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Stability of Bubble Nuclei through Shell Effects
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We investigate the shell structure of bubble nuclei in simple phenomenological shell models u
Strutinsky’s method. Shell energies down to240 MeV are shown to occur for certain magic nuclei.
Estimates demonstrate that the calculated shell effects for certain magic numbers of constituent
probably large enough to produce stability against fission,a, and b decay. No bubble solutions are
found for mass numberA # 450. [S0031-9007(97)05077-1]

PACS numbers: 21.10.Sf, 24.10.Nz, 47.20.Dr, 47.55.Dz
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The possibility that nuclei could exist in the form of a
(spherical) bubble or in the form of a toroid was pointe
out long ago [1,2]. Within the liquid drop (LD) model,
nuclei of these shapes turn out to be unstable with resp
to deformations. Shell effects may, however, stabiliz
such nuclei against deformation.

In a series of papers, Wong [3] investigated shell effec
for toroidal and bubble-shaped nuclei using Strutinsky
shell correction method. He restricted his attention
known nuclei near the valley ofb stability and found
that for certain doubly magic nucleis200

80Hg120,138
58 Ce80d,

spherical bubble solutions with a very small inner radiu
(ratio of inner to outer radiusø0.07) turned out to be
the ground state. Indications that bubble solutions mig
exist were also found in mean field calculations [4] an
for stellar matter at finite temperature [5]. More recentl
Moretto et al. [6] showed in a classical model that LD
bubbles at finite temperature may be stabilized by
internal vapor pressure.

In the present paper, we study shell effects for nucle
bubbles in a broad range of neutronsNd and proton
sZd numbers extending considerably beyond the know
nuclei. Bubble solutions for such nuclei were alread
found by Swiatecki [7] in the frame of the LD model and
by Myers and Swiatecki [8] in the Thomas-Fermi mode
Like Wong, we make use of Strutinsky’s shell correctio
method [9]. We show that the shell energy may becom
as large as240 MeV for certain magic numbers of the
nuclear constituents and that nuclear bubbles may th
become stable or very long lived against fission and oth
decay modes.

In Strutinsky’s method [9], the total binding energ
E of a nucleus (neutron numberN , proton numberZ,
nucleon numberA) of a given shape is given as a sum
of the liquid drop (LD) energyELDsN, Zd and the shell
correction energydEshell

EsN , Zd  ELDsN, Zd 1 dEshellsN, Zd . (1)

The shell correction energy has the well-known form [9]
We study the total energy, and especially the sh

correction energy, of spherical nuclear bubbles. T
single particle energiesen, as well as the LD energy,
0031-9007y98y80(1)y37(4)$15.00
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depend on the innersR2d and outersR1d radius of the
bubble nucleus. Adopting the conventional saturatio
condition, the two radii are related by the equation,

R3
1 2 R3

2  R3
0 , (2)

whereR0  r0A1y3 is the radius of a compact spherica
nucleus of the same mass. We describe the shape of
bubble nucleus by the ratiof between the volume of the
hole and the volume of the entire bubble,

f :
R3

2

R3
1

. (3)

Within the pure LD model, the energy of spherica
bubble nuclei becomes smaller than the energy of
compact spherical nucleus for fissility parametersX0 .

2.02 (see Refs. [3,7]). These bubble solutions are n
stable with respect to deformations [3] in the same way
the compact spherical liquid drops are not stable again
fission for fissility parametersX0 . 1. Nevertheless,
stability can be produced by shell effects.

As two extreme and simple cases of nuclear sing
particle potentials, we considered the shell effects in a
infinite square well and in a harmonic oscillator:

V srd 

(
2V0 for R2 , r , R1

1` otherwise , (4)

V srd  2V0 1
Mv2

2
sr 2 R̄d2. (5)

The depthV0 . 0 has no influence on the shell correction
energy and can thus be put equal to zero. The center
the oscillator potential is chosen to be

R̄ 
R1 1 R2

2
. (6)

The oscillator frequencyv is chosen in such a way that
the rms deviation from the sphere of radiusR̄ is the same
when calculated with the shell model wave function an
with the LD density

ksr 2 R̄d2lSM  ksr 2 R̄d2lLD . (7)

We have to add a spin-orbit term to the central potenti
(4) or (5). We use the conventional form in the Skyrm
approach [see Eq. (5.103) in Ref. [10] ],
© 1997 The American Physical Society 37
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bVSO  ṼSOsrdbl ? bs , (8)

ṼSOsrd 
3
2

W0
1
r

≠rsrd
≠r

, (9)

wherersrd is the nuclear density distribution. We choos
the value W0  120 MeV fm5 given in Ref. [10] and
neglect the isospin dependence which is recently und
debate [11].

For the total densityrsrd which appears in the expres
sion for the spin-orbit potential̃VSOsrd [Eq. (9)], we used
the following ansatz:

rsrd  r0

"
1 2 2

√
r 2 R̄

R1 2 R2

!2#
, (10)

where r0  0.17 fm23 and R̄ is given by Eq. (6). For
simplicity we have assumed that the proton and neutr
densities, rp and rn, are proportional toZ and N ,
respectively.

It is seen from (9) that the sign of the spin-orb
potential is opposite in the inner and outer surface regi
of the bubble nucleus. Consequently, the magnitude
the spin-orbit splitting is smaller for bubble nuclei tha
for normal ones. We, therefore, treat the spin-orbit ter
in perturbation theory. The eigenenergiesenlj of the
single particle (s.p.) Hamiltonian, including the spin-orb
potential (8) and the unperturbed eigenvalues´nl , are
related by the equation

enlj  ´nl 1 kcnljmjṼSOjcnljml
3 f js j 1 1d 2 lsl 1 1d 2

3
4 g , (11)

wheresn 2 1d represents the number of radial nodes (n
counting zeros atr  0, `) andl, j, m are the orbital and
total angular momentum and its projection, respective
The mean valuekcnljmjṼSOjcnljml depends only on the
unperturbed s.p. density

rnlsrd  c1
nljmsrdcnljmsrd 

u2
nlsrd
r2 . (12)

The functionsunlsrd satisfy the radial Schrödinger equa
tion with eigenvalué nl . For the infinite square well the

FIG. 1. Lines of constant LD binding energy per particle a
a function ofsN , Zd. Each point on the lines corresponds to
bubble solution within the LD model. The straight lines in th
plot represent isobars.
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eigenvalues and eigenfunctions are obtained by nume
cally satisfying the boundary conditions, and for the ha
monic oscillator (5) we used the WKB approximation.

Results within the pure LD model are shown i
Fig. 1. The LD parameters are taken from Ref. [12
Each point on the equipotential lines corresponds to
spherical bubble solution as given by the LD model.
should be noted that the largest energy gains per part
occur for nucleon numbers1200 # A # 2000 and the
corresponding proton numbers325 # Z # 400. Some of
the isobaric lines are cut twice by the same equiener
line. If the binding energy per particle in between thes
two points is smaller, ab-stable isobar lies somewhere
on this section. Of course, this consideration is thwart
by the fact that the LD bubbles are all unstable again
fission. In the LD model, the (spherical) bubble solution
are saddle points, not minima.

The LD results (and, consequently, also the result
the total binding energy) depend sensitively on the val
of the surface constants.

FIG. 2. Level scheme as a function of the hole fractio
f  sR2yR1d3 for the infinite square well plus the spin orbi
term [Eq. (4) and Eqs. (8)–(10)]. The energy unit used tak
into account that the eigenvalues of the infinite square w
scale withA22y3.
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In Fig. 2 we show the spectrum of single particle leve
for the shifted infinite square well with a spin-orbit term
The levels are shown as a function of the hole fractio
parameterf [see Eq. (3)]. Asf increases, the diamete
d  R1 2 R2 of the bubble layer decreases. Increasin
the number of radial nodes for given orbital angula
momentuml thus costs an energy which rises steeply
a function off. Augmenting a givenl value by one for
given n and given parameterf implies an increase in the
centrifugal energy, which is larger, the larger thel value
becomes. Magic numbers come about by the interp
between levelsenlj with n $ 2, which rise rapidly as a
function of f and levelse1lj , which depend more gently
on f with a tendency to decrease withf due to the
diminishing centrifugal energy. The level scheme for th
harmonic oscillator has qualitatively very similar feature

For both potentials, we observe that the spin-orbit spl
ting is often reversed as compared to the case of norm
nuclei. The reason was already given above. The sh
correction energydEshell is shown as a function ofN (or
Z) at a given value off  0.28 for the infinite square well
in Fig. 3. The eigenenergies of the square well scale w
A22y3 which is taken into account by the energy unit.
is seen from Fig. 3 that the shell energy may produce e
ergy gains up to220 MeV for one sort of particles. Of
course, double magic shell closures can only occur if t
two magic numbers correspond to the samef values.

In Fig. 4 we display lines of equal energy gain b
formation of a bubble. As a reference we use the ener
of a spherical LD of the same number of neutrons a
protons. It is seen that the gain in binding energy m
amount to several100 MeV.

We still have to deal with the crucial question o
stability of the bubble solutions with respect to shap
deformations. We describe the deformation dependen
of the shell correction energy as suggested by Myers a
Swiatecki [13]. In Fig. 5 we display the dramatic effec
of the shell correction on the binding energy of a bubb
nucleus as a function of the quadrupole deformation. T

FIG. 3. Shell correction energy as a function ofZ (or N) for
f  0.28 for the infinite square well.
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total LD binding energy of the spherical bubble nucleus i
put equal to zero. The LD part of the energy decrease
monotonically asjb2j increases. Adding the shell energy
dEshell with Swiatecki’sb2 dependence produces a valley
of about230 MeV depth. The barriers on both sides of
the minimum are at about an energy of23.9 MeV which
leaves us with a barrier height of about25 MeV. This
order of magnitude of the fission barrier implies an almos
vanishing probability for spontaneous fission.

What about the other decay modes?b decay will
imply that the system moves along isobaric lines in the
sN , Zd plot, towards lower energy. Figure 1 is particularly
instructive in this respect: If a given isobaric straight
line cuts a line of constant binding energy twice and if
at the same time, the binding energy between the tw
points of intersection is lower, ab-stable nuclear bubble
lies in between. In Fig. 1 this happens to be the cas
for A $ 600. If, on the other hand, the energy keeps on
lowering along a given isobaric direction, theb decays
may finally lead to a nuclear composition where bubble
cease to exist. Thus there are cases where bubble nuc
may disintegrate by a series ofb decays and others where
the b decays make them approach a stable compositio
Of course, the simple picture shown in Fig. 1 has a mor
complicated appearance when the shell correction ener
is added.

The a decay, which limits the lifetime of the presently
known superheavy nuclei, certainly may also limit the
lifetime of bubble nuclei. The penetrability of the
Coulomb barrier for ana particle depends exponentially
on the Coulomb potential atr  R1, which has the value
2Ze0yR1. The higher the Coulomb potential, the lower
the a-decay probability. It can be found that, on the
one hand, the typical energy of the outgoinga particle
is about 18 MeV as compared to about5 MeV in the
case of actinides, but, on the other hand, the effectiv
potential barrier seen by thea particle is higher by a few
MeV than for typical actinide nuclei, due to the effect of

FIG. 4. Lines of constant energy gainsDELD 1 dEshelld with
respect to the energy of a compact spherical LD. The she
correction energy was calculated with the infinite square we
potential.
39
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FIG. 5. LD energy (dashed line), shell correction energ
(dotted line), and total energy (solid line) as a function o
the quadrupole deformationb2 of the outer bubble surface
S1. The liquid drop energy was minimized with respect to
the deformationsb4 and b6 of the outer surface andb2 to b6
of the inner surface. The deformation dependence of the sh
correction was taken from Ref. [13].

larger proton numberZ. Consequently, thea decay is
not expected to be a mode of rapid decay.

It is intriguing to imagine that stable or at least very
long-lived bubble nuclei may exist. Their properties
would be a fascinating subject of research. Unfortunate
the masses and charges of the best candidates for bub
structure are so high that there is no hope to produce the
More careful work with the full Hartree-Bogoliubov
theory is of course necessary, especially for determinin
the lower limits of mass and charge numbers of the
objects. Even if bubble nuclei can never be made in
terrestrial laboratory, they might play a role in neutro
stars [5].

Finally, there may be bubble structures for mesoscop
systems consisting of some 1000 atoms. This was alrea
conjectured in Ref. [6]. We believe that it may also b
40
y
f

ell

ly,
ble
m.

g
se
a

n

ic
dy

e

of interest to investigate whether shell effects favor t
bubble topology for certain mesoscopic systems.
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