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Dynamical Properties of the Pinned Wigner Crystal
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We study various dynamical properties of the weakly pinned Wigner crystal in a high magnetic field.
Using a Gaussian variational method, we can compute the full frequency and field dependence of the
real and imaginary parts of the diagonal and Hall conductivities. The zero temperature Hall resistivity
is independent of frequency and remains unaffected by disorder at its classical value. We show that,
depending on the inherent length scales of the system, the pinning peak and the threshold electric field
exhibit strikingly different magnetic field dependences. [S0031-9007(98)05864-5]

PACS numbers: 73.20.Dx, 73.20.Mf
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It is known that the experimentally elusive Wigne
crystal (WC), predicted to form in low density two-
dimensional electron gases [1], can be induced in dens
systems by subjecting them to strong perpendicul
magnetic fields. The quest for the Wigner crystal i
monolayer [2–5] and bilayer [6] quantum Hall sample
indicated the existence of a quaint insulating state
filling fractions where crystallization was theoretically
expected. Detailed studies [2–7] of the insulating sta
revealed that the diagonal resistivityrxx diverges as
the temperatureT ! 0 and shows activated behavior a
finite T , whereas the Hall resistivityrxy is temperature
independent with a value close to the classical one.

Although transport and linear dc conductivity and th
luminescence spectrum of radiative recombination me
surements [8] were consistent with interpretations in term
of a pinned WC, the finite value forrxy was unexpected.
This prompted other interpretations of the observed ins
lating phase [9,10] and, in particular, the existence of
new phase, the Hall insulator (HI) [10]. The HI is defined
as a phase where limv!0

sxy svd
v2 ­ const, which yields

rxx ! ` and a finiterxy in the limit T ! 0, v ! 0. This
was proved only fornoninteracting electronsin a random
potential (i.e., an Anderson insulator with a magnetic field
and qualitative arguments suggested that it holds for inte
acting systems as well. However, none of these argume
take into account the possible local crystalline order whic
could result in radically different physics as compared t
the disordered electron fluid. Indeed, periodicity plays a
important role in other disordered systems, such as vort
lattices [11].

Direct observation of local crystalline order being dif
ficult, it is thus of prime importance to investigate in de
tail the transport properties of a pinned WC. One of th
few theoretical attempts made to predict these propert
was [12] in the related problem of charge density wave
(CDW) in a magnetic field. The harmonic approximation
used, however, did not allow the extraction of the detaile
frequency dependence of the conductivities. Later stu
ies [13] focused on the sliding state and the effects
free carriers, or on the effect of strong disorder [14]. A
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noteworthy point is that none of these calculations con
sider both a lattice structure and modulation of disorder a
scales smaller than the lattice spacing [11]. This featur
which is absent in CDW turns out to play a crucial role
for the WC.

In this Letter, we compute for the first time the
dynamical conductivities of a weakly pinned WC. We find
that even some of the main features derived in Ref. [12
are incorrect. The results we obtain provide a basis fo
comparison with recent experiments which map out th
low frequency behavior of the conductivity [15,16].

Our starting point is the WC in a magnetic fieldB
with lattice spacinga modeled by an elastic Hamilton-
ian [12]. The electrons at sitei are displaced from their
mean equilibrium positionsRi by usRi , td. We also take
into account the Coulomb repulsion between density fluc
tuations. We use the following decomposition:usqd ­
q̂uLsqd 1 q̂ ^ ẑuT sqd, whereL, T denote the longitudi-
nal and transverse components. The corresponding acti
in the imaginary time formalism is

Sfug ­
Z

q

X
n

fuL
q,vn

srmv2
n 1 cq2 1 dqduL

2q,2vn
g

1 uT
q,vn

srmv2
n 1 cq2duT

2q,2vn

1 rmvcvnfuL
q,vn

uT
2q,2vn

2 uL
2q,2vn

uT
q,vn

g

1
Z

x

Z b h̄

0
dtW sxdrsx, td , (1)

whererm, rc are the mass and charge densities.c andd
are the shear and bulk modulus respectively. For the WC
Coulomb forces give [13,17] a bulk modulusd ­ r2

cye0

much greater than the shear modulusc ­ r2
caye0 (e0 is

the dielectric constant of the substrate).vc ­ rcByrm

is the cyclotron frequency and the Matsubara frequencie
at temperatureT are vn ­ 2pnybh̄, where b ­ 1yT .
Equation (1) shows that Coulomb interactions affect only
the longitudinal modes.B couples the transverse and
longitudinal modes. k l denote averages over quantum
and thermal fluctuations ands d are disorder averages.
For the pure system the quantum fluctuations result i
ku2l , l2

c , where lc ­
p

h̄yeB is the magnetic length.
© 1998 The American Physical Society 3827
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The disorder potentialWsxd is assumed Gaussian, a goo
approximation for weak disorder [18], and of a rang
of correlation rf : W sxdW sx0d ­ Ddrf

sx 2 x0d. Since
the precise microscopic nature of the disorder is ha
to ascertain, we retain bothD and rf as parameters.
Disorder couples to the density of electronsrsx, td ­P

i dsssx 2 Ri 2 usRi , tdddd. Using the decomposition of
the density into lattice harmonics [11] (valid in the
absence of topological defects) and replicas to avera
over disorder, we obtain the effective action (up to term
leaving the conductivity unaltered)

Seff ­
X
a

Hfuag 2
1

2h̄

Z
x

Z Z
dtdt0

3
X

a,b,K
DK coshK ? fuasxtd 2 ubsx, t0dgj , (2)

wherea, b denote the replica indices,K are the reciprocal
lattice vectors, andDK , D exps2K2r2

f d. Note that it
is important to retain all harmonics. Actions similar to
(2) can be used to describe 3D classical problems su
as vortex lattices with correlated disorder [18] and lon
range interactions.
a
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To study this model we use the Gaussian variation
method (GVM). Unlike previously used methods [12
the GVM is self-consistent, has no undetermined a
justable parameters, and also incorporates important ph
ical features of the problem such as the existence of ma
metastable states. It thus allows one to go beyond sim
static arguments. We introduce the variational action [1

S0 ­
1
2

Z
q

X
n

ua
a,q,vn

Gab21
ab sq, vndub

b,2q,2vn
, (3)

where the Green functionsGab
ab are the variational

parameters (a, b ­ L, T and summations over repeate
indices are implicit). They are determined by solvin
the self-consistent saddle point equations obtained
extremizing the variational free energyFvar ­ F0 1

kSeff 2 S0l0. The method extends the one used in [18
and all technical details will be presented in [19]. As i
[18] the solution has a replica symmetry broken structu
necessary to correctly describe the localization. The fin
result [19] is a closed set of equations for the connec
part of the Green functionG21

cab ­
P

b G21
ab,ab which

determines all physical quantities of interest here. The
equations are
G21
cT ­ scq2 1 rmv2

nd 1 F 1
r2

mv2
nv2

c

scq2 1 dq 1 rmv2
n 1 Fd

,

G21
cL ­ scq2 1 dq 1 rmv2

nd 1 F 1
r2

mv2
nv2

c

scq2 1 rmv2
n 1 Fd

, (4)

G21
cLT ­ rmvnvc 1

scq2 1 rmv2
n 1 Fd scq2 1 dq 1 rmv2

n 1 Fd
rmvnvc

,

s,
c-
al
al

ng

nd

n

c-

e-
with F ­ Isvnd 1 Ss1 2 dn,0d. The localized phase is
characterized by a nonzeroS, from which a length scalel
can be defined throughS ­ cl22. Isvnd is defined as

Isvnd ­
2
h̄

Z b

0
dtf1 2 cossvntdg fV 0sssB̃stdddd 2 V 0sBdg ,

where B̃std ­
1
2 ksssus0, td 2 us0, 0dddd2l ­

1
2 fB̃Lstd 1

B̃T stdg the local diagonal correlation and the off-diagon
partB are given by

B̃T ,Lstd ­
2h̄
b

Z
q

X
n

GcT ,Lf1 2 cossvntdg ,

B ­
h̄
b

Z
q

X
nfi0,i­T ,L

Gc,isq, vnd (5)

1
1

cq2 1 dq 1 S
1

1
cq2 1 S

.

Finally the equations close asS is itself determined by

1 ­ 22V 00sBd
Z

q

1
scq2 1 Sd2 1

1
scq2 1 dq 1 Sd2 .

The primes denote derivatives. All information on th
disorder is contained in the auxiliary functionV fBg ­
s4h̄d21

P
K DK exps2K2Bd.
l

e

In this paper, we focus on the transport propertie
but other quantities such as positional correlation fun
tions can also be computed [18,19]. The dynamic
conductivities are given by the standard analytic
continuation sabsvd ­ ir2

c vGabsq ­ 0, v 1 ied.
Rotational invariances, parity and time reversal breaki
by B, imply

sxx ­ syy ­ r2
c

ivf2rmv2 1 S 1 Isvdg
fS 2 rmv2 1 Isvdg2 2 r2

mv2v2
c

,

sxy ­ 2syx ­ r2
c

ivf2irmvvcg
fS1 2 rmv2 1 Isvdg2 2 r2

mv2v2
c

.
(6)

In the absence of disorder, one hasI ­ S ­ 0 in (6).
sxx vanishes in the dc limitv ­ 0 and has ad-function
peak at cyclotron frequencyv ­ vc. On the other hand,
sxysv ­ 0d ­ rcyB, and sxy has a pole atv ­ vc.
In the presence of disorder the crystal is pinned a
conductivities develop a new peak at thepinning frequency
v ­ vp. There is also an upward shift of the cyclotro
resonance peak fromvc by a quantity of ordervp.

To obtain the full frequency dependence of the condu
tivities, one needs to computeIsvd. The full solution can
be found in [19]. Here we treat the experimentally rel
vant limit vc ¿ dyp

rmc. A typical plot of Resxx is
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shown in Fig. 1. SinceIsv ­ 0d ­ 0 by definition in
the pinned crystal, the dc value ofsxx is still zero but
that of sxy is zero in contrast to the pure case where
was finite. The peaks at the new resonance frequenc
have a finite height and width due to disorder-induce
dissipation and are determined byS and Isvnd. Earlier
results [12] can be recovered by settingIsvnd ­ 0 in all
of the equations. However, the presence of theIsvnd
term has many important physical consequences. In
absence ofIsvnd the peaks would bed functions atv0

p and
vc 1 v0

p with v0
p ­ Syvc. In contrast, here the peaks

are centered around a frequencyvp , v0
p and this shift

is given byS. The peaks have a nontrivial structure an
are asymmetric about the resonance frequencies, as ca
inferred from (6) and seen in Fig. 1. This invalidates th
Lorentzian shape which was used to arbitrarily broaden t
d functions in Ref. [12]. The peaks we obtain are muc
narrower than the Lorentzian broadened ones.

For frequenciesv ø vp and vp ø v ø vc, ana-
lytical solutions can be obtained. We find

Isvnd ­

s
2rmS 1

pr2
mv2

cS1y2

2
p

cd2
jvnj, v ø vp ,

Isvnd ­
S

6
ln

r2
mv2

nv2
c

dS3y2 , vp ø v ø vc . (7)

Using (7) in (6), we obtain forv ø vp:
fRe, Imgsxxsvd

­

"
r2

c

s
2rmS 1

pv2
cS1y2

2
p

cd2

µ
v

S

∂2

, r2
c

v

S

#
, (8)

fRe, Imgsxysvd ­

∑
r2

crmvc

µ
v

S

∂2

, r2
cr3y2

m
vcv3

S5y2

∏
.

FIG. 1. Resxxsvd (in units of brmyrc) as a function ofv
(in units ofr3

c yr2
mb), whereb ­ cs2p2d21y6a2Dr22

m seyh̄d3 for
the caserf , lc for different values of the fieldB in units of
r2

c yrmb. The short-dashed line representsB ­ 0.33, the solid
line representsB ­ 0.4, and the long-dashed line represent
B ­ 0.5. The inset is a magnification of the pinning peak.
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In the regionvp ø v ø vc we find, using (7),

Resxxsvd ,
r2

c

r2
m

S

v2
cv

, Resxysvd ,
rc

B
. (9)

Resxx and Resxy are both quadratic inv. Since the
pinned WC has the characteristics proposed for the H
it seems unnecessary to invoke the existence of the HI
a new phase. Equation (8) can be used to calculate
dielectric constantesvd ­ Imsxxsvdyv. Its dc value
is given by e ­ r2

cyS and is also a measure of the
characteristic frequency defined by disorder.

Calculating the resistivitiesrab ­ 2sabyss2
xx 1

s2
xyd, we find that the pinned crystal is indeed insula

ing, i.e., rxxsv ­ 0d ­ `. More importantly, the Hall
resisitivity rxy turns out to be independent ofv and
T and has the same value as that in the pure syst
rxysvd ­ Byrc. A similar result was argued to hold
at T ­ 0 [13]. At T . 0 it would be necessary to go
beyond the GVM approximation to ascertain whetherrxy

still sticks to its classical value. Indeed, the GVM misse
solitonlike excitations, which are known to be importan
for finite T physics [18,20].

It is interesting to calculate the field dependences of t
above quantities which are of direct experimental rel
vance. For reasons of space, we present here the
sults for the pinning peak only. A similar study can b
made for the cyclotron peak [19]. The field dependen
of the pinning peak [whose width is naively ofOsvpd]
is governed byS whose value is in turn dictated by the
relative sizes ofrf and lc. Traditionally, in the con-
text of CDW, S has been related to the Fukuyama-Le
length Ra at which relative displacements are of orde
a, as S , R22

a . However, for the present case, such
connection does not hold, because disorder cana priori
vary at scales much smaller thana, unlike in CDW.
This is similar to the case of vortex systems where pi
ning is controlled by the Larkin lengthRc, defined as the
scale below which the physics of (2) can be describ
perturbatively by a model where uncorrelated Gaussi
random forces of strengthDf ­

P
K K2DK act inde-

pendently on each electron. Within this model,Rc is
given bykfusRcd 2 us0dg2lf ­ maxfr2

f , l2
cg ; j

2
0 . When

Rc ¿ a, the crystal is pinned collectively. In this regime
using the GVM, one findsS ­ cs2p2d21y6R22

a sayj0d6.
Here Ra , rma2y

p
D and j0 ­ maxfrf , lcg. This cor-

responds toS , cR22
c , implying that l , Rc (defined

above). The length scale determining the peak in t
conductivity is thusRc and not Ra. It is important
to distinguish between these two lengths sinceRc can
have an explicit dependence on the magnetic field. T
yields two very different regimes. One isrf , lc, which
gives S ­ bB3 fb ­ cs2p2d21y6a2Dr22

m seyh̄d3g, hence
vpsBd ~ B2, and the pinning peak moves up and broa
ens with increasing field. This is the case illustrated
Fig. 1. The second regime isrf . lc, leading to aS in-
dependent ofB andvpsBd ~ B21. Thus the pinning peak
3829
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TABLE I. Magnetic field dependences of various dynamica
quantities.

Regime
P

vp ET e

rf . lc B0 B21 B0 B0

rf , lc B3 B2 B5y2 B23

Rc , a B3y2 B1y2 B B23y2

moves towards the origin and gets narrower with increa
ing field. For CDW in a magnetic field,rf , a and one
is always in the second regime. In these two regimes t
height of the pinning peakdecreasesasB21 with increas-
ing field. Forrf ø lc, vp does not increase indefinitely
with B, rather there is a crossover to another regime wh
Rc , a, where single particle pinning effects are domi
nant. Here the correspondence betweenRc and l, and
henceS, no longer holds. One then finds thatS ~ B3y2

and vp ~ B1y2 provided lc ¿ rf . In contrast, the peak
at vc 1 vp always moves upwards with increasingB.

Another important measurable quantity is the thresho
electric fieldET , necessary for the crystal to slide. This
again shows the interplay betweenlc and rf . Using
collective pinning arguments [21], one getsET ­ cR22

c j0

whenRc ¿ a. The threshold field has the same regime
as above and the field dependences are shown in Tabl
Note that, forrf . lc, ET is independent of the field (as
for CDW). Since bothET and vp are related toRc, one
hasET ~ vp but with a prefactor depending onj0 and
not on a, as given by previous CDW estimates. Whe
Rc # a, we enter the regime of single particle pinning
UsingS ~ B3y2, the threshold field is nowET ~ Slc ~ B
[22]. Finally, due to the variation ofS with the field,
the dielectric constante exhibits the behaviors shown
in Table I. Therefore, in addition to detailed frequenc
measurements of the conductivity, measurements of theB
dependences ofe could serve as a signature for the WC.

Some of the existing experimental results can be inte
preted within our theory. Contrary to previous estimate
it allows a scenario where the pinning frequencyincreases
with the field, as was seen in recent experiments [16
Using the typical values for GaAs hole samples [16] w
obtain for the experimentally observedvp . 1.1 GHz a
value ofRa , 14a, well in the regime where our theory
of collective pinning applies. A simultaneous increase i
ET vs B is observed which is in qualitative agreemen
with the above predictions. Our theory also predicts th
the Hall resistance takes its classical value, which is o
served experimentally [7]. However, many problems re
main. Experimentally, the peak height inssvd seems to
increase withB which we cannot account for at present
Some experiments [7] seem to report a different behavi
for the conductivity [24]. Finite temperature and stron
disorder effects also need to be understood. Both pro
lems require a careful treatment of the topological defec
and solitons, which is beyond the scope of the prese
study. While a phase transition similar to the one occu
3830
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ring in 3D vortex lattices [11] is unlikely ind ­ 2, one
expects a marked crossover between a weakly pinned W
and a strongly pinned one.

In conclusion, we have developed a comprehensiv
theory for the WC pinned by weak disorder. In addition to
detailed frequency dependences of the real and imagina
parts of the conductivities, we have obtained the magnet
field dependences of various dynamical quantities. W
find that the magnetic field not only confines the electron
but also plays a crucial role in determining the respons
of the system to disorder. This dynamical effect, no
captured by previous static approximations, allows th
possibility of observing novel field dependences.

We thank F. I. B. Williams for enlightening remarks.
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