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Quantum Transport: The Link between Standard Approaches in Superlattices
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Theories describing electrical transport in semiconductor superlattices can essentially be divided in
three disjoint categories: (i) transport in a miniband; (ii) hopping between Wannier-Stark ladders; and
(i) sequential tunneling. We present a quantum transport model, based on nonequilibrium Green
functions, which, in the appropriate limits, reproduces the three conventional theories and describes the
transport in the previously inaccessible region of the parameter space. [S0031-9007(97)04960-0]

PACS numbers: 73.61.—r, 72.10.—d, 72.20.Ht

Ever since the pioneering work of Esaki and Tsu [1],For parabolic dispersiof, = i*k?/2m (with the effec-
which drew attention to the rich physics and potentialtive massn of the conduction band) we thus have a con-
device applications of semiconductor superlattices, thesstant density of states, = m/7h> per area and period.
man-made structures have remained a topic of intense r@he single-particle part of the Hamiltonian within nearest
search. Semiconductor superlattices have proven to bereighbor coupling is then given by
fruitful platform for studying a wide range of transport
phenomena, such as their intrinsic negative differential H = (Opm—-1 + Spm+)T1 + 8um(Ex — neFd).
conductivity [2], the formation of electric field domains Q)

[3], Bloch oscillations [4], as well as dynamical localiza-
tion [5] and absolute negative conductance [6] under exFurthermore we consider a phenomenological scattering
ternal irradiation, just to mention a few. process ab potentials with density, and matrix element

These phenomena depend crucially on the relations of...V /A, leading to a scattering rate/ro = I'o/h =
the energy scales involved, namely, the zero-field miniNymV?po/h between thek states within a given well.
band width (which is 4 times the interwell couplig),  Finally, we assume that the inscattering term is deter-
the scattering ratd’//i, and the potential drop per pe- mined by a Fermi distributiomy(E) = {1 + exd(E —
riod (= eFd, whereF is the applied static field and is ~ w)/kgT.]}~"' with electron temperatur&, and chemical
the superlattice period). Three distinct approaches haveotential . This assumption establishes internal energy
been used to describe transport in the parameter spatglaxation without specifying the corresponding processes
spanned by(T,, eFd,T'): miniband conduction (MBC) in detail. It has been implicitly used in the standard ap-
[1,7], Wannier-Stark hopping (WSH) [8], and sequentialproaches [7,8,10] as well.
tunneling (ST) [9,10]. While the ranges of validity of the ~ Miniband conduction—For zero electric field Eq. (1)
different approaches have been addressed qualitatively bis- diagonalized by a set of Bloch functions,(z) =
fore [11—14], no explicit calculations have been presented., e"¢?¥,(z) and the dispersion relation is given by the
where the different ranges can be identified and the tran-
sition between them can be studied. In the present Letter
we present such a calculation, based on nonequilibrium Tine /////
Green functions. The calculated current-field relations are A / z
shown to reflect the results from the simple approaches -~ =

0 I
(MBC, WSH, and ST, which will be reviewed below) in ‘1;‘”“” /

their respective ranges of validity sketched in the “phase /
diagram” presented in Fig. 1. While similar diagrams o
have been obtained in Refs. [13,14] from more phe- r_ //////

nomenological arguments, we will derive the borderlines
from our Green function analysis here.

Now, we introduce the model assumptions which will o, ,’o,o,
be used in each of the following approaches. We restrict /7/8/)%@ f _’. %
ourselves to the lowest miniband of the superlattice. Our 0 - T — >
basis sets are orthonormal wave functiohg(z)e’* /A 0 I 2r eFd
where thez direction denotes the growth direction. The

— _ ; ; FIG. 1. Regimes where the different transport models are
¥a(z) = W(z — nd) are localized in welh (for example, valid for low electron densities and low temperatures. (For

one may use the Wannier functions). Herendk denote  j,qyrative purpose we have translated the conditios> b in

two-dimensional vectors within thig, y) plane (with area  the text toa > 2b, wherea andb denote the respective energy
A) which is assumed to be separable from ft@irection.  scales involved.)

0031-900798/80(2)/369(4)$15.00 © 1998 The American Physical Society 369



VOLUME 80, NUMBER 2 PHYSICAL REVIEW LETTERS 12 ANUARY 1998

minibandE(q) = 2T, codgqd). The stationary Boltzmann wells are calculated in lowest order of the coupling yield-
equation for the distribution functiofi(g, k) is then ing [14,19,20],

i Bf(q,k) _ nF[E(C]) + Ek] - f(‘]sk) ) J(F) = ¢ dzkf ET%A(f,k)A(f + eFd, k)
R aq 1[E(q) + Ex] ’ 27 2mh

where the relaxation-time approximation corresponds to X [ne(E) = np(E + eFd)]. ®
our assumption on scattering mentioned above. For ouFhe carrier density is given by
scattering model, we obtain the relaxation timé&) = 7,
for E = 2|Ty| and 7(E) = w7,/ arcco$—E/2|T;|) for
—2|Ty| = E < 2|Ty|. Equation (2) is solved numerically
and the current is calculated from

Nop dzkf %np(f)A(f,k). (9)

" 2m?

This approach gives quantitative agreement with experi-
e f dzkfﬂ/d da F(q.K) dE(q) (3) ments in weakly coupled structures when realistic models
4730 g IR T for impurity and interface scattering are employed [10,14].
The electron density per period is given by The important issue to recognize is that these three
approaches treat scattering, external field, and coupling
5 /d within different approximations. MBC does not properly
Nop = 43 d kfw/d dq f(q.k) 4 include field-induced localization because of its inherent
assumption of extended states, WSH treats scattering in

and is used to determine the chemical potential [which i\ est order perturbation theory (in particular, there is
field dependent due to the energy dependeneef] for |\, hroadening of the states), and ST is explicitly low-

a given electron density. This approach can be extendegk; orer in the interwell coupling. In contrast to these

beyon_d the relaxation-.time approximation [15,16], but theshortcomings, a full quantum transport theory, based on
generic features remain unchanged.

. ) . nonequilibrium Green functions [21], is able to treat scat-
Wannier-Stark hopping=-In the presence of an electiic ojng electric field, and coupling on equal footing. Such

field, the eigenstates of the Hamiltonian become the Iocalém approach was performed in Ref. [13] using a basis of
ized Wannier-Stark states,

Wannier-Stark states and restricting the analysis to a high
2T, electron temperature. Here we work within the basis
¢(2) = Zjn—V<ﬁ>q'n(Z)’ (5} w,(z) and consider the general situation which allows an
i " ) analysis of transitions between the simplified approaches
with energy E, = —veFd where J,(z) is the Bessel \pc WsSH, and ST.
function of the first kind. Scattering causes hopping Nonequilibrium Green functions (NGF):Here the
between the different states. Within Fermi’s golden rule ¢ rrent and electron density are given by [19,21]
the current is given by

J(F) =

e 2
e 2T1> <2T1>T 1 J(F) = — | &’k =ReT\G,,,(1.1,k)}, (10)
JE) =D 1= DLl — | =— 2
") ZZ(:) 70 ;[ (eFd Nerd)] 22 2m f
1
X f A’k [np(Ex) — np(Ex + leFd)]. (6) Nap = 5= d’k Gy, (t,1,k), (11)

Here the terrT.)Z[J,,Jn_l]2 ari_ses due to the spatiel over_Iap where G;, (1,1, k) = i{at (', K)an(1,k)), and af(t,k)
of the Wannier-Stark functions, and the Fermi functionsand 4, (1, k) are the creation and annihilation operators
reflect our assumption regarding inscattering. The electrofpr the stateW,(z)e’® ™ /A in well n. We also need

density per period is given by the retarded Green functiorG'e.,(s,#,k) = —i®(r —
P ") {an(t,k), at(¢',k)}), where {A, B} denotes the anti-
Nop = poksT, In[l + exp( , ﬂ (7)  commutator. In the stationary state the Green functions

_ o _ ~depend only on the time difference=r — ¢/, and we
which relatesu to Nop. Again, it is possible to generalize define the Fourier transformation via [21]
this approach to more realistic scattering mechanisms

[17,18]. K) — f i[E —eFd(n+m)/2)(+/ 1)
Sequential tunneling=In this approximation the phase Gn(E. K) dre
information is lost after each tunneling event between ad- X Gunlt,t — 7,K). (12)

jacent wells. The scattering within a well is treated self-

consistently by solving for the spectral functioh€E , k);  Without scattering between thie states and af’; = 0

in this work we use the self-consistent Born approximatiorthe Green functions are diagonal in the well index:
[19] for the self-energy. The transitions to neighboringGjs', (E,k) = 8., (E, k) with the free particle Green

n
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function g™ (E.k) = 1/(E — E; + i0"). The full 10

n

Green function is then determined by the Dyson equation,

l _
X [am,ﬁz $f1<f+eFd 2”,k>
[

% G;?,;(f + eFdl_Tm,kﬂ.
(13)

Within the self-consistent Born approximation for the
scattering the self-energy can be written as

T [epol /]
3

G (E k) = gfe‘<f + eFd =~ ,k)

ret = S'ret FIG. 2. Current-field relations calculated from nonequilibrium

S (E,K) = Bmn 2y (B K) + T18min + 11810, Green functions (NGF) in comparison with theqstandard
(14) approaches foN,p = 0.2Thpo and kg7, = 0.2;. For T, =
- 1.5Ty the current-field relation is also shown over a wider field

with 31(E, k) = Ng/AY ) V2GRL(E,K'). If the scat-  range in the inset. Here, one can see explicitly that the NGF
tering term3"®' is neglected, the solution corresponds toresult leaves the MBC curve fetf'd = 7, and approaches the
the Wannier-Stark states (5). On the other hand, neglect' 2nd WSH curves for large fields.
ing the couplingdl'; gives the spectral functions used in the
sequential tunneling model. Equations (13) and (14) aréarge fields. These results as well as further calculations
solved self-consistently fo6™'. ThenG= is calculated for kzT. < I', Nop < pol" are summarized by Fig. 1,

via the Keldysh equation [21], depicting the respective regions in parameter space, where
_ the different approaches approximate the NGF result.
G (E. k) =D Ge, <f 4 oeFgL— " ,k) Now we want to justify these ranges of validity by
’ m 2 studying the quantum mechanical correlation between the
_ m+ n wells » andm given by the retarded Green function. For
X 2;1[5 + eFd<m1 - >k} a constant scattering self-enerd¥f'(£,k) = —il'/2, of
Egs. (13) and (14), we have found an analytic solution
% Gf,,dvn<f + equ,k>. (15) . T a (e Ty o (o
; 2 Gm n(f’k) = Z m+n r-
. . . . ' af_eFd(z —a)—Ek+i§
According to our general assumption about inscattering we (16)

< < . .o . - . ><
repIgceEm(f,k) by its equilibrium value=2in (£) which is a superposition of broadened Wannier-Stark

Im{Z*'(E,k)}. Finally, the current and electron density ) .
m . . tates. The Wannier-Stark ladder becomes resolved if
are calculated via Egs. (10) and (11). The extension O?Fd > T. This defines the region of validity for the

this model to more realistic scattering processes is straigh{; - . A
forward by using the respective self-energies in Egs. (14 SH approach, as ”.‘d'cate‘j by _the right region in Fig. 1.
y Fourier transforming we obtain

and (15) and relaxing the assumption about inscattering;, ,
although the calculations become very tedious (see, e.dz,, (1,1 — 7,k) = — i@ (7)i" " !llmtm/2eFd=Ei(/ 1)
Ref. [22] where NGF has been applied to the resonant tun- r AT, . (eFd

. b 7/2h e era
neling diode). X e Jm_”[eFd S'”( 7 T)}

In Fig. 2 we display the evolution of the current-field (17)
relations for the different models from weakly to strongly
coupled superlattices. The curves for MBC, ST, and NGFHere the terms5,%, , become of the order af:*!, when
are qualitatively similar for all couplings. For low electric |Jo| = |J«|, i.e., |4T\/(eFd)sin(eFdT/2)| = /2. This
fields the current increases linearly with the electric field.can be used as an estimate for the boundary between lo-
Then there is a peak at intermediate fields, and negativealization and delocalization. Because of the exponen-
differential conductivity occurs at higher field. For small tial factor in Eq. (17) onlyr < 2i/I" is of relevance.
T, as well as for high fields the result from ST is in If eFd > I'" the magnitude of the sine takes the aver-
quantitative agreement with the NGF result, while theage value=1/+/2. Then we find2|T,| = eFd. If, on
results deviate for largef;. In contrast, the result from the other hand¢ Fd < I' we may replace sin) = x and
MBC is in quantitative agreement with the NGF resulthave2|T;| = T at the timer = V2 //I". From these es-
for large T, and smalleFd. The WSH result diverges timates we conclude that the states are essentially delo-
for eFd — 0 [17], but approaches the NGF result for calized if2|T,| > T" and2|T|| > eFd. In this case the
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037 (ay T,=0.5T; message of our analysis is that for wide regions in parame-
’ ter spacelfut not everywhepea simplified theory can be
found, which approximates the full theory satisfactorily.

— 0.2+ . . .

£ This should have important consequences for practical de-
% i vice modeling, where other complications, such as realistic
2 0.1 scattering mechanisms, must be considered as well.
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