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The controversial question of whether envelope functions are continuous or discontinuous at an abrupt
heterojunction is addressed by developing a systematic procedure for obtaining interface connection
rules from differential equations. The results show that even though modern envelope-function theories
are smooth and continuous, their associated connection rules are discontinuous, in agreement with
traditional concepts. This resolves the dispute in favobath sides, by showing that the two views
are physically equivalent. [S0031-9007(98)05915-8]

PACS numbers: 73.20.Dx, 63.20.Dj, 68.35.Ja, 73.61.Ey

Over the past two decades, envelope-function model®rmer. The object of this paper is to demonstrate that
have successfully been used to interpret a wide varietthere is, in fact, no physical difference between the two
of experimental data on electrons and phonons in sempoints of view. This is done by developing a systematic
conductor nanostructures [1-4]. However, despite theigeneral procedure for obtaining connection rules from
popularity (or perhaps because of it), these models hawdifferential equations. The results differ sharply from
been the source of much debate in the literature, and evehe usual textbook connection rules [21] for second-
today there remains a fundamental disagreement over tleeder differential equations. In essence, this is because
properties of envelope functions in the immediate vicinityconnection rules refer only to extrapolatealk envelopes,
of an abrupt heterojunction. so they may predict a substantial discontinuity even

The traditional view is that, since bulk effective-massthough the underlying differential equation exhibits none.
theory [5] is not valid for rapidly varying potentials, one  This paper deals exclusively with envelope-function
must take care to avoid using differential equations at thequations; it does not consider the separate issue of
interface itself. The best one can do there is to connect théeriving such equations from microscopic theory (see
bulk envelopes across the interface using connection rulgd7-19,22,23]). The equation of interest is the Sturm-
obtained from microscopic models [6—15]. Such rulesLiouville eigenvalue equation [21]:
indicate that the envelopes are discontinuous in general, d 1 dy
so it seems clear that the use of differential equations is - [— —} + g(x)y(x) = Awx)ylx). (1)
not justified near an abrupt junction (although it may be a dx Lp(x) dx
reasonable approximation in a few special cases). Herey is an envelope function, which may be complex;

The opposite viewpoint has been advocated by thosis an eigenvalue; angl, g,andw are material properties of
who have tried to go beyond bulk effective-mass the-the heterostructure (functions afin general), which must
ory and establish a rigorous set of differential equationde real if (1) is to be Hermitian. Within a limited range of
for abrupt heterostructures. The fundamentals of this apeigenvalues\, this equation can often be used to describe
proach were developed a decade ago for electrons [16the motion of electrons [22] or phonons [19] along the
18], and more recently for phonons [19]. A crucial growth axis of a [100] zinc-blende heterostructure. For
element of such theories is that the envelopes are smoo#iectrons, A is the energy andv = 1; for acoustic or
and continuous functions, even near an abrupt junctiompptical phononsj is the square of the frequency awds
this is what enables them to be described by differentiah mass density, with = 0 for acoustic modes.
equations. Near an interface, the coefficients in these equa- Equation (1) is the most general second-order single-
tions depend on microscopic properties of the interfacecomponent envelope-function equation permitted by the
which cannot be expressed in terms of bulk effective-massymmetry of such systems [24]. As emphasized above,
parameters. When these interfaces properties are includetie values op, g,andw near an interface are not related
the differential equations give excellent agreement with theo their values in the bulk. These functions, along with
underlying microscopic theory [18,19]. the envelopey, are smooth and infinitely differentiable

In spite of this, it is still frequently claimed that [17-19], with a Fourier spectrum confined (either strictly
differential equations cannot rigorously be justified at an[17,18] or in the Gaussian sense [22]) to the first Brillouin
abrupt junction [4,10,11,13-15,20]. The sticking pointzone of the underlying lattice. Equation (1) is accurate
seems to be a conceptual difficulty in reconciling theonly when the Fourier transform of is concentrated
strong emphasis ocontinuityin the latter approach with fairly close to the zone center; otherwise, higher-order
an equally strong emphasis ¢exck of continuity in the differential operators (neglected here) become important.
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This condition is surprisingly easy to satisfy, even for C:;Sz' p(czv;”fi;*"
discontinuous envelopes [23]. T"(xp,x;) = | ongons g | (8)
Before discussing the interface region in detail, it is p2n—1)! @n)!

helpful to establish some general properties of the solu-

tions to (1). A useful technique for such analysis is thewhere a® = p(g — Aw) and d = x; — x; [note that
transfer-matrix method [10,25,26], which is usually pre-73, = 0 since(—1)! = «]. The total transfer matrix is
sented in terms of two exact but unspecified solutionsthus

Here an alternative approach is developed, using a pertur- [ coshad (p/a)sinhad

bative expansion of the integral equations associated with 7'(x/,x;) = (a/p) sinhad coshad } 9)

(1). Upon integrating (1) from; to x; one obtains

f which is identical to the usual textbook result [26].
2(xp) = z(x;) + [x Q(x)y(x)dx, (2) With these preliminaries established, we may now
' investigate what happens at an abrupt heterojunction, as
wherez(x) = p~!(x)dy/dx and Q(x) = g(x) — Aw(x).  depicted in Fig. 1. For an interface nominally.at= 0,
Multiplying (2) by p(x;) and integrating once more yields the interface is assumed to occupy a region of finite width,
|x] < €. Inside this region the material properties are

y(xp) = y(x) + z(x;)g(xs, x;) smooth but arbitrary, while outside it they are constant
X [e.g.,p(x) = p_forx = —eandp(x) = p+ forx = €].
+ f g, x)0(x)y(x) dx, (3) The restriction to finitee is used only to simplify the
x; ' ensuing discussion; it can be discarded if the interface

perturbations are exponentially localized.

There is no difficulty in solving Eqg. (1) numerically
just as it stands, regardless of how complicated the
interface dependence @f g, andw may be. However,
it is seldom possible to find analytical solutions unless
y(xp) = T(xp, xi)y(x;), 4)  one replaces these parameters witktrapolated bulk

functions {p., g., w.} that are piecewise constant (see
f Fig. 1). One can then try to reprodugéx) by imposing

connection rules ony.(x) at x = 0, where y.(x # 0)

satisfies (1) with{p, g, w} — {pe,ge, we}. (This is the
T, %) = [ 1 g(x‘f,xi)} (5) sameas the traditional approach [6-15], except for the

o 0 1 ’ existence of an underlying differential equation.)

Clearly no connection rules fop, can reproducey

exactly. The best one can do is require that) = y(x)

in which g(x,x;) = [}/ p(x)dx. Repeated substitution
of (3) into the integrands of (2) and (3) permits one to
expressy andz atx, in terms of their values at;:

where y(x) = [ y(x) z(x)]T. The transfer matrixT is
written asT = >.._, T", wheren indicates the power o
Q appearing in each term. The= 0 matrix is given by

while the matrices forn > 0 are obtained by iteration:

0 I nel when [x| = € (see Fig. 1), which also impliea, = A.
Tj(xp, xi) = fx,. gt QT (x, xi) dx, This yields the connection rule
Xf
) = [ QT s (6) ¥e(0*) = T (V)ye(07), (10)
1 d
= — T (xr, xi),
p(xy) oxy fj(xrx1)
. . q.
inwhichj = 1 or 2.
From Eg. (1), one can easily verify the current-density q- % /
conservation lawlJ /dx = 0, whereJ = Im(y*z). Since
T is real, this implies that dgt = 1 [6,9,26]. The inverse q ‘5
of the matrixT (xs, x;) is therefore given by N Ye

_ T (X ,xi) —-T (x ,-xi)
ren) = | S50 e o

The result (7) also holds separately for each maliix
but detT = 1 is exact only forT and 7°, not for any

other finite-order approximation {0 [e.g., det7° + T!) 0 X
; 2
differs from 1 by terms of orde@-]. FIG. 1. Schematic illustration of the relation between actual
If p, g,andw are constant between andxy, then the  functions(q, y) and extrapolated functior(g., y.) in the region
integrals (6) are easy to evaluate explicitly: near an interface.
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€

a= Qidx,

—€

b= [ w0 + silesomoda,  (9)

where the interface matrik’(A) is defined by
T' =T0%, e)T(e,—€)T¢(—€,07). (11)

This is obtained simply by matching =y atx = e, €
then propagating andy, within the interface region via ¢ = ] [pi — x*p2Q;i + 2xgi(€5gnx, x)p.Q.]dx .
Tlp,q,wlandT*[p., ge, w.]. €

As an example, consider a square quantum well from ﬁeref(x) — £(x) — f.(x), and no terms beyond the first
perspective in which the entire well is just an “interface” j . jor l(e.g. 02 or p.Qe') v’vere retained. The prefactor
to be replaced by appropriate connection rules. FOEI —p2— llc)—uz irll éq. (15) is the only exception: It

sinlplicityhletp | l’éNith iy gwhen el < eand a5 agded to ensure that satisfies current conservation
q = gowhenlx| > e. In Eq. (11), the matrid“ is given ;o geiri — 1) not just to first order buexactly. For

ithe = (g0 — A)V/2. while Tis gi i ) . ;
by (9) with @ = (g9 1/’2\) . while Tis given by (9) with o2y perturbations this factor differs from 1 only by small
a — ik, wherek = A'/%. The elements of’ are then terms of the second order.

The simplest interface perturbation is a smoothing
of the interface, which is often invoked to explain dis-
+ %(k/a — a/k)sin2ke sinh2ae, crepancies between experimental data and square-well

261 (a2 cosh 2 6ink? : calculations [27]. A smooth variation @f g,andw is, in
(k)" (a”costrae — k”sinh ae) sin2ke fact, aderivedfeature ofab initio envelope-function theo-

— a ' cos2ke sinh2ae, (12) ries, even at microscopically abrupt interfaces [18,22,23].
Ti — k(a2 sinkf ae — k2 cosh ik Interface smoothing is conveniently described by an
2 =k (a”sin a'e cosit ae)sin2ke error-fl£1ctioln profile  Q(x) = 0 + 3 AQerf(x/),

— a cos2ke sinh2ae, whereQ = 5(Q+ + 0-), AQ = Q0+ — Q_, ando is

; ; o the Gaussian half-width of the interface region (which
and T, = Ty;. The bound states of this interface aregnoyld be no less than half a monolayer [18,22]); this
founijwl?); Iettlngye(xL_=hA_,e|_ for x < 0 andy.(x) = gives 0;(x) = —5 AQ sgr(x) erf(|x|/o). If we assume
Are or x > 0, which implies for the moment thap(x) is constant, thea = ¢ = 0, but
T' is not the unit matrix, since

Ti, = cos2ke cosh2ae

i
T12

a(Ti, + Th) + a’Ti, + Ti, = 0. (13)
After some algebra this reduces to b=30%pAQ. (17)
(cotke — k/a) (cotke + a/k) =0, (14) Interface smoothing therefore generates a discontinuity in

the extrapolated envelopg.(x), with y.(0*) > y,(07)
which is the well-known dispersion relation for a squarewhen pAQ > 0. This makes sense physically, since
quantum well of widti2e. for conduction electrons (wherp > 0 and Aw = 0),

Therefore, provided we include enough terms in theA; > 0 means the interface potentig)(x) is repulsive
perturbative expansioff;’ can generate exact eigenvaluesfor x < 0 and attractive fox > 0.
even for strongly confining systems. The same cannot be This type of diagonal interface matrix was proposed
said for the eigenfunctions, however, since for strong conin Ref. [11] as a replacement for the interface-smoothing
finementy, (x) will not resembley(x) even qualitatively. concept used in Ref. [27]. The author of [11] noted that
Connection rules are consequently useful only if the inthe two approaches gave equivalent results, but claimed
terface is aweak perturbationwith at most one bound that interface smoothing is invalid because(eftr) is
interface state. Fortunately this is true for most high-too rapidly varying at the interface to be permitted in an
quality semiconductor heterojunctions [9], where the in-envelope-function calculation. Such claims can no longer
terface width is of the order of a lattice constant, and theye supported in light of modern advances in envelope-
interface fluctuations ab, g,andw are not large [18]. function theory [18,23]. Equation (17) proves that the

Thus, for any case in which connection rules aretwo approaches are indeed equivalent, despite the seeming
physically acceptable, a first-order approximation7to  paradox in which asmootherinterface gives rise to a
should be sufficient to provide an accurate description ogtronger discontinuity iny.(x). (A paradox exists only
the interface behavior. Such an approximation is readilywheny, is mistaken for the true enveloye
calculated from Egs. (6) and (11), with the result Microscopic interface effects may be represented by a
1+ b C series of terms proportional t8,(x) and its derivatives,

4 1— b } (15)  where 6,(x) = (o/7) 'exp(—x?/c?) is a Gaussian

representation of a finite-widtl® function. If we let

in which Qi(x) = Qp(1)8,(x) and again holdo(x) constant, then

T = (1 — b% - ac)_l/z[
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b is not affected, bul"’ acquires new off-diagonal terms: oped here shows that the apparent qualitative discrepancy

i=0 e 1,2 20 (18) between these representations is illusory—their physical
0> 20 P Yo- content is the same.
The elementT’; is normally interpreted as a-function This work was supported by Hong Kong RGC Grant

potential [9,14]; Egs. (16) and (18) confirm this interpre-NO. DAG96/97.SC38.
tation. The interpretation dfj, = c is less clear [9,14],
but Eg. (18) shows that one effect describeddog the
finite width of any real interface.
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