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For three-dimensional many-electron time periodic Hamiltonians which are invariant under dynamical
symmetry of orderN we prove that only thesnN 6 1dth, n ­ 1, 2, . . . , harmonics are generated.
We discuss the application of the dynamical symmetry based selection rules to the generation of
high harmonics by thin crystals. The derived selection rules are demonstrated numerically for a one-
dimensional model, showing that the dynamically symmetric systems can be used not only as “filters”
of the very high harmonics but also as their “amplifiers.” [S0031-9007(98)05899-2]

PACS numbers: 42.65.Ky, 33.80.Wz, 42.25.Ja, 78.90.+ t
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Numerous experimental and theoretical investigatio
of harmonic generation spectra (HGS) of noble gas
in intense linearly polarized laser fields were stimulate
by the interest in short-wavelength sources [1]. Fo
example, by using ultrahigh powerful lasers Saruku
et al. [2] found the relative intensities of 9th to 23rd
harmonics of He, and more recently Prestonet al. [3]
published new experimental data with HGS extendin
up to the 35th harmonic. Most recently Moiseyev an
Weinhold have shown that the HGS in He can be treat
as asingle Floquet state phenomenon [4]. Calculation
show that even for nonperiodic Hamiltonians the HG
can be obtained from the Fourier analysis of the tim
dependent dipole moment for asingle Floquet state,
provided the duration of the pulse is sufficiently long
(see, for example, Fig. 7 of Ref. [5]). We, therefore
study the HGS employing Floquet formalism. Using th
extended Hilbert space formalism of Sambe and Howla
[6] the probability to get thenth harmonic from a system
found in a Floquet state,C´ ­ exps2i´tyh̄dF´, is given
by

ssnd
´ ~ n4j†F´jm̂e2invtjF´‡j2, (1)

where the double bra-ket notation,† · · · ‡, stands for the
integration over spatial variables and over time,m̂ for the
dipole moment operator, andv for the laser frequency.

It is well known that the HGS of atoms in linearly
polarized fields are composed only of odd harmonics [7
A nonperturbative proof valid for quasienergy eigenstat
was given by Ben-Tal, Beswick, and Moiseyev [8].

The proof can be reformulated in the following
way: Suppose that no Floquet states are degener
(accidental degeneracies of these states may occur
specific values of the field parameters [9], but generica
the Floquet states of the systems of interest in th
work are nondegenerate). ThenjF´‡ are simultaneous
eigenfunctions of the second order dynamical sym
metry (DS) operator,P̂2 ­ sx ! 2x, t ! t 1 pyvd,
with eigenvalues61 and of the Floquet Hamilton-
ian (here we assume that the field is polarized inx̂
direction). The nth harmonic is emitted if and only
if †F´j f̂sndjF´‡ ­ †P̂2F´jP̂2f̂sndP̂21

2 jP̂2F´‡ fi 0,
0031-9007y98y80(17)y3743(4)$15.00
ns
es
d
r

ra

g
d
ed
s
S
e

,
e
nd

].
es

ate
at

lly
is

-

where f̂snd ­ m̂sxde2invt. Since in our casêP2F´ ­
6F´, it implies thatP̂2f̂sndP̂21

2 ­ f̂snd, i.e., f̂snd belongs
to the trivial representation of the DS group generate
by P̂2. Consequently, the nonzero values ofssnd

´ are ob-
tained if and only ifm̂sxde2invt ­ m̂s2xde2invst1pyvd,
that is, for oddn’s. This result holds for HGS of any
many-electron three-dimensional (3D) system of th
second order DS. It will be extended below to the case
a DS of an arbitrary orderN.

The question we address here is how one can use su
selection rules for the HGS to choose systems and t
proper field polarization in order to filter out all high
harmonics up to thenth one. The next question we shall
answer is how stable are the results to perturbations whi
break the DS. Of course, it is interesting to know whethe
the selected system acts not only as a “filter” but also a
an “amplifier” of the high harmonics.

For the sake of clarity and without loss of generality
(with regard to many dimensions and many-electron sy
tems), let us consider first the following effectively one
dimensional Hamiltonian which describes an electron
motion in a circle under the influence of a time indepen
dent potential,V swd, and the circularly polarized time de-
pendent electric field:

Ĥsw, td ­
P̂2

w

2mr
2
0

1 V swd 1 eE0r0 cossw 2 vtd . (2)

The circle plane is assumed to be perpendicular to th
field propagation direction. Suppose thatV swd possesses
anN-fold symmetry axis. In such a case, the Hamiltonia
of Eq. (2) is invariant under the following DS operator
(written symbolicallyand not explicitly),

P̂N ­

µ
w ! w 1

2p

N
, t ! t 1

2p

Nv

∂
. (3)

Thus, the eigenfunctions of the Floquet Hamiltonian
Ĥfsw, td ­ 2ih̄

≠

≠t 1 Ĥsw, td, are eigenfunctions of̂PN

as well,

Ĥfsw, tdF´sw, td ­ ´F´sw, td,

P̂N F´sw, td ­
N
p

1 F´sw, td ,
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where, a priori, each one of theN roots is possible:
N
p

1 ; es22pipyNd, p ­ 0, 1, . . . , N 2 1 (here we again
disregard the possibility of an accidental degeneracy o
pair of Floquet states and treat the generic case). The
functional takes the form,

ssnd
´ ~ n4j†F´j f̂sndjF´‡j2 , (4)

where m̂ of Eq. (1) is equal to r0 expsiwd [or
r0 exps2iwd] for the components of the emitted
radiation circularly polarized in the anticlockwise (clock
wise) direction. f̂snd is, therefore, given bŷf

snd
6 sw, td ;

r0 exps6iwd exps2invtd. The Nth order cyclic DS
group generated by the operatorP̂N acting in the extended
Hilbert space is GN ; hP̂N , P̂2

N , . . . , P̂N21
N , P̂N

N ­ Ij.
The nth harmonic is emitted if and only iff̂

snd
6

belongs to the trivial representation ofGN , i.e.,

P̂N f̂
snd
6 sw, tdP̂21

N ­ f
snd
6 sw, td, or

e6isw1 2p

N
de2invst1 2p

Nv
d ­ e6iwe2invt ) e2i 2psn71d

N ­ 1 .

It leads immediately to the conclusion thatssnd
´ is nonzero

if and only if n ­ 1, lN 6 1, l [ N . Moreover, for
3744
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-

N $ 3 the slN 1 1dth harmonics are circularly polarized
in the anticlockwise direction (as the incident light is
while the slN 2 1dth harmonics are circularly polarized
in the clockwise direction. The polarization of high
harmonics inG2 DS systems has been a subject of rece
studies [10].

The extension of the proof given above to a 3D sing
electron system is straightforward. Let us formula
the problem in cylindrical coordinates. Then̂PN of
Eq. (3) is an exact DS operation at any specific val
of r and z, provided that the 3D potential,V sr, w, zd,
is of CN symmetry. Therefore, the selection rules fo
wsnd

´ ’s hold in a 3D case. The integration in Eq. (4
is performed now overr and z in addition to the
integration overw andt. In the 3D casêf

snd
6 are equal to

r exps6iwd exps2invtd.
The proof given above can be easily extended

the case of 3D many-electron systems. The Ham
tonian for M electrons moving in a potential ofCN

symmetry and interacting with circularly polarized ligh
reads
ĤMs $r, $w, $z, td ­
MX

i­1

Ĥsri , wi, zi, td 1 e2
MX

i,j

fr2
i 1 r2

j 2 2rirj cosswi 2 wjd 1 szi 2 zjd2g21y2, (5)
l
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where Ĥsri , wi , zi , td is the 3D single electron Hamil-
tonian invariant underGN . The Hamiltonian [Eq. (5)]
is invariant under two mutually disjoint groups: theN th
order cyclic DS group,GN ,M , and theM electron permu-
tation group,SM . The former is generated by the simu
taneous rotation of all the electronsf $w ; sw1, . . . , wMdg
and the appropriate translation in time:

P̂N ,M ­

µ
$w ! $w 1

2p

N
, t ! t 1

2p

Nv

∂
. (6)

The HG functional in theM electron case takes the form

w
snd
´,M ~ n4j†F´,M j f̂

snd
M jF´,M‡j2, (7)

wheref̂
snd
6,Ms $r, $w, td ­

PM
i­1 f̂

snd
6 sri , wi , td.

As one can see,̂f
snd
6,M belongs to the trivial irreducible

representation of the permutation groupSM . jF´,M j2

belongs to this representation as well. Thus, the permu
tional symmetry and the existence of the pairwise intera
tion do not affect the selection rules for the HGS. Indee
the analysis of the HG functional [Eq. (7)] with respect t
the DS [Eq. (6)] results in the selection rulesidentical to
the ones obtained in the single electron case with the
of the same order.

Next, let us apply the DS considerations to the proble
of HG by electrons moving in a periodic potentia
[11]. More specifically, we would like to discuss th
problem of an interaction of a thin crystal with lase
light propagating perpendicularly to the crystal plan
[12,13]. Let us consider the case of a thin cryst
processingCN symmetry axes and circularly polarize
incident light. The selection rules derived above for
general multielectron system certainly hold in this ca
-
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as well. However, we would like to show that the sam
selection rules are obtained within the framework of t
independent electron approximation (see, e.g., Ref. [1
which simplifies the theoretical treatment of HGS of th
crystals.

Without loss of generality, we treat the problem a
essentially two dimensional. In this case the probabil
to obtain the component of thenth harmonic circularly
polarized in the anticlockwise (clockwise) direction
associated with the expectation value ofyx 6 iyy , yx,y

being an electron’s velocity components. The expectat
value should be calculated with Floquet-Bloch stat
[13,14],

C´s$kd,$ks$r, td ­ exp

µ
i

$k ? $r
h̄

∂
exp

µ
2i

´s $kdt
h̄

∂
F´s$kd,$ks$r , td ,

where $k is the quasimomentum vector, and$r is the
position vector. Calculating the harmonic emission pro
ability, one has to take the integral over spatial va
ables within the unit cell, over time, and over all th
values of quasimomentum up to the Fermi surface. The
fore, the relevant DS operator should commute w
the Floquet-Bloch Hamiltonian,Ĥ FB

$k
s$r , td ; exps2i $k ?

$ryh̄dĤfs$r , td expsi $k ? $ryh̄d rather than with the Floquet
Hamiltonian. The expression for thenth harmonic emis-
sion probability takes the following form:

ssnd ~ n2j·F´s$kd,$kj f̂sndjF´s$kd,$k¶j2, (8)
where the triple bra-ket notation,· · · · ¶, stands for the
integration over the extended Hilbert space and over
values of the quasimomentum,$k, up to the Fermi surface,
and
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f̂
snd
6 ­ exps2invtd exp

µ
2i

$k ? $r
h̄

∂ ∑µ
p̂x 2

e
c

Axstd
∂

6 i

µ
p̂y 2

e
c

Aystd
∂∏

exp

µ
i

$k ? $r
h̄

∂
­ exps2invtd exp

µ
2i

kr cosswk 2 wd
h̄

∂ ∑
h̄e6iw

µ
2i

≠

≠r
2

1
r

≠

≠w

∂
1

eE0

v
e6ivt

∏
exp

µ
i

kr cosswk 2 wd
h̄

∂
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wherek ; j $kj, wk ; arctanskyykxd. The new DS opera-
tor acting ins$r, $k, td space is composed of the rotation
the coordinate and quasimomentum vectors by the sa
angle and the appropriate translation in time:

P̂FB
N ­

µ
w ! w 1

2p

N
, wk ! wk 1

2p

N
,

t ! t 1
2p

Nv

∂
. (9)

The analysis of the HG functional [Eq. (8)] with respe
to the DS [Eq. (9)] results in the selection rulesidentical
to the ones obtained in the general case with the DS of
order N . However, the possible thin crystal symmetri
restrict the values ofN to 1, 2, 3, 4, or 6. Note that the
use of the current density instead of electron’s veloc
as an HG source (as in Ref. [13]) does not alter
selection rules.

The selection rules derived above hold, of course,
a general ionizing or dissociating system. Neverthele
we choose to illustrate them numerically using a simp
bound model described by the Hamiltonian of Eq. (
with V swd ­ 2sV0y2d fcossNfd 1 1g. It can serve as
a naive model of electronic motion in a cluster ofN
atoms arranging in a ring. The corresponding Floq
states were found by diagonalization of the time evoluti
operator. The latter was calculated using thest, t0d
method [4,15].

Most of the HG experiments are performed on t
rare gases and employ the laser frequencies much sm
than the first ionization energy of the atom. According
we have chosen our model potential parameters to

FIG. 1. HGS for a model ofN ­ 100 atoms, which are
placed equidistantly on a circle exposed to circularly polariz
field of the intensity 1.8 3 1013 Wycm2. The first high
harmonic has the frequency of99v ø 2 a.u.
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within the range of values characteristic of the rar
gas atoms:V0 ­ 0.6272 a.u.; r0 ­ Ns4.3357y2pd a.u.
The field parameters were chosen to beE0 ­ 2.2358 3

1022 a.u. and v ­ 0.02 a.u.ø 0.54 eV. The chosen
field strength corresponds to the relatively moderate fie
intensity of about1.8 3 1013 Wycm2. The HGS for
N ­ 100 is given in Fig. 1. As expected on the basis o
the selection rules, the harmonics produced are the 99
101st, 199th, 201st, . . . ones.

In order to study the stability of the spectrum to
weak DS-breaking perturbations we choose to repla
the circularly polarized field in the Hamiltonian [Eq. (2)]
by an elliptically polarized field, $E ­ E0 cossvtdx̂ 1

E0 sinsvt 1 udŷ. A similar deformation can account,
for example, for an imperfect orientation of a cluste
with respect to the laser light propagation direction
The results presented in Fig. 2 demonstrate that t
slN 6 1dth harmonics are by several orders of magnitud
more dominant than the rest within a finite range o
u. The dependence of the emission probabilities of th
harmonics, which are forbidden at circular polarization
on u in the smallu limit can be predicted by perturbation
theory. To the first order inu, the DS-breaking part of
the perturbation is given bys1y2dE0r0eu sinsw 1 vtd.
The analysis of this term with respect to its DS propertie
shows that only theslN 6 3dth harmonics are allowed
in the first order inu. Consequently, theslN 6 3dth
harmonic strengths vary asu2, while the others are

FIG. 2. Stability plot of the probability to generate the
symmetry-allowed 6th harmonic and the 4th, 5th, and 7
(symmetry-forbidden) harmonics. Note that (a)ss6d (circles)
is more dominant by several orders of magnitude than that
the symmetry-forbidden harmonics foru , 0.1 rad; (b) ss4d

(squares) varies initially asu2; (c) ss5d (diamonds) varies
initially as u4; (d) ss7d (triangles) varies initially asu6.
3745
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FIG. 3. The probability to get thenth harmonic as a function
of the numberN of the atoms which are placed equidistantl
on a circle (a log-log plot). Circles: the 51st harmonic (th
50th for N ­ 17); squares: the 76th harmonic; diamonds: th
101st harmonic; triangles: the 151st harmonic; stars: the 20
harmonic;3’s: the 301st harmonic. AsN increases the higher
harmonics are amplified.

expected to grow at least asu4. Actually, the analysis of
the second order correction shows that starting withN ­
7 some harmonics, e.g., theslNdth, grow even slower,
at least asu6. Our numerical results are found to be i
complete agreement with these predictions. It should
noted that for evenN ’s only odd harmonics appear in the
HGS at an arbitrary polarization due toG2 DS.

The results presented in Figs. 1 and 2 show that
DS based selection rules enable one to design a syste
target and a time dependent electric field) which filters o
the selected high harmonics only.

The fact that the system which possesses the
[Eq. (3)] acts not only as a filter but also as an amplifier
illustrated in Fig. 3. Our results show that the probabili
to generate the high harmonics increases as the numbe
the “atoms” in the cluster is increased.

The selection rules for HGS derived in the present Le
ter can be demonstrated in a wide variety of experimen
One possibility is to study the HGS of molecules posse
ing theNth order symmetry axis in a circularly polarize
field. In such a case, the target molecule must be orien
in the plane perpendicular to the light propagation dire
tion. Choosing a molecule possessing a dipole mom
along the symmetry axis, such as C5H5Tl sC5yd, would al-
low one to orient it properly by a dc electric field withou
breaking the DS. Another possibility is to study the HG
of molecules of high symmetry, e.g.,C60. A promising
possibility which avoids the orientation problem is that o
thin crystals possessingCN axes. TheN # 6 restriction
of plane groups can be overcome, if one goes beyond
dipole approximation validity regime. For example, on
can direct alinearly polarized incident light in the plane
of a thin crystal. Tuning the laser wavelength to be
3746
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multiple of the lattice constant along the propagation d
rection,l ­ Na, would result, in principle, in a formation
of a system with an arbitrarily high DS. Considering th
selection rules for harmonic emission due to the time d
pendent dipole moment in the incident beampropagation
direction, one finds [16] that only very high energy pho
tons, if any, will be emitted perpendicularly to the thi
crystal plane.
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