difference
from all othern, # 0 modes. First, except very close in trap symmetry and particle numbers, the qualitative
to T., all wfr)’z .o increase ag’ decreases, whereas all and quantitative consistency over the temperature and
’ angular momentum range mentioned above are striking.

@ . . _
w; ,,+0 have opposite behavior (see Fig. 1). Second . . -
while §T and 6 P are out of phase for all second sound The above discussions suggest that the=0) and
(m = 2) modes observed below. [2] are the analogs

modes (i.e.n, = 0 andn, # 0), the sign ofv, - v, for ;
a particular mode depends on position. In particuIargreg]reatsefgggnfevuhndtr?golfijres‘:' ;)c:ulr?ger:qc?é/:;e(rjn:nolttalls netgr
v, - v, of the n, = 0 modes is actually positive (i.e., in P y PP

&th great prominence below.. Whether it is due to

phase) almost everywhere inside the condensate insteﬁ!I :
of negative [3], whereas it can be positive or negative fo € way t_hat th(_e mOdeS are eXC'.ted or dug to the fact
that density oscillations below,. might contain a large

then, # 0 modes. (The radial components afandy, second sound component because of the large temperature

for the n, # 0 modes are out of phase in most regions luctuations in the second sound modes [as mentioned in
in the condensate; so are their tangential component%

However, the in-phase and out-of-phase regions of thes iscussion (5) above] will be studied later. To clearly

two components do not coincide.) This shows that unlike entify the nature of the sound modes, it is necessary 1o

e second sound modes in homagerous sysems, niiEereraly vestate & frger pumber ofmoces o s
are characterized by either out of phdée, 5T), or out y y y

of phase(v,, v,) oscillations,the correct characterization predictions. We hope that this work will stimulate and

of the second sound modes in the trap is the out Oprowde guidance _fo_r future experiments. . .
phase 5P and 8T oscillations, not the out of phase We thank A. Griffin and E. Zaremba for discussions on

vy and v, oscillations[3]. (4) Near the center of the the dipolar second sound"[3], Allan McLeod fqr p_roviding
cloud, the raio¢ = ln,u, /n.v.| is about 02 to 03 (o® GITTIE T =L I AN T ST BB
for the mode studied. This is very different frofitle, .

where the normal current is essentially canceled by théupported by NSF Grant No. DMR-9705295 and a NASA
supercurrent, i.e.{ = |n,v,/nsvg| ~ 1 [3]. That € is grant awarded to T. L. H.

between 0.2 and 0.3 can be understood in terms of

LDA. From the work of Lee and Yang [9], one finds

12 2
that & = 5 (a/M)[g3/,(1)/gs/2(1)] for the homogeneous 1] m.H. Andersonet al., Science269, 198 (1995); C.C.
dilute Bose gas, which is around 0.3 for the temperature” ~ gradiey et al., Phys. Rev. Lett75 1687 (1995); K.B.

range §tudied [3]. (5) Interms of dimensionless quantities  paviset al., Phys. Rev. Lett75 3969 (1995).

[6P,8T] = (6P/[n,(r)kpT,],8T/T,), we find that near  [2] D.S. Jinet al., Phys. Rev. Lett78, 764 (1997).

T., 8T/8P > 1 for all second sound modes, whereas [3] G. M. Kavoulakis, C.J. Pethick, and H. Smith (cond-mat/

SP ~ 8T for the first sound modes. 9710130) have shown thae’ atoms are needed to reach
Comparison with the JILA data-Examining the JILA the hydrodynamic limit neaf’. for the Colorado trap.

data [2] on the sound modes 8fRb with ~2 x 103 [4] Recently, E. Zaremba, A. Griffin, and T. Nikuni (cond-

atoms, we find surprising consistency with the behaviors ~ Mat9705134) have derived the hydrodynamic equations

of the larger systems that we studied: (a)(A = 0) microscopically in the Popov approximation and have

de with f ) b df I ab found separate conservation of superfluid and normal
mode with Trequency=2wy was observed for all above densities. They have used a variational method to obtain

T. [2]. The analog of this mode in a spherical trap the (¢ = 1,7, = 0) second sound for the first time.

is the (¢ = 0,n; = 1) first sound mode, which also has They find that they normal and supercurrents oscillations
frequency=2wr for all T aboveT,.. (b) BelowT,, the cancel each other with frequencies falling below the trap
frequency of thelm = 0) mode falls from abouwr to frequency a§’ — T.. The characters of the second sound
1.85wr asT decreases fromd.9T,, to 0.5T., [2]. The we have found are very different. [See main results
first and second sound analogs of this mode befow section and discussion (3) and (4).]

are the({ = 0,n; = 1) and the(¢ = 0,7, = 1) modes, [5] S.J. Putterman, Superfluid Hydrodynamics (North-

respectively. The observed behavior matches well with _ Holland, Amsterdam, 1974), Chap. |, Sec. 4.

the (¢ = 0,n, = 1) second sound mode, which drops (8] ZZE?C(:{]SSB)CN Yang, and L.H. Yu, Phys. Rev. 38

from aboutl.9wr to 1.5w7 asT decreases from.8T, )

00,67 as Se‘;’a from Ié‘l’é L (C) At — 2) mode wes 171 T.D. Lee and C.N. Yang, Phys. Ret12 1419 (1958).
. co . .

(n (1
[8] Both wy.g,,—0 and wep,,—; Modes were also found by
also observed belo@, [2]. Its frequency decreases from A. Griffin, W, Wu, and g Stringari, Phys. Rev. LeT,

1.45wr 10 1.25w7 asT increases _fron(i).Sch to 0.857_’00. 1838 (1997) for thedeal Bose gas abové.. Interaction
The second sound analog of this mode in spherical trap  effects and he behavior of these modes belwwere,
is the (€ =2,np = 0) mOde, which also drOpS from however, not investigated.

aboutl.4wr to aboutl.35w7 asT increases frond.5T,, [9] T.D. Lee and C.N. Yang, Phys. Re§, 1406 (1959). Also
to 0.857,,. see A. Griffin, and E. Zaremba, cond-mat/9707058.
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