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Quantum Transport: The Link between Standard Approaches in Superlattices
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Theories describing electrical transport in semiconductor superlattices can essentially be divided
three disjoint categories: (i) transport in a miniband; (ii) hopping between Wannier-Stark ladders; a
(iii) sequential tunneling. We present a quantum transport model, based on nonequilibrium Gre
functions, which, in the appropriate limits, reproduces the three conventional theories and describes
transport in the previously inaccessible region of the parameter space. [S0031-9007(97)04960-0]

PACS numbers: 73.61.– r, 72.10.–d, 72.20.Ht
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Ever since the pioneering work of Esaki and Tsu [1
which drew attention to the rich physics and potent
device applications of semiconductor superlattices, th
man-made structures have remained a topic of intense
search. Semiconductor superlattices have proven to
fruitful platform for studying a wide range of transpo
phenomena, such as their intrinsic negative differen
conductivity [2], the formation of electric field domain
[3], Bloch oscillations [4], as well as dynamical localiza
tion [5] and absolute negative conductance [6] under
ternal irradiation, just to mention a few.

These phenomena depend crucially on the relations
the energy scales involved, namely, the zero-field mi
band width (which is 4 times the interwell couplingT1),
the scattering rateGyh̄, and the potential drop per pe
riod (; eFd, whereF is the applied static field andd is
the superlattice period). Three distinct approaches h
been used to describe transport in the parameter sp
spanned bysT1, eFd, Gd: miniband conduction (MBC)
[1,7], Wannier-Stark hopping (WSH) [8], and sequent
tunneling (ST) [9,10]. While the ranges of validity of th
different approaches have been addressed qualitatively
fore [11–14], no explicit calculations have been presen
where the different ranges can be identified and the tr
sition between them can be studied. In the present Le
we present such a calculation, based on nonequilibr
Green functions. The calculated current-field relations
shown to reflect the results from the simple approac
(MBC, WSH, and ST, which will be reviewed below) i
their respective ranges of validity sketched in the “pha
diagram” presented in Fig. 1. While similar diagram
have been obtained in Refs. [13,14] from more ph
nomenological arguments, we will derive the borderlin
from our Green function analysis here.

Now, we introduce the model assumptions which w
be used in each of the following approaches. We rest
ourselves to the lowest miniband of the superlattice. O
basis sets are orthonormal wave functionsCnszdeisk?rdyA
where thez direction denotes the growth direction. Th
Cnszd ­ Csz 2 ndd are localized in welln (for example,
one may use the Wannier functions). Herer andk denote
two-dimensional vectors within thesx, yd plane (with area
A) which is assumed to be separable from thez direction.
0031-9007y98y80(2)y369(4)$15.00
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For parabolic dispersionEk ­ h̄2k2y2m (with the effec-
tive massm of the conduction band) we thus have a co
stant density of statesr0 ­ myp h̄2 per area and period
The single-particle part of the Hamiltonian within neare
neighbor coupling is then given by

ĤSL
n,m ­ sdn,m21 1 dn,m11dT1 1 dn,msEk 2 neFdd .

(1)

Furthermore we consider a phenomenological scatter
process atd potentials with densityNd and matrix element
dn,mVyA, leading to a scattering rate1yt0 ­ G0yh̄ ­
NdpV 2r0yh̄ between thek states within a given well.
Finally, we assume that the inscattering term is det
mined by a Fermi distributionnFsEd ­ h1 1 expfsE 2

mdykBTegj21 with electron temperatureTe and chemical
potentialm. This assumption establishes internal ener
relaxation without specifying the corresponding proces
in detail. It has been implicitly used in the standard a
proaches [7,8,10] as well.

Miniband conduction.—For zero electric field Eq. (1)
is diagonalized by a set of Bloch functionswqszd ­P

n einqdCnszd and the dispersion relation is given by th

FIG. 1. Regimes where the different transport models a
valid for low electron densities and low temperatures. (F
illustrative purpose we have translated the conditiona ¿ b in
the text toa . 2b, wherea andb denote the respective energ
scales involved.)
© 1998 The American Physical Society 369
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minibandEsqd ­ 2T1 cossqdd. The stationary Boltzmann
equation for the distribution functionfsq, kd is then

eF
h̄

≠fsq, kd
≠q

­
nFfEsqd 1 Ekg 2 fsq, kd

tfEsqd 1 Ekg
, (2)

where the relaxation-time approximation corresponds
our assumption on scattering mentioned above. For
scattering model, we obtain the relaxation timetsEd ­ t0

for E $ 2jT1j and tsEd ­ pt0y arccoss2Ey2jT1jd for
22jT1j # E , 2jT1j. Equation (2) is solved numerically
and the current is calculated from

JsFd ­
e

4p3h̄

Z
d2k

Z pyd

2pyd
dq fsq, kd

dEsqd
dq

. (3)

The electron density per period is given by

N2D ­
d

4p3

Z
d2k

Z pyd

2pyd
dq fsq, kd (4)

and is used to determine the chemical potential [which
field dependent due to the energy dependence oftsEd] for
a given electron density. This approach can be extend
beyond the relaxation-time approximation [15,16], but th
generic features remain unchanged.

Wannier-Stark hopping.—In the presence of an electric
field, the eigenstates of the Hamiltonian become the loc
ized Wannier-Stark states,

fnszd ­
X
n

Jn2n

µ
2T1

eFd

∂
Cnszd , (5)

with energy En ­ 2neFd where Jnszd is the Bessel
function of the first kind. Scattering causes hoppin
between the different states. Within Fermi’s golden ru
the current is given by

JsFd ­
X
l.0

l
e
t0

X
n

∑
Jn

µ
2T1

eFd

∂
Jn2l

µ
2T1

eFd

∂∏2 1
2p2

3
Z

d2k fnFsEkd 2 nFsEk 1 leFddg . (6)

Here the term
P

fJnJn2lg2 arises due to the spatial overla
of the Wannier-Stark functions, and the Fermi function
reflect our assumption regarding inscattering. The elect
density per period is given by

N2D ­ r0kBTe ln

∑
1 1 exp

µ
m

kBTe

∂∏
, (7)

which relatesm to N2D . Again, it is possible to generalize
this approach to more realistic scattering mechanis
[17,18].

Sequential tunneling.—In this approximation the phase
information is lost after each tunneling event between a
jacent wells. The scattering within a well is treated se
consistently by solving for the spectral functionsAsE , kd;
in this work we use the self-consistent Born approximati
[19] for the self-energy. The transitions to neighborin
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wells are calculated in lowest order of the coupling yiel
ing [14,19,20],

JsFd ­
e

2p2

Z
d2k

Z dE

2p h̄
T2

1 AsE , kdAsE 1 eFd, kd

3 fnFsE d 2 nFsE 1 eFddg . (8)

The carrier density is given by

N2D ­
1

2p2

Z
d2k

Z dE

2p
nFsE dAsE , kd . (9)

This approach gives quantitative agreement with expe
ments in weakly coupled structures when realistic mod
for impurity and interface scattering are employed [10,14

The important issue to recognize is that these thr
approaches treat scattering, external field, and coupl
within different approximations. MBC does not properl
include field-induced localization because of its inhere
assumption of extended states, WSH treats scattering
lowest order perturbation theory (in particular, there
no broadening of the states), and ST is explicitly low
est order in the interwell coupling. In contrast to thes
shortcomings, a full quantum transport theory, based
nonequilibrium Green functions [21], is able to treat sca
tering, electric field, and coupling on equal footing. Suc
an approach was performed in Ref. [13] using a basis
Wannier-Stark states and restricting the analysis to a h
electron temperature. Here we work within the bas
Cnszd and consider the general situation which allows
analysis of transitions between the simplified approach
MBC, WSH, and ST.

Nonequilibrium Green functions (NGF).—Here the
current and electron density are given by [19,21]

JsFd ­
e

2p2

Z
d2k

2
h̄

RehT1G,
n11,nst, t, kdj , (10)

N2D ­
1

2p2

Z
d2k G,

n,nst, t, kd , (11)

where G,
m,nst, t0, kd ­ ikay

n st0, kdamst, kdl, and ay
n st, kd

and anst, kd are the creation and annihilation operato
for the stateCnszdeisk?rdyA in well n. We also need
the retarded Green function,Gret

m,nst, t0, kd ­ 2iQst 2

t0d khamst, kd, ay
n st0, kdjl, where hA, Bj denotes the anti-

commutator. In the stationary state the Green functio
depend only on the time differencet ­ t 2 t0, and we
define the Fourier transformation via [21]

Gm,nsE , kd ­
Z

dt eifE 2eFdsn1mdy2g sty h̄d

3 Gm,nst, t 2 t, kd . (12)

Without scattering between thek states and atT1 ­ 0
the Green functions are diagonal in the well inde
Gret

m,nsE , kd ­ dm,ngret
n sE , kd with the free particle Green
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function gret
n sE , kd ­ 1ysE 2 Ek 1 i01d. The full

Green function is then determined by the Dyson equatio

Gret
m,nsE , kd ­ gret

m

√
E 1 eFd

m 2 n
2

, k

!

3

"
dm,n 1

X
l

S
ret
m,l

√
E 1 eFd

l 2 n
2

, k

!

3 Gret
l,n

√
E 1 eFd

l 2 m
2

, k

!#
.

(13)

Within the self-consistent Born approximation for th
scattering the self-energy can be written as

Sret
m,nsE , kd ­ dm,nS̃ret

n sE , kd 1 T1dm11,n 1 T1dm21,n ,
(14)

with S̃ret
n sE , kd ­ NdyA

P
k0 V 2Gret

n,nsE , k0d. If the scat-
tering termS̃ret

n is neglected, the solution corresponds
the Wannier-Stark states (5). On the other hand, negle
ing the couplingT1 gives the spectral functions used in th
sequential tunneling model. Equations (13) and (14) a
solved self-consistently forGret. ThenG, is calculated
via the Keldysh equation [21],

G,
m,nsE , kd ­

X
m1

Gret
m,m1

µ
E 1 eFd

m1 2 n
2

, k
∂

3 S̃,
m1

∑
E 1 eFd

µ
m1 2

m 1 n
2

∂
, k

∏
3 Gadv

m1,n

µ
E 1 eFd

m1 2 m
2

, k
∂

. (15)

According to our general assumption about inscattering
replaceS̃,

msE , kd by its equilibrium value22inFsE d 3

ImhS̃ret
m sE , kdj. Finally, the current and electron densit

are calculated via Eqs. (10) and (11). The extension
this model to more realistic scattering processes is straig
forward by using the respective self-energies in Eqs. (1
and (15) and relaxing the assumption about inscatteri
although the calculations become very tedious (see, e
Ref. [22] where NGF has been applied to the resonant tu
neling diode).

In Fig. 2 we display the evolution of the current-field
relations for the different models from weakly to strongl
coupled superlattices. The curves for MBC, ST, and NG
are qualitatively similar for all couplings. For low electric
fields the current increases linearly with the electric fiel
Then there is a peak at intermediate fields, and negat
differential conductivity occurs at higher field. For sma
T1 as well as for high fields the result from ST is in
quantitative agreement with the NGF result, while th
results deviate for largerT1. In contrast, the result from
MBC is in quantitative agreement with the NGF resu
for large T1 and smalleFd. The WSH result diverges
for eFd ! 0 [17], but approaches the NGF result fo
n,
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FIG. 2. Current-field relations calculated from nonequilibrium
Green functions (NGF) in comparison with the standa
approaches forN2D ­ 0.2G0r0 and kBTe ­ 0.2G0. For T1 ­
1.5G0 the current-field relation is also shown over a wider fiel
range in the inset. Here, one can see explicitly that the NG
result leaves the MBC curve foreFd * T1 and approaches the
ST and WSH curves for large fields.

large fields. These results as well as further calculatio
for kBTe , G, N2D , r0G are summarized by Fig. 1,
depicting the respective regions in parameter space, wh
the different approaches approximate the NGF result.

Now we want to justify these ranges of validity by
studying the quantum mechanical correlation between
wells n andm given by the retarded Green function. Fo
a constant scattering self-energyS̃ret

n sE , kd ­ 2iGy2, of
Eqs. (13) and (14), we have found an analytic solution

Gret
m,nsE , kd ­

X
a

Jm2as 2T1

eFd dJn2as 2T1

eFd d

E 2 eFds m1n
2 2 ad 2 Ek 1 i

G

2

,

(16)

which is a superposition of broadened Wannier-Sta
states. The Wannier-Stark ladder becomes resolved
eFd ¿ G. This defines the region of validity for the
WSH approach, as indicated by the right region in Fig.
By Fourier transforming we obtain

Gret
m,nst, t 2 t, kd ­ 2 iQstdin2meihfsm1ndy2geFd2Ek j sty h̄d

3 e2Gty2 h̄Jm2n

∑
4T1

eFd
sin

µ
eFd
2h̄

t

∂∏
.

(17)

Here the termsGret
n61,n become of the order ofGret

n,n when
jJ0j ø jJ61j, i.e., j4T1yseFdd sinseFdty2dj ø

p
2. This

can be used as an estimate for the boundary between
calization and delocalization. Because of the expone
tial factor in Eq. (17) onlyt , 2h̄yG is of relevance.
If eFd . G the magnitude of the sine takes the ave
age valueø1y

p
2. Then we find2jT1j ø eFd. If, on

the other hand,eFd , G we may replace sinsxd ø x and
have2jT1j ø G at the timet ­

p
2 h̄yG. From these es-

timates we conclude that the states are essentially de
calized if 2jT1j ¿ G and2jT1j ¿ eFd. In this case the
371
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FIG. 3. Current-field relations for (a) high electron densit
(N2D ­ 2G0r0 and kBTe ­ 0.2G0) and (b) high electron tem-
perature (kBTe ­ 3G0 and N2D ­ 0.2G0r0) for the different
approaches. Note that the MBC result deviates from the NG
result ateFd * N2Dyr0 in (a).

miniband states form a useful basis as indicated in the u
per left part of Fig. 1. On the other hand, for2jT1j ø G

or 2jT1j ø eFd the correlation functionsGret
m,n vanish for

m fi n and the states are essentially localized so that
sequential limit can be used, as indicated in the lower p
of Fig. 1.

For larger electron densities the agreement between
different approaches becomes better as shown in Fig. 3
These results together with further calculations indica
that ST is also valid ifN2Dyr0 * 2jT1j, and MBC is
also valid ifN2Dyr0 * G andN2Dyr0 * eFd. A similar
trend is found for higher electron temperatures [Fig. 3(b
This agrees with the analytic findings of Ref. [13] wher
it is shown that NGF gives the same result as MBC in th
limit kBTe ¿ jT1j, eFd.

In conclusion, we have explicitly shown that a transpo
calculation based on nonequilibrium Green functions co
tains the simple approaches MBC, WSH, and ST as lim
ing cases. For low temperature and low electron dens
the ranges of validity of the simplified approaches a
depicted in Fig. 1, while for higher electron densities o
temperatures, these ranges are enlarged. The esse
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message of our analysis is that for wide regions in param
ter space (but not everywhere) a simplified theory can be
found, which approximates the full theory satisfactorily
This should have important consequences for practical d
vice modeling, where other complications, such as realis
scattering mechanisms, must be considered as well.
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