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We present a new method for the computation of Lyapunov exponents utilizing representations of
orthogonal matrices applied to decompositions ofM or MM̃ whereM is the tangent map. This method
uses a minimal set of variables, does not require renormalization or reorthogonalization, can be used to
efficiently compute partial Lyapunov spectra, and does not break down when the Lyapunov spectrum is
degenerate. [S0031-9007(98)05948-1]
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Chaotic dynamics has been investigated in a very lar
class of systems, including astrophysical, biological, a
chemical systems, mechanical devices, models of
weather, lasers, plasmas, and fluids, to mention a fe
Lyapunov exponents provide the single most importa
quantitative characterization of the exponential divergen
of initially nearby trajectories, which is the hallmark o
chaos. Recent applications of these exponents include
connection between chaotic dynamics and transport the
in statistical mechanics [1,2] and galactic dynamics [3].

Several methods exist for computing Lyapunov exp
nents [4–8]. However, no single method appears to
optimal. For example,QR and SVD (singular value de-
composition) methods [5,6] require frequent renorma
ization (to combat exponential growth of the separatio
vector between the fiducial and nearby trajectories) and
orthogonalization (to overcome the exponential collapse
initially orthogonal separation vectors onto the direction
maximal growth). The existing continuous versions of th
QR and SVD methods also suffer from the additional di
advantage of being unable to compute the partial Lyapun
spectrum using a fewer number of equations/operatio
than required for the computation of the full spectrum [6
Further, the continuous SVD method breaks down wh
computing degenerate Lyapunov spectra [6]. The sy
plectic method [7] is applicable only to Hamiltonian sys
tems (and a few generalizations thereof) and has prov
difficult to extend to systems of moderate size, althou
this is possible in principle [9]. It also does not perm
easy evaluation of partial Lyapunov spectra.

The widespread perception that some form of explic
rescaling and reorthogonalization is necessary lies at
heart of most methods for computing Lyapunov exponen
In this Letter, we propose a general method which an
lytically obviates the need for rescaling and reorthogona
ization. Our new method also does away with the oth
shortcomings listed above: A partial Lyapunov spectru
can be computed using a fewer number of equations
compared to the computation of the full spectrum, there
no difficulty in evaluating degenerate Lyapunov spectr
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the equations are straightforward to generalize to high
dimensions, and the method uses the minimal set of d
namical variables. Since our method is based on exa
differential equations for the Lyapunov exponents, glob
invariances of the Lyapunov spectrum can be preserved

The key feature of our approach is the use of explic
group theoretical representations of orthogonal matrice
This results in a set of coupled ordinary differential equa
tions for the Lyapunov exponents along with the variou
angles parametrizing the orthogonal matrices. The sy
tem of differential equations is treated as an initial valu
problem and solved numerically to obtain the Lyapuno
exponents. In the preferred variant of our method, th
equations are only partially coupled leading to easy eval
ation of the incomplete Lyapunov spectrum. An inter
esting consequence of our methodology is the natu
separation between “slow” (the exponents) and “fast” (th
angles) pieces in the evolution equations. (This fact can
used to provide speed-up in numerical implementations
Since the structure of the coupled differential equations
of a special form, they may also turn out to be useful fo
analytic studies of evolution in tangent space.

To begin, we consider ann dimensional continuous-time
dynamical system,

dz
dt

 Fsz, td , (1)

wherez  sz1, z2, . . . , znd andF is ann-dimensional vec-
tor field. LetZstd  zstd 2 z0std denote deviations from
the fiducial trajectoryz0std. Linearizing Eq. (1) around
this trajectory, we obtain

dZ
dt

 DFsssz0std, tddd ? Z , (2)

whereDF denotes then 3 n Jacobian matrix.
Integrating the linearized equations along the fiduci

trajectory yields the tangent mapMsssz0std, tddd which takes
the initial variablesZin into the time-evolved variables
Zstd  MstdZin [the dependence ofM on the fiducial
trajectoryz0std is understood]. LetL be ann 3 n matrix
© 1998 The American Physical Society 3747
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given by L  limt!`sMM̃d1y2t , where M̃ denotes the
matrix transpose ofM. The Lyapunov exponents then
equal the logarithm of the eigenvalues ofL [4].

It is clear thatM is of central importance in the evalu-
ation of Lyapunov exponents. Its evolution equation ca
easily be derived,

dM
dt

 DFM . (3)

Instead of a brute force attack, our purpose is now to wr
M (or some variant thereof) in such a way that the resultin
evolution equations are intrinsically well behaved. On
way to do this is to follow the approach of Ref. [7] and
introduce the matrixA ; MM̃. The evolution equation
for A follows from (3)

dA
dt

 DFA 1 AD̃F . (4)

The matrix A is symmetric and positive definite [4].
Hence, it can be written as an exponential of a symmet
matrix B [10]: A  eB. Furthermore, any symmetric ma-
trix can be diagonalized using orthogonal matrices [10
Thus,A  eODO21

, whereO is ann 3 n orthogonal ma-
trix, D is ann 3 n diagonal matrix, andO21  Õ. From
standard properties of matrix exponentials, it follows th
A  OeDO21. There is no need for rescaling since th
diagonal matrixD is already in the exponent (the diago
nal elements are just the Lyapunov exponents multiplie
by time).

To proceed further, we use an easy to obtain explic
representation of the orthogonal matrixO from group rep-
resentation theory [11]. One advantage is that a minimu
number of variables is used to characterize the syste
nsn 2 1dy2 in O and furthern variables inD, for a total
of nsn 1 1dy2. Another advantage is that numerical er
rors can never lead to loss of orthogonality. Finally, th
dynamical equations (4) are solved numerically.

Instead of using the above approach we now describ
variant of this idea which has certain further advantage
As is well known [10], the matrixM can be written as the
productM  QR of an orthogonaln 3 n matrix Q and
an upper-triangularn 3 n matrixR with positive diagonal
entries. Substituting this into Eq. (3), we obtain

ÙQR 1 Q ÙR  DFQR , (5)

where the overdot denotes a time derivative. Multiplyin
the above equation bỹQ from the left andR21 from the
right, we get

Q̃ ÙQ 1 ÙRR21  Q̃DFQ . (6)

Note thatQ̃ ÙQ is a skew(anti)-symmetric matrix for any
orthogonal matrixQ and ÙRR21 is still an upper-triangular
matrix.

As before, we now employ an explicit representatio
of the orthogonal matrixQ representing it as a product
3748
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of nsn 2 1dy2 orthogonal matrices, each of which corre-
sponds to a simple rotation in thesi, jdth planesi , jd.
Denoting the matrix corresponding to this rotation byOsijd,
its matrix elements are given by

O
sijd
kl  1 if k  l fi i, j ;

 cosf if k  l  i or j ;

 sinf if k  i, l  j ;

 2 sinf if k  j, l  i ;

 0 otherwise. (7)

Here f denotes an angle variable. Thus, then 3 n
matrix Q is represented by

Q  Os12dOs13d · · · Os1ndOs23d · · · Osn21,nd. (8)

HenceQ is parametrized bynsn 2 1dy2 angles which we
denote byui fi  1, . . . , nsn 2 1dy2g. These angles will
be collectively denoted byu.

Since the upper-triangular matrixR has positive diago-
nal entries, it can be represented as follows:

R 

0BBBB@
el1 r12 · · · · · · r1n

0 el2 r23 · · · r2n
...

...
...

...
...

0 0 0 0 eln

1CCCCA . (9)

The quantitiesli will be shown to be intimately related
to the Lyapunov exponents. Our final equations will be
in terms of theli which already appear in the exponent,
thus removing the need for rescaling. The quantitiesrij

represent the supradiagonal terms inR.
Using the above representations ofQ andR, we obtain

Q̃ ÙQ 

0BBBBB@
0 2f1s Ùud · · · 2fn21s Ùud

f1s Ùud 0 · · · 2f2n23s Ùud
...

...
...

...
fn21s Ùud · · · fnsn21dy2s Ùud 0

1CCCCCA
(10)

and

ÙRR21 

0BBBBB@
Ùl1 r 0

12 · · · · · · r 0
1n

0 Ùl2 r 0
23 · · · r 0

2n
...

...
...

...
...

0 0 0 0 Ùln

1CCCCCA . (11)

Here, each of thensn 2 1dy2 functions fi depend (in
principle) on the time derivativesÙui of all the angles used
to representQ. In fact, they actually depend only on a
subset of the angles. The quantitiesr 0

ij are of no concern
since they are not present in the final equations.
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Substituting the above two expressions in Eq. (6) w
obtain0BBBBB@

Ùl1 r 00
12 · · · · · · r 00

1n

f1s Ùud Ùl2 r 00
23 · · · r 00

2n
...

...
...

...
...

fn21s Ùud · · · · · · fnsn21dy2s Ùud Ùln

1CCCCCA  Q̃DFQ .

(12)

Denoting the matrixQ̃DFQ by S and comparing diagonal
elements on both sides of (12) one gets

Ùli  Sii , i  1, 2, . . . , n . (13)

It can be shown [6] that the Lyapunov exponents are equ
to liyt in the limit t ! `. Thus, the Lyapunov exponents
can be obtained by solving the above differential equatio
for long times. However, since the right-hand side depen
on the anglesui , we also require differential equations
governing the evolution of these angles.

Differential equations for the angles can be obtaine
by comparing the subdiagonal elements in Eq. (12). Th
gives

f1s Ùud  S21; f2s Ùud  S31; . . . ; fnsn21dy2s Ùud  Sn,n21 .

This set of differential equations can be transformed into
more convenient form [12]

Ùui  gisud, i  1, 2, . . . , nsn 2 1dy2 , (14)

where the equations forui are decoupled from the equa-
tions for li . This avoids potential problems with degen
erate Lyapunov spectra. Because of these reasons,
second method just described is to be preferred over
method first discussed. Equations (13) and (14) form
system ofnsn 1 1dy2 ordinary differential equations that
can be solved to obtain the Lyapunov exponents.

Our system of differential equations has another attra
tive feature. The equation forl1 depends only on the first
sn 2 1d ui ’s (under a suitable ordering) [12]. Therefore
if one is interested in only the largest Lyapunov expo
nent, one needs to solve onlyn equations [as opposed to
nsn 1 1dy2 for the full spectrum]. The equation forl2
depends only on the first2n 2 3 ui ’s. Therefore, to ob-
tain the first 2 Lyapunov exponents, one needs to sol
only 2n 2 1 equations. In general, to solve for the firstm
Lyapunov exponents, one has to solvems2n 2 m 1 1dy2
equations which is always less thannsn 1 1dy2 (the total
number of equations) form , n. This is in contrast to
the situation for the conventional continuousQR or SVD
methods where it is computationally costlier to evaluate
partial spectrum once a threshold is crossed [6]. The fi
method discussed above shares this disadvantage.

We end the general analysis of our system of equatio
by pointing out an interesting fact. From Eq. (13),
e
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Ùl1 1 Ùl2 1 · · · 1 Ùln  TrsSd . (15)

Parametrizing the Jacobian matrixDF as fDFgij  dfij

we can evaluate the trace of the matrixS to obtain [12]
Ùl1 1 Ùl2 1 · · · 1 Ùln  df11 1 df22 1 · · · 1 dfnn .

(16)

We now illustrate the second method for a system wit
2 degrees of freedom. In this case,Q is parametrized as
follows:

Q 

µ
cosu1 sinu1

2 sinu1 cosu1

∂
, (17)

and the upper-triangular matrixR may be written as

R 

µ
el1 r12

0 el2

∂
. (18)

Next, we parametrize the Jacobian matrixDF as follows:

DF 

µ
df11 df12
df21 df22

∂
. (19)

Substituting the above into Eq. (12), we obtain the desire
equations forl1, l2, andu1,

dl1

dt
 df11 cos2 u1 1 df22 sin2 u1

2
1
2

sdf12 1 df21d sin2u1 ,

dl2

dt
 df11 sin2 u1 1 df22 cos2 u1

1
1
2

sdf12 1 df21d sin2u1 ,

(20)

du1

dt
 2

1
2

sdf11 2 df22d sin2u1

1 df12 sin2 u1 2 df21 cos2 u1 .

The above differential equations are numerically inte
grated forward in time until the desired convergence fo
the exponents,l1yt andl2yt, is achieved.

As our first example, we consider the driven van de
Pol oscillator,

Ùz1  z2 ,

Ùz2  2ds1 2 z2
1 dz2 2 z1 1 b cosvt .

(21)

For the parameter valuesd  25, b  5, and v 
2.466, our results are in agreement with values obtaine
earlier using the symplectic approach [7].

To illustrate the application of the method to a system
with more degrees of freedom, we turn to the standard te
case of the Lorenz equations [13],

Ùz1  ssz2 2 z1d ,

Ùz2  z1sr 2 z3d 2 z2 , (22)

Ùz3  z1z2 2 bz3 .
3749
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For this 3 degrees of freedom system, we need to g
eralize the equations given in Eq. (20). This can ea
ily be done to obtain six partially coupled differentia
equations governing the evolution of the three Lyapun
exponents and three angles. We used parameter va
of s  10, r  28, and b  8y3. An extensive com-
parison of our method against the standardQR method
with Gramm-Schmidt reorthogonalization (QRyGS) [5]
was carried out. Both methods were applied to the sa
fiducial trajectory generated using a fourth order Rung
Kutta (RK4) integrator applied to Eqs. (22) with time
step e  0.001. Error and convergence analysis wa
carried out by applying the two methods to the fidu
cial trajectory sampled over time intervalsts $ e. Both
methods were implemented using RK4 integrators, a
with ts  e  0.001, both generated essentially ident
cal results. As a function ofts, both methods were
quartically convergent as expected,QRyGS possessing a
smaller convergence coefficient for the positive Lyapun
exponent and a larger one for the negative exponent. E
for this small system, execution times for both metho
were similar. (We did not attempt to fully optimize eithe
of the codes.) For larger systems our method is expec
to be more efficient.

In the Lorenz system of equations, the sum of the thr
Lyapunov exponents must equal2ss 1 b 1 1d. With
our method, the sum of the three Lyapunov expone
2ss 1 b 1 1d  213.6666 . . . was maintained to nine
decimal places,independentof the sampling interval over
the investigated range,0.001 # ts # 0.02, a property not
shared byQRyGS. (The sum of all Lyapunov exponents i
an important quantity in stationary, thermostatted noneq
librium systems since it is directly proportional to the tran
port coefficients. Recent analytic and numerical results
reported in Refs. [2].)

To summarize, we have described a technique for co
puting Lyapunov exponents that has several advanta
over existing methods. The minimal number of variabl
is used, rescaling and reorthogonalization are eliminat
partial Lyapunov spectra can be calculated using a few
number of equations, there are no difficulties with dege
erate Lyapunov spectra, and global invariances of the L
punov spectrum can be explicitly preserved. The meth
allows a natural fast/slow split between variables, whi
may be taken advantage of to improve convergence of
exponents. Moreover, the simple form of the final set
equations may prove to be useful in analytic conside
tions. Further details will be presented elsewhere [12].
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