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Connection Rules versus Differential Equations for Envelope Functions
in Abrupt Heterostructures
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The controversial question of whether envelope functions are continuous or discontinuous at an abrupt
heterojunction is addressed by developing a systematic procedure for obtaining interface connection
rules from differential equations. The results show that even though modern envelope-function theories
are smooth and continuous, their associated connection rules are discontinuous, in agreement with
traditional concepts. This resolves the dispute in favor ofboth sides, by showing that the two views
are physically equivalent. [S0031-9007(98)05915-8]

PACS numbers: 73.20.Dx, 63.20.Dj, 68.35.Ja, 73.61.Ey
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Over the past two decades, envelope-function mod
have successfully been used to interpret a wide varie
of experimental data on electrons and phonons in sem
conductor nanostructures [1–4]. However, despite the
popularity (or perhaps because of it), these models ha
been the source of much debate in the literature, and ev
today there remains a fundamental disagreement over
properties of envelope functions in the immediate vicinit
of an abrupt heterojunction.

The traditional view is that, since bulk effective-mas
theory [5] is not valid for rapidly varying potentials, one
must take care to avoid using differential equations at t
interface itself. The best one can do there is to connect
bulk envelopes across the interface using connection ru
obtained from microscopic models [6–15]. Such rule
indicate that the envelopes are discontinuous in gene
so it seems clear that the use of differential equations
not justified near an abrupt junction (although it may be
reasonable approximation in a few special cases).

The opposite viewpoint has been advocated by tho
who have tried to go beyond bulk effective-mass the
ory and establish a rigorous set of differential equation
for abrupt heterostructures. The fundamentals of this a
proach were developed a decade ago for electrons [1
18], and more recently for phonons [19]. A crucia
element of such theories is that the envelopes are smo
and continuous functions, even near an abrupt junctio
this is what enables them to be described by different
equations. Near an interface, the coefficients in these eq
tions depend on microscopic properties of the interfac
which cannot be expressed in terms of bulk effective-ma
parameters. When these interfaces properties are includ
the differential equations give excellent agreement with th
underlying microscopic theory [18,19].

In spite of this, it is still frequently claimed that
differential equations cannot rigorously be justified at a
abrupt junction [4,10,11,13–15,20]. The sticking poin
seems to be a conceptual difficulty in reconciling th
strong emphasis oncontinuity in the latter approach with
an equally strong emphasis onlack of continuity in the
0031-9007y98y80(17)y3823(4)$15.00
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former. The object of this paper is to demonstrate th
there is, in fact, no physical difference between the tw
points of view. This is done by developing a systemat
general procedure for obtaining connection rules fro
differential equations. The results differ sharply from
the usual textbook connection rules [21] for second
order differential equations. In essence, this is becau
connection rules refer only to extrapolatedbulkenvelopes,
so they may predict a substantial discontinuity eve
though the underlying differential equation exhibits none

This paper deals exclusively with envelope-functio
equations; it does not consider the separate issue
deriving such equations from microscopic theory (se
[17–19,22,23]). The equation of interest is the Sturm
Liouville eigenvalue equation [21]:

2
d

dx

∑
1

psxd
dy
dx

∏
1 qsxdysxd ­ lwsxdysxd . (1)

Herey is an envelope function, which may be complex;l

is an eigenvalue; andp, q,andw are material properties of
the heterostructure (functions ofl in general), which must
be real if (1) is to be Hermitian. Within a limited range of
eigenvaluesl, this equation can often be used to describ
the motion of electrons [22] or phonons [19] along th
growth axis of a [100] zinc-blende heterostructure. Fo
electrons,l is the energy andw ­ 1; for acoustic or
optical phonons,l is the square of the frequency andw is
a mass density, withq ­ 0 for acoustic modes.

Equation (1) is the most general second-order singl
component envelope-function equation permitted by th
symmetry of such systems [24]. As emphasized abov
the values ofp, q, andw near an interface are not related
to their values in the bulk. These functions, along wit
the envelopey, are smooth and infinitely differentiable
[17–19], with a Fourier spectrum confined (either strictl
[17,18] or in the Gaussian sense [22]) to the first Brilloui
zone of the underlying lattice. Equation (1) is accurat
only when the Fourier transform ofy is concentrated
fairly close to the zone center; otherwise, higher-orde
differential operators (neglected here) become importa
© 1998 The American Physical Society 3823
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This condition is surprisingly easy to satisfy, even f
discontinuous envelopes [23].

Before discussing the interface region in detail, it
helpful to establish some general properties of the so
tions to (1). A useful technique for such analysis is t
transfer-matrix method [10,25,26], which is usually pr
sented in terms of two exact but unspecified solutio
Here an alternative approach is developed, using a pe
bative expansion of the integral equations associated w
(1). Upon integrating (1) fromxi to xf one obtains

zsxf d ­ zsxid 1
Z xf

xi

Qsxdysxd dx , (2)

wherezsxd ­ p21sxddyydx and Qsxd ­ qsxd 2 lwsxd.
Multiplying (2) by psxf d and integrating once more yield

ysxf d ­ ysxid 1 zsxidgsxf , xid

1
Z xf

xi

gsxf , xdQsxdysxd dx , (3)

in which gsxf , xid ­
Rxf

xi
psxd dx. Repeated substitution

of (3) into the integrands of (2) and (3) permits one
expressy andz at xf in terms of their values atxi :

ysxfd ­ T sxf , xidysxid , (4)

where ysxd ­ f ysxd zsxdgT . The transfer matrixT is
written asT ­

P`
n­0 T n, wheren indicates the power of

Q appearing in each term. Then ­ 0 matrix is given by

T0sxf , xid ­

∑
1 gsxf , xid
0 1

∏
, (5)

while the matrices forn . 0 are obtained by iteration:

Tn
1jsxf , xid ­

Z xf

xi

gsxf , xdQsxdT n21
1j sx, xid dx ,

Tn
2jsxf , xid ­

Z xf

xi

QsxdTn21
1j sx, xid dx (6)

­
1

psxfd
≠

≠xf
Tn

1jsxf , xid ,

in which j ­ 1 or 2.
From Eq. (1), one can easily verify the current-dens

conservation lawdJydx ­ 0, whereJ ­ Ims ypzd. Since
T is real, this implies that detT ­ 1 [6,9,26]. The inverse
of the matrixT sxf , xid is therefore given by

Tsxi , xfd ­

∑
T22sxf , xid 2T12sxf , xid

2T21sxf , xid T11sxf , xid

∏
. (7)

The result (7) also holds separately for each matrixTn,
but detT ­ 1 is exact only forT and T 0, not for any
other finite-order approximation toT [e.g., detsT0 1 T 1d
differs from 1 by terms of orderQ2].

If p, q, andw are constant betweenxi andxf , then the
integrals (6) are easy to evaluate explicitly:
3824
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Tnsxf , xid ­

24 a2nd2n

s2nd !
pa2nd2n11

s2n11d !
a2nd2n21

ps2n21d !
a2nd2n

s2nd !

35 , (8)

where a2 ­ psq 2 lwd and d ­ xf 2 xi [note that
T 0

21 ­ 0 since s21d! ­ `]. The total transfer matrix is
thus

T sxf , xid ­

∑
coshad spyad sinhad

saypd sinhad coshad

∏
, (9)

which is identical to the usual textbook result [26].
With these preliminaries established, we may no

investigate what happens at an abrupt heterojunction,
depicted in Fig. 1. For an interface nominally atx ­ 0,
the interface is assumed to occupy a region of finite widt
jxj , e. Inside this region the material properties ar
smooth but arbitrary, while outside it they are constan
[e.g.,psxd ­ p2 for x # 2e andpsxd ­ p1 for x $ e].
The restriction to finitee is used only to simplify the
ensuing discussion; it can be discarded if the interfa
perturbations are exponentially localized.

There is no difficulty in solving Eq. (1) numerically
just as it stands, regardless of how complicated th
interface dependence ofp, q, and w may be. However,
it is seldom possible to find analytical solutions unles
one replaces these parameters withextrapolated bulk
functions hpe , qe, wej that are piecewise constant (se
Fig. 1). One can then try to reproduceysxd by imposing
connection rules onyesxd at x ­ 0, where yesx fi 0d
satisfies (1) withhp, q, wj ! hpe, qe, wej. (This is the
same as the traditional approach [6–15], except for th
existence of an underlying differential equation.)

Clearly no connection rules forye can reproducey
exactly. The best one can do is require thatyesxd ­ ysxd
when jxj $ e (see Fig. 1), which also impliesle ­ l.
This yields the connection rule

yes01d ­ Tisldyes02d , (10)

FIG. 1. Schematic illustration of the relation between actu
functionssq, yd and extrapolated functionssqe, yed in the region
near an interface.
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where the interface matrixT isld is defined by

Ti ­ Tes01, edT se, 2edT es2e, 02d . (11)

This is obtained simply by matchingye ­ y at x ­ 6e,
then propagatingy andye within the interface region via
T fp, q, wg andT efpe, qe, weg.

As an example, consider a square quantum well from
perspective in which the entire well is just an “interface
to be replaced by appropriate connection rules. F
simplicity let p ­ w ­ 1, with q ­ 0 whenjxj , e and
q ­ q0 whenjxj . e. In Eq. (11), the matrixT e is given
by (9) with a ­ sq0 2 ld1y2, while T is given by (9) with
a ! ik, wherek ­ l1y2. The elements ofTi are then

Ti
11 ­ cos2ke cosh2ae

1
1
2 skya 2 aykd sin2ke sinh2ae ,

Ti
12 ­ sa2kd21 sa2 cosh2 ae 2 k2 sinh2 aed sin2ke

2 a21 cos2ke sinh2ae , (12)

Ti
21 ­ k21sa2 sinh2 ae 2 k2 cosh2 aed sin2ke

2 a cos2ke sinh2ae ,

and Ti
22 ­ Ti

11. The bound states of this interface ar
found by lettingyesxd ­ A2eax for x , 0 and yesxd ­
A1e2ax for x . 0, which implies

asT i
11 1 Ti

22d 1 a2T i
12 1 Ti

21 ­ 0 . (13)

After some algebra this reduces to

scotke 2 kyad scotke 1 aykd ­ 0 , (14)

which is the well-known dispersion relation for a squar
quantum well of width2e.

Therefore, provided we include enough terms in th
perturbative expansion,Ti can generate exact eigenvalue
even for strongly confining systems. The same cannot
said for the eigenfunctions, however, since for strong co
finementyesxd will not resembley(x) even qualitatively.
Connection rules are consequently useful only if the in
terface is aweak perturbation,with at most one bound
interface state. Fortunately this is true for most high
quality semiconductor heterojunctions [9], where the in
terface width is of the order of a lattice constant, and th
interface fluctuations ofp, q,andw are not large [18].

Thus, for any case in which connection rules ar
physically acceptable, a first-order approximation toTi

should be sufficient to provide an accurate description
the interface behavior. Such an approximation is read
calculated from Eqs. (6) and (11), with the result

Ti ­ s1 2 b2 2 acd21y2

∑
1 1 b c

a 1 2 b

∏
, (15)

in which
a
”
or

e

e
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a ­
Z e

2e
Qi dx ,

b ­
Z e

2e
f2xpeQi 1 gise sgnx, xdQeg dx , (16)

c ­
Z e

2e
fpi 2 x2p2

eQi 1 2xgise sgnx, xdpeQeg dx .

Herefisxd ­ fsxd 2 fesxd, and no terms beyond the first
order (e.g.,Q2 or piQi) were retained. The prefactor
s1 2 b2 2 acd21y2 in Eq. (15) is the only exception: It
was added to ensure thatTi satisfies current conservation
(i.e., detTi ­ 1) not just to first order butexactly. For
weak perturbations this factor differs from 1 only by smal
terms of the second order.

The simplest interface perturbation is a smoothin
of the interface, which is often invoked to explain dis
crepancies between experimental data and square-w
calculations [27]. A smooth variation ofp, q,andw is, in
fact, aderivedfeature ofab initio envelope-function theo-
ries, even at microscopically abrupt interfaces [18,22,23
Interface smoothing is conveniently described by a
error-function profile Qsxd ­ Q 1

1
2 DQ erfsxysd,

where Q ­
1
2 sQ1 1 Q2d, DQ ­ Q1 2 Q2, and s is

the Gaussian half-width of the interface region (which
should be no less than half a monolayer [18,22]); th
givesQisxd ­ 2

1
2 DQ sgnsxd erfcsjxjysd. If we assume

for the moment thatp(x) is constant, thena ­ c ­ 0, but
T i is not the unit matrix, since

b ­
1
4 s2pDQ . (17)

Interface smoothing therefore generates a discontinuity
the extrapolated envelopeyesxd, with yes01d . yes02d
when pDQ . 0. This makes sense physically, since
for conduction electrons (wherep . 0 and Dw ­ 0),
Dq . 0 means the interface potentialqisxd is repulsive
for x , 0 and attractive forx . 0.

This type of diagonal interface matrix was propose
in Ref. [11] as a replacement for the interface-smoothin
concept used in Ref. [27]. The author of [11] noted tha
the two approaches gave equivalent results, but claim
that interface smoothing is invalid because erfsxysd is
too rapidly varying at the interface to be permitted in a
envelope-function calculation. Such claims can no long
be supported in light of modern advances in envelop
function theory [18,23]. Equation (17) proves that the
two approaches are indeed equivalent, despite the seem
paradox in which asmootherinterface gives rise to a
stronger discontinuity in yesxd. (A paradox exists only
whenye is mistaken for the true envelopey.)

Microscopic interface effects may be represented by
series of terms proportional todssxd and its derivatives,
where dssxd ­ ss

p
p d21 exps2x2ys2d is a Gaussian

representation of a finite-widthd function. If we let
Qisxd ­ Q0slddssxd and again holdp(x) constant, then
3825



VOLUME 80, NUMBER 17 P H Y S I C A L R E V I E W L E T T E R S 27 APRIL 1998

cy
al

t

r

r
,

a

ns.

B

I

,
o
y
s

b is not affected, butT i acquires new off-diagonal terms:

a ­ Q0, c ­ 2
1
2 s2p2Q0 . (18)

The elementT i
21 is normally interpreted as ad-function

potential [9,14]; Eqs. (16) and (18) confirm this interpre
tation. The interpretation ofT i

12 . c is less clear [9,14],
but Eq. (18) shows that one effect described byc is the
finite width of any real interface.

Terms proportional tod0
ssxd have odd parity, so they

are qualitatively the same as interface smoothing, exce
the magnitude and sign ofb are independent of the bulk
properties of the heterostructure. The association ofd0

potentials with Ti
12 in Ref. [14] is therefore incorrect.

Terms proportional tod00
ssxd contribute toc but not to

a or b.
If p is only piecewise constant (i.e.,Dp fi 0 but pi ­

0), the effects described above become more entangl
For example, a smooth interface with ads term has

a ­ Q0 ,

b ­
s2

4
pDQ 2

s

2
p

p
DpQ0 , (19)

c ­
s2

4
p2Q0 1

s3

6
p

p
Dsp2dDQ .

Thus, a clear identification ofb andc with particular types
of interface perturbations is no longer possible.

Interface fluctuations ofp have no effect ona, but they
do alterb andc. If we include smoothing plus ads term
in p, thenb andc have, in addition to (19), contributions
of the form

b ­ 2
s2

4
DpQ 1

s

2
p

p
p0DQ ,

c ­ p0s1 1
1
2 s2pQd 2

s3

6
p

p
DpDspQd ,

(20)

The most straightforward interpretation ofc is, therefore,
that of a (smooth and finite)d function in p, although
many other effects also contribute toc. Which effect is
dominant will depend on the details of the interface.

Previous derivations ofTi from differential equations
[19,22,23] tended to focus mostly on Eq. (2) andTi

21,
although Refs. [18] and [23] did note the correlatio
betweend0 potentials and envelope discontinuities. How
ever, as shown here, a consistent first-order analysis of
interface must include all four components ofTi . There
is often good reason to neglectTi

12 [9], but this should not
be assumed without proof.

In conclusion, connection rules and differential equa
tions are equally valid representations of interface behav
in the usual case where the interface is a weak perturb
tion. However, textbook methods for deriving connectio
rules do not reflect this equivalence. The method dev
3826
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oped here shows that the apparent qualitative discrepan
between these representations is illusory—their physic
content is the same.
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