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Effects of Attractors on the Dynamics of Granular Systems
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Failing to satisfy Liouville’s theorem, the dynamics of granular materials is affected by the attractors
in their phase spaces. Motion of inelastic hard disks in a thin pipe with energy sources at both ends of
the pipe is simulated and the statistical steady state is studied. We investigate the probability distribution
function of the spacing between neighboring particles, and find that the attractors can lead to a phase
of the cluster of particles with structures different from that of an ideal gas. [S0031-9007(98)05933-X]

PACS numbers: 46.10.+z, 05.40.+j, 05.45.+b, 05.70.Ln

Granular materials are excellent for studying the dy- There are controversies about the effects of inelastic
namics of dissipative systems. Generally, they consist ofollapses. Since inelastic collapses are short time events,
macroscopic grains which do not interact with one an4t is not clear whether they have any significant influences
other except when they collide inelastically. Naively, oneon the long term behavior of the system. If, after
would expect that these grains are a whole bunch of looseeing averaged over a long time interval, the effects of
sand, which behave like an ideal gas with some modiinelastic collapses are negligible, they are not relevant
fication due to the energy dissipation. However, theyto any hydrodynamics description of granular systems.
exhibit rich dynamical behaviors. One of the most inter-However, we will show that the attractors manifested
esting behaviors is the collective motion of these grainsby inelastic collapses lead to a structure of the grains
such as convection, surface wave pattern formation, etcdifferent from that of an ideal gas, and so they are
see Ref. [1] and the references therein. According to themportant for the long term behavior of the systems.
second law of thermodynamics, an isolated system tends Here, we study a two-dimensional system of identical
to reach maximum disorder. However, in granular materigrains confined in a thin pipe (Fig. 1). The width of
als, energy dissipation creates order out of the collection ahe pipe is set so that two grains cannot pass each other.
loose grains. Thus, the motion of grains is two dimensional to ensure

In this Letter, we investigate one of the consequencesrgodicity, while at the same time we can order these
of energy dissipation, the attractors in the phase spaces gfains. The two side walls are periodic—after leaving
granular systems. One of the cornerstones of the classine side wall a particle comes back through the other.
cal kinetics and hydrodynamics theories, Liouville’s theo-The two end walls are energy sources, and are kept at the
rem states that the phase space volume is a conservedme temperature. For details, see Ref. [8].
quantity [2]. However, Liouville’s theorem is only valid  We use the simplest collision model—after a collision,
for conservative systems. For dissipative dynamical systhe normal relative velocity changes sign, and decreases
tems, phase space volume is no longer a conserved qudpny a factor of the restitution coefficiemt with 0 < r <
tity, and, consequently, attractors appear in the phase spate In the collision, the other components of the velocities
[3]. These attractors may change the structure of thare unchanged.
collection of grains. And so a proper understanding of Simulations are for 100 particles. Statistical analysis is
these attractors and the resulting structure is very imedone for the statistical steady state. To avoid complica-
portant for a correct theory of the dynamics of granulartions due to different geometrical factors we carry out our
materials. numerical calculations only for systems with extremely

For the hard sphere model of granular systems witthigh density, where the typical spacing between neighbor-
strong enough inelasticity, these attractors can lead to iag particles is about 2% of the radius of a particle, or for
finite time singularity, inelastic collapse [4—7]. During systems with extremely low density, where the spacing at
inelastic collapses, several particles undergo an infinitehe highest density region of the system is about 10 times
number of collisions in a finite time interval. At the mo- the radius. For the high density cases, the critical value
ment of singularity, the spacing between neighboring paref the coefficient of restitution for inelastic collapsgis
ticles vanishes. In one dimension, the velocity differences
among collapsing particles also vanish, and these particles
stay together after the singularity. While in higher di-
mensions, this is generally not the case—only the radial t
relf_;ltlve veIOC|t|es' betwegn nelghbqung par'tch(_es_ VamShFIG. 1. A snapshot of the thin pipe system. The periodic
while the tangential relative velocities remain finite. As side walls are indicated by dashed lines. The two end walls are

a result, collapsing particles generally separate from ongnergy sources kept at the same temperature. The coordinate
another after the singularity. system is set up so that theaxis is along the pipe.
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about 0.94, while for the low density cases, it is about 6 ' T T T
0.92. We carry out simulations at these extreme values i
of r to investigate the structure of the cluster of grains 4

when they nearly collapse. Here we only show plots for
the low density systems, because the essential dynamice
characters are the same for the high density systems.

An interesting quantity which serves as a signature
for the structure is the spacing between neighboring
particles. For a system of elastic particles in equilibrium,

—log(P(1))

the distribution forl is a simple exponential law, L/ |
1 1
P = — ——|dl 1
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where A is the mean free path. It can be derived from
basic statistical considerations as follows. For simplicity,
let us consideV point particles on a circle, although the FIG. 2. The probability distribution for the spacing between
following calculation can easily be modified for higher tl"g)% neighboring particles for a low density system with
. . . . . particles and- = 0.94. The abscissa is rescaled length.
dimensions. Let us divide the circumference ifcequal & gympols are for distribution of spacing between two
length segments, with/ very large. Suppose particlds  neighboring particles which are very close to the end walls,
in one of the segments. Let us calculate the probabilityhe distribution is in the linear exponential form (1}.symbols
that there arem empty Segments between par“de are for diStribUl&ion of SpaCing between two central particles; the
and particlei + 1. Since the system is in equilibrium, fitting curve is in the form of a constant plus the square root of
. ; . the spacing, corresponding to Eq. (2).
the entropy reaches its maximum. Equivalently, we can
assume each state has the same probability weight. When
there arem empty segments between particleand
particle i + 1, there areM — m segments available to
otherN — 2 particles, so its probability is proportional to
the number of different states, which is

rescaled length

geneity is even stronger due to larger energy flux. It sug-
gests, inside the cluster, a structure different from that of
an ideal gas. As we will see from the following calcula-

tion, this structure is a result of the attractors in the phase

(M — m)N~2 o o~ (N-2m/M space of the system.
(N = 2)! ' Because the two dimensional motion of grains is er-
Hence the spacing distribution for a state in equilibrium isgodic [8,9] it is reasonable to assume the above deriva-
in the linear exponential form of (1). tion which leads to (1) still holds to some extent. Now

Since our system is not strictly one dimensional, we needgt us consider the particularities of situations for strong
to elaborate on the meaning of spacing. The motion of théhelasticity, for which there are strong attractors in the
particles is two dimensional, and the periodic side walls?hase space. When particles move towards the attractor,
make the distance traveled in thedirection ambiguous. the size of the whole cluster is decreasing, while when

So we consider only the spacing in thelirection. Define Particles leave the attractor, the size of the cluster is in-
- to take into account the finite size creasing. So the characteristic length scale is not fixed,

li = xiv1 = xi = lnin;
of particles, we put a modification into the definition, @nd consequently in (1) changes with time. .
the minimum distance between the centers of neighboring L€t us consider the probability distribution function
particles/min = +/(2R)2 — (W/2)2, whereRr is the radius ?PDF) for the characterls_tlc length scale. The dls_tancg
of a particle, and¥ is the width of the pipe. between two far apart partlc_les can be used to describe this
In our simulations, we do not observe a probability dis_length s_cale. First, for elastic particles, we still use the one
tribution in the linear exponential form of (1) for spacings dimensional model from above. Let us study the distance
between any neighboring particles wheis very close to  Detween two particles which have, particles between
unity. But whenr gets smaller, the form of the distribu- them. Still supposing there ane segments between these
tion changes. Near the boundary, the distribution is stilfwo particles, then its probability is proportional to the
very close to the linear exponential form, while inside thenumber of states,
system, there is an obvious deviation from it. Wheis MN(M — m)N 2
very close tor,, the distribution of spacing between two NI!(N —2—N)! (3)
central particlegy is of the form (Fig. 2)

The maximum is reached when = m* = MN;/(N —
P(ly) = exp(—vlo/A). (2)  2). When bothv; andN — N, are big,m nearly always
This distribution is not simply a result of the strong in- takes values very close t@*. For a system of elastic
homogeneity, because the distribution near the boundanyarticles, the length scale is fixed, taking a value corre-
is in the old linear exponential form where the inhomo-sponding tom*. The changes in the distance are small
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thermal fluctuations, which decrease with increasing syswhenr is small, or whenV is big, we see a significant
tem size. This distribution is shown in Fig. 3. The shapedeviation from the elastic distribution, as a result of the
of the dashed line in the figure does not show a sharp disstrong attractors in these situations.

tribution for a fixed length. This is because of big thermal We can understand this PDF of the length scale in the
fluctuations due to the limited number of particles. following way. In Eq. (3), there are two contributions:

Now let us consider the situation when is very  First, the thermal motion of internal particles, which are
close to the critical value of collapse. The solid line in particles between the two particles, tries to expand this
Fig. 3 describes the distance between two particles whictistance, and makes the probability rather small for small
are positioned symmetrically about the center with 38value of this distance; second, the thermal motion of
particles between them. This distance describes the sizmitside particles tries to suppress this distance, and makes
of the cluster of particles, although there are no cleathe probability small for big value of this distance. When
boundaries for the cluster. Since under this circumstancthese two factors are in balance, the probability reaches its
the system is very nonuniform, the length scale is differenmaximum. However, when the attractors are very strong,
for different parts of the system, so the distance describethe thermal motion of internal particles are suppressed,
in Fig. 3 can be taken only as an approximate indicatoand only the thermal motion of outside particles is
of the length scale. We see the PDF is in the form ofimportant. This leads to an exponential distribution of
an exponential function modified by some power law neathe distance just as if there were no internal particles,
the origin. corresponding to (1).

There are also big thermal fluctuations for the PDF There are several mechanisms which can contribute to
shown by the solid line. But we can assume that theéhe power law of the PDF near the origin as shown in
shape of PDF of thermal fluctuations around a fixed lengtlirig. 3. First, as mentioned above, the thermal motion
scale, shown as the dashed line in Fig. 3, is the same faf internal particles can contribute in such a form as to
all length scales. Furthermore, this PDF of fluctuationgeduce the probability when the distance is very small.
decreases rapidly when the distance deviates from the Another mechanism is inelastic collapse. When
distance corresponding to the maximum probability. Therparticles are collapsing, the length scale, velocity scale,
the exponential distribution shown as the solid line inand time interval scale all decay exponentially with the
Fig. 3, which is essentially the superimposition of all thecycle numbem: [6]. Suppose they are, respectively,
“distribution packages,” indicates an exponential PDF for A= Aa", v = v b" t = t(a/b)".
the length scale.

The PDF of the length scale shows how strong theséhen
attractors are. For quasielastic situations, when we expect P(A) o t,(a/b)" o g"(1710gb/10ga) o )1-logh/loga
these attractors are rather weak, the PDF of the length ‘

scale is very close to the one for elastic particles. Onlyvherea andb depend onr. So the PDF is a power law
when particles are collapsing, or, equivalently, for very

small A.
10.00F ' : ' ' E Also the situation for very smalk is complicated by
; ] the finite size of particles for low density systems, or
by the geometrical factors for high density systems. But
we believe the solid line in Fig. 3 reflects the essential
characteristics of the PDF.

We can now calculate the PDF for the spacing between
two central particles. Since the motion of particles is
still random enough, the spacing between these two
particles [, obeys a distribution% exp(—%“), where A
] is a characteristic length. Because of the attractor, the
! ] characteristic length changes, and let us assume it has a

Probability
o
S

©
o

0.01 , ) . . distribution in the forma” exp(—g). Then we have
0.0 0.2 0.4 0.6 0.8 1.0 o A I
rescaled length P(lo) ~ [ )tl/—l ex4__ — —0>d/\. (4)
0 @ A

FIG. 3. The probability distribution for the distance between ]
particle 31 and particle 70, which have 38 particles betweerfFrom the integral
them. The system is in low density regime with 100 particles.

The abscissa is rescaled length. The dashed line is for elastic L ﬂe—(k/a)—(lo//\) — ¢ Wha
particles, » = 1. The solid line is forr = 0.94, giving an J7 Jo Jai ’

exponential function modified by some power law near the .
origin as the PDF for the length scale when the particlesve know whenv = 1/2, P(ly) calculated from (4) is
nearly collapse. exactly in the form of (2). Even when takes some other
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value, it only makes some modification ®4/,) for small  effects. For strict one dimensional situations, there are
lp, and (2) still describes the PDF for most valuegpof strong attractor effects. However, the motion of particles
From above we see that, although inelastic collapse® one dimension is not ergodic [12,13], so the distribution
are short time events, they manifest the attractors if2) is not observed.
phase space which change the structure of the cluster of As to the relevancy of the pipe model to the practical
particles. The PDF for the spacing between two centrafjranular dynamics problem, we want to point out that it
particlesl, changes from (1) for = 1, the elastic case, is the simplest situation which can show hydrodynamic
to (2) for r = r., the near collapse case. This change ofbehavior. In an unpublished work, Kadanoff, Ban-Naim,
the PDF is a continuous function af i.e., if the PDF  Grossman, and Zhou showed that the pipe system behaves
is of the form of exp—(ly/A)7], theny is a continuous essentially in the same way as the two dimensional system
function of r. Also, for r = r., this v is a continuous in[9]. Also see [14] for interesting work done for the pipe
function of the position of the two particles in the system,system.
it changes from 1 for particles near the boundaryl f@ | thank L. Kadanoff and N. Schérghofer for helpful
for central particles. So if there is a phase transition, idiscussions. | am also grateful to G. Falkovich for
can only be a smooth one. Also, the meaning of “phas@ointing out that the distribution (2) is similar to the one in
transition” is ambiguous when we do not have the luxurythe “drunkard-cop” problem. This work was supported by
of taking thermodynamics limit. the National Science Foundation under Award No. DMR-
We also notice that. depends on the system size. This9415604 and in part by the MRSEC Program of the NSF
show the character of the attractors not as a result of locainder Award No. DMR-9400379.
motion of grains, but as a result of collective motion of the
whole system. It is related to the instability described in
[10]. The numerical results shown here are foe 0.94,
which is still quite close to unity. For even smaller
and the Same system size, the V_VhOIe §ystem, Save maybe *Electronic address: tongzhou@rainbow.uchicago.edu
several particles at the boundaries, will be in a different 17 4 M. Jaeger, S.R. Nagel, and R. P. Behringer, Rev. Mod.
phase characterized by the attractors. An investigation of ~ phys.68, 1259 (1996).
the velocity PDF of granular system using the Boltzmann [2] E.M. Lifshitz and L.P. Pitaevskii,Physical Kinetics
equation is carried out in [11]. However, we would argue (Butterworth-Heinenann Ltd., New York, 1981). See
that the validity of the Boltzmann equation for granular Sect. 16 for Bogolyubov's derivation of the Boltzmann
materials still needs to be clarified [2]. equation from Liouville’s theorem..
These attractors are intrinsic property of the dynamics[3] E. Ott, Chaos in Dynamical Systeni€ambridge Univer-
of granular systems. When one is studying such intrinsic__ Sity Press, Cambridge, 1993).
properties, one should try to avoid or separate effectsl?] B- Bemu and R. Mazighi, J. Phys. 23, 5745 (1990).

from boundary and initial conditions. For example, when [5] ?l.gls\)/lj)Namara and W.R. Young, Phys. Rev.58 R28

one simulates the free evolving. process of_ a granul_ar[G] T. Zhou and L. P. Kadanoff, Phys. Rev.58, 623 (1996).
system from some homogeneous initial state with Gaussiar7; N. schérghofer and T. Zhou, Phys. Rev. 3, 5511
velocity distribution of the grains, the agreement between "~ (1996).
hydrodynamics theory and numerical results for some early[8] T. zZhou and L.P. Kadanoff, “Velocity Correlations in
time of the evolving process may not suggest that the  Granular Materials” (to be published).
hydrodynamics theory captures the essential dynamical9] E.L. Grossman, T. Zhou, and E. Ben-Naim, Phys. Rev. E
properties of the system. To capture such properties, one 55, 4200 (1997).
has to wait a long enough time in the simulation for[10] I. Goldhirsch and G. Zanetti, Phys. Rev. LeT0, 1619
the initial condition to be “forgotten.”  Similarly, for (1993).
granular systems under external forcing, it is important td+ 1] 1'4‘;' ?ggé F. Moreno, and J.W. Dufty, Phys. Revo&
distingl_Jish the effects_of.the_forcing from those ofintrinsic[lz] Y. D(u, H.)Li, and L.P. Kadanoff, Phys. Rev. Leff4,
dynamics. We see this in Fig. 2, where the attractors only ~ ;,6g (1995).
have effects far inside the system, while near the boundany3; £ | Grossman and B. Roman, Phys. Fluifls 3218
the effects of forcing dominate the dynamics. (1996).

Last, we want to mention that the distribution (2) is [14] T. Péschel and H. Puhl, “Flow of Granular Media through
a combined result of the ergodic motion and attractor  Pipes” (unpublished).
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