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Stability of Bubble Nuclei through Shell Effects
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We investigate the shell structure of bubble nuclei in simple phenomenological shell models using

Strutinsky’s method. Shell energies down-tel0 MeV are shown to occur for certain magic nuclei.
Estimates demonstrate that the calculated shell effects for certain magic numbers of constituents are
probably large enough to produce stability against fissionand 8 decay. No bubble solutions are
found for mass numbet = 450. [S0031-9007(97)05077-1]

PACS numbers: 21.10.Sf, 24.10.Nz, 47.20.Dr, 47.55.Dz
The possibility that nuclei could exist in the form of a depend on the innefR,) and outer(R,) radius of the

(spherical) bubble or in the form of a toroid was pointedbubble nucleus. Adopting the conventional saturation
out long ago [1,2]. Within the liquid drop (LD) model, condition, the two radii are related by the equation,

nuclei of these shapes turn out to be unstable with respect R3 — R3 = R3 )
to deformations. Shell effects may, however, stabilize 13 ! 2 ) 0 i
such nuclei against deformation. where Ry = ryA'/? is the radius of a compact spherical

In a series of papers, Wong [3] investigated shell effectducleus of the same mass. We describe the shape of the
for toroidal and bubble-shaped nuclei using Strutinsky’sPUbble nucleus by the rati between the volume of the
shell correction method. He restricted his attention td0l€ @nd the volume of the entire bubble,
known nuclei near the valley oB stability and found ] R3
that for certain doubly magic nucléfgoHg 2o, 5% Cexo), fi= R (3)
spherical bubble solutions with a very small inner radius
(ratio of inner to outer radius=0.07) turned out to be
the ground state. Indications that bubble solutions migh
exist were also found in mean field calculations [4] and
for stellar matter at finite temperature [5]. More recently,
Moretto et al. [6] showed in a classical model that LD

bubbles at finite temperature may be stabilized by Alfission for fissility parametersXy > 1. Nevertheless

lntﬁ]rr:ﬁgvarré(;;ﬁ:es: u;?. we study shell effects for nuclea‘?’tability can be produced by shell effects.
P Paper, y As two extreme and simple cases of nuclear single

?Zu)bzljrsntigrsaezzgﬁginrancgoens?;err]:glt eri:]e) c?r?(? tE(reofnnow article potentials, we considered the shell effects in an
9 y bey nfinite square well and in a harmonic oscillator:

nuclei. Bubble solutions for such nuclei were already

Within the pure LD model, the energy of spherical
ubble nuclei becomes smaller than the energy of a
ompact spherical nucleus for fissility paramet&gs>

2.02 (see Refs. [3,7]). These bubble solutions are not
stable with respect to deformations [3] in the same way as
the compact spherical liquid drops are not stable against

found by Swiatecki [7] in the frame of the LD model and V(r) = [ —Vo forR, <r <R 4)
by Myers and Swiatecki [8] in the Thomas-Fermi model. o0 otherwise  °

Like Wong, we make use of Strutinsky’s shell correction Mo?

method [9]. We show that the shell energy may become Vir) = =Vy + (r — R). (5)

as large as—40 MeV for certain magic numbers of the
nuclear constituents and thgt nuclear bu_bblles may thushe depthV, > 0 has no influence on the shell correction
become stable or very long lived against fission and othegnergy and can thus be put equal to zero. The center of
decay modes. the oscillator potential is chosen to be
In Strutinsky’s method [9], the total binding energy
_ R, + Ry
E of a nucleus (neutron numbe¥, proton numberZ, R = — (6)
nucleon number) of a given shape is given as a sum The oscillator frequency is chosen in such a way that
of the liquid drop (LD) energy£Lp(N, Z) and the shell or 1req W . y
correction energy Exen the rms deviation frpm the sphere of radiRiss the same
she when calculated with the shell model wave function and
E(N,Z) = ELp(N,Z) + 8Eqen(N,Z). (1)  with the LD density

_ D)2 _ _ D)2
The shell correction energy has the well-known form [9]. ((r =R)))sm = {(r = R)")Lp . (7
We study the total energy, and especially the shell We have to add a spin-orbit term to the central potential
correction energy, of spherical nuclear bubbles. Thé4) or (5). We use the conventional form in the Skyrme
single particle energies,, as well as the LD energy, approach [see Eq. (5.103) in Ref. [10]],
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‘/}so = Vso(r)/l\' s (8) eigenvalues and eigenfunctions are obtained by numeri-
) 3 1 ap(r) cally satisfying the boundary conditions, and for the har-
Vso(r) = WO , (9)  monic oscillator (5) we used the WKB approximation.
roor Results within the pure LD model are shown in
wherep(r) is the nuclear den5|ty distribution. We chooseFig. 1. The LD parameters are taken from Ref. [12].
the value Wy = 120 MeVfm> given in Ref. [10] and Each point on the equipotential lines corresponds to a
neglect the isospin dependence which is recently undegpherical bubble solution as given by the LD model. It
debate [11]. should be noted that the largest energy gains per particle
For the total density (r) which appears in the expres- occur for nucleon number$200 < A < 2000 and the
sion for the spin-orbit potentidlso(r) [Eq. (9)], we used  corresponding proton numbedas < Z < 400. Some of

the following ansatz: 5 the isobaric lines are cut twice by the same equienergy
r — R line. If the binding energy per particle in between these
p(r) = po| 1 =2 R — R, 10 two points is smaller, g3-stable isobar lies somewhere

on this section. Of course, this consideration is thwarted
by the fact that the LD bubbles are all unstable against
fission. In the LD model, the (spherical) bubble solutions
are saddle points, not minima.

The LD results (and, consequently, also the result on
the total binding energy) depend sensitively on the value
?f the surface constarat.

where po = 0.17 fm~3 and R is given by Eq. (6). For
simplicity we have assumed that the proton and neutrop
densities, p, and p,, are proportional toZ and N,
respectively.

It is seen from (9) that the sign of the spin-orbit
potential is opposite in the inner and outer surface region
of the bubble nucleus. Consequently, the magnitude o
the spin-orbit splitting is smaller for bubble nuclei than

for normal ones. We, therefore, treat the spin-orbit term T3 T r 512 Lo
in perturbation theory. The eigenenergies,; of the e //I/ - /y Vet
single particle (s.p.) Hamiltonian, including the spin-orbit / // \ / ohii
potential (8) and the unperturbed eigenvalugg, are @ 2h 912
related by the equation 45 s / | /'/ 3595
o Ty ' TR ~Q~,~ '/l/ [i4

€nlj &n t <‘¢//nl.]m|VSO|¢’nljm> 3h9/2 2(7/2

X[j(j+1)—1+1)~-13], @1

/2
where(n — 1) represents the number of radial nodes (not s 3521155/52
counting zeros at = 0,%) andl, j, m are the orbital and 40 3978/ wor |
total angular momentum and its projection, respectively. 27 gy
The mean valuéy,;jn|Vsol¥.n) depends only on the ST
unperturbed s.p. density = arse/
(}’) m§ a8 1023/2
” 1 Q —____1025/2
Pnl(”) ¢nljn1(r)¢nl]m (I') . (12) N<\£ 35 -13,?2%%/ =
. L S 2@%2 />
The functionsu,,(r) satisfy the radial Schrodlnger equa- ; zsji
tion with eigenvalues,;. For the infinite square well the 1m19/2\ 340 w2
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FIG. 2. Level scheme as a function of the hole fraction
FIG. 1. Lines of constant LD binding energy per particle asf = (R,/R,)* for the infinite square well plus the spin orbit
a function of(N,Z). Each point on the lines corresponds to aterm [Eq. (4) and Egs. (8)—(10)]. The energy unit used takes
bubble solution within the LD model. The straight lines in the into account that the eigenvalues of the infinite square well
plot represent isobars. scale withA =%/,
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In Fig. 2 we show the spectrum of single particle levelstotal LD binding energy of the spherical bubble nucleus is
for the shifted infinite square well with a spin-orbit term. put equal to zero. The LD part of the energy decreases
The levels are shown as a function of the hole fractiormonotonically ag 3,| increases. Adding the shell energy
parameterf [see Eq. (3)]. Asf increases, the diameter 6 Eg,.;; with Swiatecki’'sB, dependence produces a valley
d = R; — R, of the bubble layer decreases. Increasingof about—30 MeV depth. The barriers on both sides of
the number of radial nodes for given orbital angularthe minimum are at about an energy-68.9 MeV which
momentum! thus costs an energy which rises steeply adeaves us with a barrier height of abokd MeV. This
a function of f. Augmenting a giveri value by one for order of magnitude of the fission barrier implies an almost
givenn and given parametef implies an increase in the vanishing probability for spontaneous fission.
centrifugal energy, which is larger, the larger thealue What about the other decay modesB decay will
becomes. Magic humbers come about by the interplaymply that the system moves along isobaric lines in the
between levels,;; with n = 2, which rise rapidly as a (N, Z) plot, towards lower energy. Figure 1 is particularly
function of f and levelse,;;, which depend more gently instructive in this respect: If a given isobaric straight
on f with a tendency to decrease with due to the line cuts a line of constant binding energy twice and if,
diminishing centrifugal energy. The level scheme for theat the same time, the binding energy between the two
harmonic oscillator has qualitatively very similar features.points of intersection is lower, g8-stable nuclear bubble

For both potentials, we observe that the spin-orbit splitlies in between. In Fig. 1 this happens to be the case
ting is often reversed as compared to the case of normdébr A = 600. If, on the other hand, the energy keeps on
nuclei. The reason was already given above. The shelbwering along a given isobaric direction, thg decays
correction energy Eqe11 is shown as a function af (or  may finally lead to a nuclear composition where bubbles
Z) ata given value of = 0.28 for the infinite square well cease to exist. Thus there are cases where bubble nuclei
in Fig. 3. The eigenenergies of the square well scale wittmay disintegrate by a series gfdecays and others where
A~2/3 which is taken into account by the energy unit. ltthe 8 decays make them approach a stable composition.
is seen from Fig. 3 that the shell energy may produce enof course, the simple picture shown in Fig. 1 has a more
ergy gains up to—20 MeV for one sort of particles. Of complicated appearance when the shell correction energy
course, double magic shell closures can only occur if thés added.
two magic numbers correspond to the safmealues. The o decay, which limits the lifetime of the presently

In Fig. 4 we display lines of equal energy gain by known superheavy nuclei, certainly may also limit the
formation of a bubble. As a reference we use the energiifetime of bubble nuclei. The penetrability of the
of a spherical LD of the same number of neutrons andCoulomb barrier for arx particle depends exponentially
protons. It is seen that the gain in binding energy mayon the Coulomb potential at = R;, which has the value
amount to severdl00 MeV. 2Zeo/R;. The higher the Coulomb potential, the lower

We still have to deal with the crucial question of the a-decay probability. It can be found that, on the
stability of the bubble solutions with respect to shapeone hand, the typical energy of the outgoiagparticle
deformations. We describe the deformation dependends about18 MeV as compared to about MeV in the
of the shell correction energy as suggested by Myers andase of actinides, but, on the other hand, the effective
Swiatecki [13]. In Fig. 5 we display the dramatic effect potential barrier seen by the particle is higher by a few
of the shell correction on the binding energy of a bubbleMeV than for typical actinide nuclei, due to the effect of
nucleus as a function of the quadrupole deformation. The
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FIG. 3. Shell correction energy as a function®f(or N) for correction energy was calculated with the infinite square well
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of interest to investigate whether shell effects favor the
bubble topology for certain mesoscopic systems.
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