VOLUME 80, NUMBER 17 PHYSICAL REVIEW LETTERS 27 ARIL 1998

Lyapunov Exponents without Rescaling and Reorthogonalization

Govindan Rangarajar* Salman Habib;" and Robert D. Ryn&*
'Department of Mathematics and Center for Theoretical Studies, Indian Institute of Science, Bangalore 560 012, India
2T-8, Theoretical Division, MS B285, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

3LANSCE-1, LANSCE Division, MS H817, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
(Received 27 May 1997; revised manuscript received 9 March)1998

We present a new method for the computation of Lyapunov exponents utilizing representations of
orthogonal matrices applied to decompositiongbobr MM whereM is the tangent map. This method
uses a minimal set of variables, does not require renormalization or reorthogonalization, can be used to
efficiently compute partial Lyapunov spectra, and does not break down when the Lyapunov spectrum is
degenerate. [S0031-9007(98)05948-1]

PACS numbers: 05.45.+b, 02.20.—-a

Chaotic dynamics has been investigated in a very largéhe equations are straightforward to generalize to higher
class of systems, including astrophysical, biological, andlimensions, and the method uses the minimal set of dy-
chemical systems, mechanical devices, models of theamical variables. Since our method is based on exact
weather, lasers, plasmas, and fluids, to mention a fewdifferential equations for the Lyapunov exponents, global
Lyapunov exponents provide the single most importantnvariances of the Lyapunov spectrum can be preserved.
quantitative characterization of the exponential divergence The key feature of our approach is the use of explicit
of initially nearby trajectories, which is the hallmark of group theoretical representations of orthogonal matrices.
chaos. Recent applications of these exponents include tfhis results in a set of coupled ordinary differential equa-
connection between chaotic dynamics and transport theomjons for the Lyapunov exponents along with the various
in statistical mechanics [1,2] and galactic dynamics [3]. angles parametrizing the orthogonal matrices. The sys-

Several methods exist for computing Lyapunov expo+em of differential equations is treated as an initial value
nents [4—8]. However, no single method appears to beroblem and solved numerically to obtain the Lyapunov
optimal. For exampleQR and SVD (singular value de- exponents. In the preferred variant of our method, the
composition) methods [5,6] require frequent renormal-equations are only partially coupled leading to easy evalu-
ization (to combat exponential growth of the separatioration of the incomplete Lyapunov spectrum. An inter-
vector between the fiducial and nearby trajectories) and reesting consequence of our methodology is the natural
orthogonalization (to overcome the exponential collapse ofeparation between “slow” (the exponents) and “fast” (the
initially orthogonal separation vectors onto the direction ofangles) pieces in the evolution equations. (This fact can be
maximal growth). The existing continuous versions of theused to provide speed-up in numerical implementations.)
QRand SVD methods also suffer from the additional dis-Since the structure of the coupled differential equations is
advantage of being unable to compute the partial Lyapunowf a special form, they may also turn out to be useful for
spectrum using a fewer number of equations/operationanalytic studies of evolution in tangent space.
than required for the computation of the full spectrum [6]. To begin, we consider andimensional continuous-time
Further, the continuous SVD method breaks down whemynamical system,
computing degenerate Lyapunov spectra [6]. The sym- dz
plectic method [7] is applicable only to Hamiltonian sys- — =F(z,1), Q)
tems (and a few generalizations thereof) and has proven dt
difficult to extend to systems of moderate size, althougtwherez = (z1,z,...,z,) andF is ann-dimensional vec-
this is possible in principle [9]. It also does not permit tor field. LetZ(z) = z(r) — z(¢) denote deviations from
easy evaluation of partial Lyapunov spectra. the fiducial trajectoryzy(r). Linearizing Eq. (1) around

The widespread perception that some form of explicitthis trajectory, we obtain
rescaling and reorthogonalization is necessary lies at the dZ
heart of most methods for computing Lyapunov exponents. — = DF(zo(1),1) - Z, 2
In this Letter, we propose a general method which ana- dt
lytically obviates the need for rescaling and reorthogonalwhereDF denotes the X n Jacobian matrix.
ization. Our new method also does away with the other Integrating the linearized equations along the fiducial
shortcomings listed above: A partial Lyapunov spectruntrajectory yields the tangent may(zo(¢), r) which takes
can be computed using a fewer number of equations ake initial variablesZ™ into the time-evolved variables
compared to the computation of the full spectrum, there i€.(r) = M(t)Z™ [the dependence oM on the fiducial
no difficulty in evaluating degenerate Lyapunov spectratrajectoryzy(z) is understood]. Lef\ be ann X n matrix
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given by A = lim,—.(MM)"/?, where i denotes the of n(n — 1)/2 orthogonal matrices, each of which corre-
matrix transpose oM. The Lyapunov exponents then sponds to a simple rotation in thg, j)th plane(i < j).
equal the logarithm of the eigenvalues/of4]. Denoting the matrix corresponding to this rotation®y’,

It is clear thatM is of central importance in the evalu- its matrix elements are given by
ation of Lyapunov exponents. Its evolution equation can i)

easily be derived, Ow =1 itk=1#1ij;
v _ e
am DFM . 3) cosgp ifk=1=iorj;
dt —sing ifk=i l=j;

Instead of a brute force attack, our purpose is now to write . . ) :
M (or some variant thereof) in such a way that the resulting = -sing iftk=j. 1=i;
evolution equations are intrinsically well behaved. One = 0 otherwise (7)
way to do this is to follow the approach of Ref. [7] and
introduce the matrixA = MM. The evolution equation Here ¢ denotes an angle variable. Thus, thex n
for A follows from (3) matrix Q is represented by
‘fl—/: = DFA + ADF. (4) 0 =0"201...00"NoR3 ... .ol=1n — (g)

The matrix A is symmetric and positive definite [4]. HenceQ is parametrized by (n — 1)/2 angles which we
Hence, it can be written as an exponential of a symmetriclenote byg; [i = 1,...,n(n — 1)/2]. These angles will
matrix B [10]: A = 5. Furthermore, any symmetric ma- be collectively denoted by.
trix can be diagonalized using orthogonal matrices [10]. Since the upper-triangular matrix has positive diago-
Thus,A = ¢°P0 ' whereO is ann X n orthogonal ma- nal entries, it can be represented as follows:

trix, D is ann X n diagonal matrix, and ! = 0. From
standard properties of matrix exponentials, it follows that eM rn e

A = 0eP0~!. There is no need for rescaling since the 0 et ry o 1
diagonal matrixD is already in the exponent (the diago- . .
nal elements are just the Lyapunov exponents multiplied
by time).

To proceed further, we use an easy to obtain explici

=
I

(9)
0 0 0 0 e

LI'he guantitiesA; will be shown to be intimately related

representation of the orthogonal matéxfrom group rep- he L our final . il b
resentation theory [11]. One advantage is that a minimuriP (€ Lyapunov exponents. - Our final equations will be
n terms of theA; which already appear in the exponent,

number of variables is used to characterize the systenil?] ing th df i Th tif
n(n — 1)/2 in O and furthern variables inD, for a total us removing the need for rescaling. € quantitigs

of n(n + 1)/2. Another advantage is that numerical er- represent the supradiagonal termskin .
rors can never lead to loss of orthogonality. Finally, the USINg the above representations@fandg, we obtain
dynamical equations (4) are solved numerically. . .
Instead of using the above approach we now describe a 0, —f1(0) —fa-1(6)
variant of this idea which has certain further advantagesQ('2 _ f1(6) 0 —fan-3(0)
As is well known [10], the matrixy/ can be written as the : : : :
productM = OR of an orthogonah_ X n matrix _Q and fn*l(é) fn(nfm(g) 0
an upper-triangulat X n matrix R with positive diagonal (10)
entries. Substituting this into Eq. (3), we obtain

OR + OR = DFQR, (5) and

where the overdot denotes a time derivative. Multiplying ;\1 V.{z e T,
the above equation b@ from the left andR ™' from the _ 0 Ay rhy oo 1,
right, we get RR™ = 7 | 11

0O + RR™' = ODFQ . ©6) 0 0 0 0 A,
Note thatQQ is a skew(anti)-symmetric matrix for any Here, each of thex(n — 1)/2 functions f; depend (in
orthogonal matrix2 andRR ~! is still an upper-triangular principle) on the time derivatives; of all the angles used
matrix. to represent). In fact, they actually depend only on a

As before, we now employ an explicit representationsubset of the angles. The quantitié]sare of no concern
of the orthogonal matriXQ representing it as a product since they are not present in the final equations.

3748



VOLUME 80, NUMBER 17 PHYSICAL REVIEW LETTERS 27 ARIL 1998

Substituting the above two expressions in Eq. (6) we M+ A+ 4 A, = TH(S). (15)
obtain
Parametrizing the Jacobian mat®¥ as[DF]; = df;;
A rh i we can evaluate the trace of the matfixo obtain [12]
0) A Y . . M+ A+t dy = +dfy + o+ dfp.
f10) A2 s 2| _ HDFo. 1t A n=dfu + dfn fun
: D Z I (16)
Fac1(0) - o fuenp(8) A We now illustrate the second method for a system with
(12) 2 degrees of freedom. In this cage,is parametrized as
follows:
Denoting the matri>QDFQ by S and comparing diagonal cosf;  siné,
elements on both sides of (12) one gets Q=1\_sing, coso, )’ (17)
)li = Sii, i=12,...,n. (13) and the upper-triangular matri may be written as
It can be shown [6] that the Lyapunov exponents are equal R = <€A‘ rhz ) _ (18)
to A;/t in the limitt — . Thus, the Lyapunov exponents 0 e®

can be obtained by solving the above differential equationfjext, we parametrize the Jacobian mamik as follows:
forlong times. However, since the right-hand side depends

on the angle®;, we also require differential equations DF — <df11 df12>. (19)
governing the evolution of these angles. dfa dfn

Differential equations for the angles can be obtainedspstituting the above into Eq. (12), we obtain the desired
by comparing the subdiagonal elements in Eq. (12). Thigquations for\;, A,, andé;,

gives m
. . . 2L — dficog 0, + dfxnsirt 6,
f1(0) = Sa1; f2(0) = S315.. 05 fatn-1)/2(0) = Spn—1- dt
1 .
This set of differential equations can be transformed into a — 5 (dfi2 + dfz)sin26;,
more convenient form [12]
. dAy _
bi—gi0).  i=12...a0n—1/2, (14) 4 = Afusim e + dfzcos 6y o0
20
where the equations fa#; are decoupled from the equa- n 1 n :
tions for A;. This avoids potential problems with degen- 2 (dfiz + dfz)sin261,
erate Lyapunov spectra. Because of these reasons, the 460 1
second method just described is to be preferred over the - - (df11 — dfa)sin26,
method first discussed. Equations (13) and (14) form a dt 2
system ofa(n + 1)/2 ordinary differential equations that + df12Sir? 0, — df» cos 6, .

can be solved to obtam the Lyapunov exponents. The above differential equations are numerically inte-
Our system of differential equations has another attrac-

tive featur?. The equatipn fon depepds only on the first ?g:tggp?r:\gr?tgyttggg AL;?tt” itshzc(i]?;'/r:g. convergence for
.(” - 1). Bi_s (under a suitable ordering) [12]. Therefore, As our first example, we consider the driven van der
if one is interested in only the largest Lyapunov eXPOo-p| oscillator

nent, one needs to solve onlyequations [as opposed to o
n(n + 1)/2 for the full spectrum]. The equation for, = 22,

depends only on the fir@» — 3 6;’s. Therefore, to ob- = —d(l - 22z — z1 + bcoswt. (1)
tain the first 2 Lyapunov exponents, one needs to solve B B B
only2n — 1 equations. In general, to solve for the fisst ~Of the parameter values = —5, b =35, and v =

2.466, our results are in agreement with values obtained

L ts, has to sow€@n — m + 1)/2 ) . :
yapunov exponents, one has to son - m )/ earlier using the symplectic approach [7].

equations which is always less thatm + 1)/2 (the total ) =
number of equations) fom < n. This is in contrast to To illustrate the application of the method to a system

the situation for the conventional continuoQ®K or SVD with more degrees of fregdom, we turn to the standard test

methods where it is computationally costlier to evaluate £2€ ©Of the Lorenz equations [13],

partial spectrum once a threshold is crossed [6]. The first 21 =0z — z21),

method discussed above shares this disadvantage. .
We end the general analysis of our system of equations 2=alp - a) -, (22)

by pointing out an interesting fact. From Eg. (13), 3 =222 — Bz3.
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