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Effects of Attractors on the Dynamics of Granular Systems
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Failing to satisfy Liouville’s theorem, the dynamics of granular materials is affected by the attrac
in their phase spaces. Motion of inelastic hard disks in a thin pipe with energy sources at both en
the pipe is simulated and the statistical steady state is studied. We investigate the probability distri
function of the spacingl between neighboring particles, and find that the attractors can lead to a p
of the cluster of particles with structures different from that of an ideal gas. [S0031-9007(98)0593

PACS numbers: 46.10.+z, 05.40.+ j, 05.45.+b, 05.70.Ln
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Granular materials are excellent for studying the dy
namics of dissipative systems. Generally, they consist
macroscopic grains which do not interact with one an
other except when they collide inelastically. Naively, on
would expect that these grains are a whole bunch of loo
sand, which behave like an ideal gas with some mod
fication due to the energy dissipation. However, the
exhibit rich dynamical behaviors. One of the most inter
esting behaviors is the collective motion of these grain
such as convection, surface wave pattern formation, et
see Ref. [1] and the references therein. According to t
second law of thermodynamics, an isolated system ten
to reach maximum disorder. However, in granular mater
als, energy dissipation creates order out of the collection
loose grains.

In this Letter, we investigate one of the consequenc
of energy dissipation, the attractors in the phase spaces
granular systems. One of the cornerstones of the clas
cal kinetics and hydrodynamics theories, Liouville’s theo
rem states that the phase space volume is a conser
quantity [2]. However, Liouville’s theorem is only valid
for conservative systems. For dissipative dynamical sy
tems, phase space volume is no longer a conserved qu
tity, and, consequently, attractors appear in the phase sp
[3]. These attractors may change the structure of th
collection of grains. And so a proper understanding o
these attractors and the resulting structure is very im
portant for a correct theory of the dynamics of granula
materials.

For the hard sphere model of granular systems wi
strong enough inelasticity, these attractors can lead to
finite time singularity, inelastic collapse [4–7]. During
inelastic collapses, several particles undergo an infin
number of collisions in a finite time interval. At the mo-
ment of singularity, the spacing between neighboring pa
ticles vanishes. In one dimension, the velocity difference
among collapsing particles also vanish, and these partic
stay together after the singularity. While in higher di
mensions, this is generally not the case—only the rad
relative velocities between neighboring particles vanis
while the tangential relative velocities remain finite. As
a result, collapsing particles generally separate from o
another after the singularity.
0031-9007y98y80(17)y3755(4)$15.00
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There are controversies about the effects of inelas
collapses. Since inelastic collapses are short time eve
it is not clear whether they have any significant influenc
on the long term behavior of the system. If, afte
being averaged over a long time interval, the effects
inelastic collapses are negligible, they are not releva
to any hydrodynamics description of granular system
However, we will show that the attractors manifeste
by inelastic collapses lead to a structure of the grai
different from that of an ideal gas, and so they a
important for the long term behavior of the systems.

Here, we study a two-dimensional system of identic
grains confined in a thin pipe (Fig. 1). The width o
the pipe is set so that two grains cannot pass each ot
Thus, the motion of grains is two dimensional to ensu
ergodicity, while at the same time we can order the
grains. The two side walls are periodic—after leavin
one side wall a particle comes back through the oth
The two end walls are energy sources, and are kept at
same temperature. For details, see Ref. [8].

We use the simplest collision model—after a collision
the normal relative velocity changes sign, and decrea
by a factor of the restitution coefficientr, with 0 , r ,

1. In the collision, the other components of the velocitie
are unchanged.

Simulations are for 100 particles. Statistical analysis
done for the statistical steady state. To avoid complic
tions due to different geometrical factors we carry out o
numerical calculations only for systems with extreme
high density, where the typical spacing between neighb
ing particles is about 2% of the radius of a particle, or fo
systems with extremely low density, where the spacing
the highest density region of the system is about 10 tim
the radius. For the high density cases, the critical val
of the coefficient of restitution for inelastic collapserc is

FIG. 1. A snapshot of the thin pipe system. The period
side walls are indicated by dashed lines. The two end walls
energy sources kept at the same temperature. The coordi
system is set up so that thex axis is along the pipe.
© 1998 The American Physical Society 3755
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about 0.94, while for the low density cases, it is abo
0.92. We carry out simulations at these extreme valu
of r to investigate the structure of the cluster of grain
when they nearly collapse. Here we only show plots fo
the low density systems, because the essential dynam
characters are the same for the high density systems.

An interesting quantity which serves as a signatu
for the structure is the spacingl between neighboring
particles. For a system of elastic particles in equilibrium
the distribution forl is a simple exponential law,

Psld dl 
1
l

exp

µ
2

1
l

∂
dl , (1)

where l is the mean free path. It can be derived from
basic statistical considerations as follows. For simplicit
let us considerN point particles on a circle, although the
following calculation can easily be modified for highe
dimensions. Let us divide the circumference intoM equal
length segments, withM very large. Suppose particlei is
in one of the segments. Let us calculate the probabil
that there arem empty segments between particlei
and particlei 1 1. Since the system is in equilibrium,
the entropy reaches its maximum. Equivalently, we ca
assume each state has the same probability weight. W
there arem empty segments between particlei and
particle i 1 1, there areM 2 m segments available to
otherN 2 2 particles, so its probability is proportional to
the number of different states, which is

sM 2 mdN22

sN 2 2d!
~ e2sN22dmyM .

Hence the spacing distribution for a state in equilibrium
in the linear exponential form of (1).

Since our system is not strictly one dimensional, we ne
to elaborate on the meaning of spacing. The motion of t
particles is two dimensional, and the periodic side wal
make the distance traveled in they direction ambiguous.
So we consider only the spacing in thex direction. Define
li ; xi11 2 xi 2 lmin; to take into account the finite size
of particles, we put a modification into the definition
the minimum distance between the centers of neighbori
particles,lmin 

p
s2Rd2 2 sWy2d2 , whereR is the radius

of a particle, andW is the width of the pipe.
In our simulations, we do not observe a probability dis

tribution in the linear exponential form of (1) for spacing
between any neighboring particles whenr is very close to
unity. But whenr gets smaller, the form of the distribu-
tion changes. Near the boundary, the distribution is st
very close to the linear exponential form, while inside th
system, there is an obvious deviation from it. Whenr is
very close torc, the distribution of spacing between two
central particlesl0 is of the form (Fig. 2)

Psl0d ~ exps2
p

l0yl d . (2)

This distribution is not simply a result of the strong in
homogeneity, because the distribution near the bound
is in the old linear exponential form where the inhomo
3756
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FIG. 2. The probability distribution for the spacing betwee
two neighboring particles for a low density system wit
100 particles andr  0.94. The abscissa is rescaled length
} symbols are for distribution of spacing between tw
neighboring particles which are very close to the end wal
the distribution is in the linear exponential form (1).p symbols
are for distribution of spacing between two central particles; t
fitting curve is in the form of a constant plus the square root
the spacing, corresponding to Eq. (2).

geneity is even stronger due to larger energy flux. It su
gests, inside the cluster, a structure different from that
an ideal gas. As we will see from the following calcula
tion, this structure is a result of the attractors in the pha
space of the system.

Because the two dimensional motion of grains is e
godic [8,9] it is reasonable to assume the above deri
tion which leads to (1) still holds to some extent. No
let us consider the particularities of situations for stron
inelasticity, for which there are strong attractors in th
phase space. When particles move towards the attrac
the size of the whole cluster is decreasing, while wh
particles leave the attractor, the size of the cluster is
creasing. So the characteristic length scale is not fix
and consequentlyl in (1) changes with time.

Let us consider the probability distribution functio
(PDF) for the characteristic length scale. The distan
between two far apart particles can be used to describe
length scale. First, for elastic particles, we still use the o
dimensional model from above. Let us study the distan
between two particles which haveN1 particles between
them. Still supposing there arem segments between thes
two particles, then its probability is proportional to th
number of states,

MN1 sM 2 mdN222N1

N1! sN 2 2 2 N1d!
. (3)

The maximum is reached whenm  mp ; MN1ysN 2

2d. When bothN1 andN 2 N1 are big,m nearly always
takes values very close tomp. For a system of elastic
particles, the length scale is fixed, taking a value cor
sponding tomp. The changes in the distance are sma
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thermal fluctuations, which decrease with increasing sy
tem size. This distribution is shown in Fig. 3. The shap
of the dashed line in the figure does not show a sharp d
tribution for a fixed length. This is because of big therm
fluctuations due to the limited number of particles.

Now let us consider the situation whenr is very
close to the critical value of collapse. The solid line i
Fig. 3 describes the distance between two particles wh
are positioned symmetrically about the center with 3
particles between them. This distance describes the s
of the cluster of particles, although there are no cle
boundaries for the cluster. Since under this circumstan
the system is very nonuniform, the length scale is differe
for different parts of the system, so the distance describ
in Fig. 3 can be taken only as an approximate indicat
of the length scale. We see the PDF is in the form
an exponential function modified by some power law ne
the origin.

There are also big thermal fluctuations for the PD
shown by the solid line. But we can assume that th
shape of PDF of thermal fluctuations around a fixed leng
scale, shown as the dashed line in Fig. 3, is the same
all length scales. Furthermore, this PDF of fluctuation
decreases rapidly when the distance deviates from
distance corresponding to the maximum probability. Th
the exponential distribution shown as the solid line
Fig. 3, which is essentially the superimposition of all th
“distribution packages,” indicates an exponential PDF f
the length scale.

The PDF of the length scale shows how strong the
attractors are. For quasielastic situations, when we exp
these attractors are rather weak, the PDF of the len
scale is very close to the one for elastic particles. On

FIG. 3. The probability distribution for the distance betwee
particle 31 and particle 70, which have 38 particles betwe
them. The system is in low density regime with 100 particle
The abscissa is rescaled length. The dashed line is for ela
particles, r  1. The solid line is forr  0.94, giving an
exponential function modified by some power law near th
origin as the PDF for the length scale when the particl
nearly collapse.
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when r is small, or whenN is big, we see a significant
deviation from the elastic distribution, as a result of th
strong attractors in these situations.

We can understand this PDF of the length scale in t
following way. In Eq. (3), there are two contributions
First, the thermal motion of internal particles, which ar
particles between the two particles, tries to expand th
distance, and makes the probability rather small for sm
value of this distance; second, the thermal motion
outside particles tries to suppress this distance, and ma
the probability small for big value of this distance. Whe
these two factors are in balance, the probability reaches
maximum. However, when the attractors are very stron
the thermal motion of internal particles are suppresse
and only the thermal motion of outside particles
important. This leads to an exponential distribution o
the distance just as if there were no internal particle
corresponding to (1).

There are several mechanisms which can contribute
the power law of the PDF near the origin as shown
Fig. 3. First, as mentioned above, the thermal motio
of internal particles can contribute in such a form as
reduce the probability when the distance is very small.

Another mechanism is inelastic collapse. Whe
particles are collapsing, the length scale, velocity sca
and time interval scale all decay exponentially with th
cycle numbern [6]. Suppose they are, respectively,

l  lsan, y  ysbn , t  tssaybdn.

Then

Psld ~ tssaybdn ~ ans12logby logad ~ l12log by loga ,

wherea andb depend onr. So the PDF is a power law
when particles are collapsing, or, equivalently, for ve
smalll.

Also the situation for very smalll is complicated by
the finite size of particles for low density systems, o
by the geometrical factors for high density systems. B
we believe the solid line in Fig. 3 reflects the essent
characteristics of the PDF.

We can now calculate the PDF for the spacing betwe
two central particles. Since the motion of particles
still random enough, the spacing between these t
particles l0 obeys a distribution1

l exps2 l0

l d, where l

is a characteristic length. Because of the attractor, t
characteristic length changes, and let us assume it ha
distribution in the formln exps2 l

a d. Then we have

Psl0d ,
Z `

0
ln21 exp

µ
2

l

a
2

l0

l

∂
dl . (4)

From the integral

1
p

p

Z `

0

dl
p

al
e2slyad2sl0yld  e22

p
l0a ,

we know whenn  1y2, Psl0d calculated from (4) is
exactly in the form of (2). Even whenn takes some other
3757
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value, it only makes some modification toPsl0d for small
l0, and (2) still describes the PDF for most values ofl0.

From above we see that, although inelastic collaps
are short time events, they manifest the attractors
phase space which change the structure of the cluster
particles. The PDF for the spacing between two centr
particlesl0 changes from (1) forr  1, the elastic case,
to (2) for r ø rc, the near collapse case. This change
the PDF is a continuous function ofr ; i.e., if the PDF
is of the form of expf2sl0yldgg, theng is a continuous
function of r . Also, for r ø rc, this g is a continuous
function of the position of the two particles in the system
it changes from 1 for particles near the boundary to1y2
for central particles. So if there is a phase transition,
can only be a smooth one. Also, the meaning of “pha
transition” is ambiguous when we do not have the luxur
of taking thermodynamics limit.

We also notice thatrc depends on the system size. Thi
show the character of the attractors not as a result of lo
motion of grains, but as a result of collective motion of th
whole system. It is related to the instability described
[10]. The numerical results shown here are forr $ 0.94,
which is still quite close to unity. For even smallerr
and the same system size, the whole system, save ma
several particles at the boundaries, will be in a differe
phase characterized by the attractors. An investigation
the velocity PDF of granular system using the Boltzman
equation is carried out in [11]. However, we would argu
that the validity of the Boltzmann equation for granula
materials still needs to be clarified [2].

These attractors are intrinsic property of the dynami
of granular systems. When one is studying such intrins
properties, one should try to avoid or separate effec
from boundary and initial conditions. For example, whe
one simulates the free evolving process of a granu
system from some homogeneous initial state with Gauss
velocity distribution of the grains, the agreement betwee
hydrodynamics theory and numerical results for some ea
time of the evolving process may not suggest that th
hydrodynamics theory captures the essential dynami
properties of the system. To capture such properties, o
has to wait a long enough time in the simulation fo
the initial condition to be “forgotten.” Similarly, for
granular systems under external forcing, it is important
distinguish the effects of the forcing from those of intrinsi
dynamics. We see this in Fig. 2, where the attractors on
have effects far inside the system, while near the bounda
the effects of forcing dominate the dynamics.

Last, we want to mention that the distribution (2) i
a combined result of the ergodic motion and attract
3758
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effects. For strict one dimensional situations, there a
strong attractor effects. However, the motion of particle
in one dimension is not ergodic [12,13], so the distributio
(2) is not observed.

As to the relevancy of the pipe model to the practica
granular dynamics problem, we want to point out that
is the simplest situation which can show hydrodynam
behavior. In an unpublished work, Kadanoff, Ban-Naim
Grossman, and Zhou showed that the pipe system beha
essentially in the same way as the two dimensional syste
in [9]. Also see [14] for interesting work done for the pipe
system.
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