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Population Diffusion and Equipartition in Quantum Systems of Many Degrees of Freedom
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In the interaction picture, population transfer among coupled degrees of freedom is greatly enhanced
by resonances. We show that statistically the number of resonances increases rapidly with degrees of
freedom, changing the characteristic of population transfer from being bounded to diffusive. From the
diffusion rate we derive simple expressions for the time scales of energy relaxation and equipartition.
These expressions are supported by a wide range of experimental data. The analysis elucidates
guantitatively the dependence of equipartition on resonances. [S0031-9007(98)05893-1]
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Linearity is one of the most amazing features ofof the renormalized Feenberg perturbation series, the au-
quantum mechanics. The spectral decomposition theorethors have addressed important questions such as criterion
guarantees the existence of a complete orthogonal sef quantum ergodicity [2—5], energy relaxation rates [5,6],
of energy eigenstates. In the representation of energgnd probability distribution of the “evenness” of equipar-
eigenstates, populations of states do not change wittition [7]. In this paper we investigate the problem from
time; hence population transfer among genuine eigenstatesdifferent perspective. Based on the assumption that the
simply does not occur. However, in practice more ofterrelative phases between states are effectively ergodic in
the wave functions of eigenstates are too difficult to solvehe time scale of energy transfer, we study the evolution
or use. Therefore, nontrivial quantum dynamic system®f the state population rather than the wave function, ig-
are mostly described in the so-called interaction picturenoring any possible phase correlation effects. Using this
in which the Hamiltonian is decomposed into a solvablepopulation-only approach we derived a statistical descrip-
major partH, and a minor perturbative paft. In the tion of population transfer directly from the quantum equa-
interaction picture the physical system is represented btions of motion. For systems of many degrees of freedom,
eigenstates off,, which are coupled to each other by we analyze the probability distribution of resonance de-
V. In this picture the population changes with time. If tuning and its effect on the population transfer. If all the
H, consists of individually solvable parts representingresonance detunings are sufficiently large, energy could be
different degrees of freedom, the population change itocalized. On the contrary, if there exist sufficiently many
interpreted as energy transfer among degrees of freedomresonances of small detuning, a scaling relation between

Energy transfer among a group of coupled states ithe magnitude of population transfer and its duration can
greatly enhanced when they satisfy the resonance cote derived. The relation shows that in such systems popu-
dition n - E = 2Aw = 0, wheren = (ny,n,,...) is a lation transfer is a diffusion process in the Hilbert space
nonzero integer arrayE = (E, E», ...) is the energy of spanned by the eigenfunctions &f. The magnitude of
the coupled states, amtw is the resonance detuning. For the diffusion rate gives an estimation of the time scale for a
a simple system near the ground state, the number of irsystem to reach equipartition. The analysis shows how the
volved energy levels is small, the resonance condition iglistribution of resonance detunings dictates energy trans-
satisfied only by accident. But in systems of many defer and equipartition.
grees of freedom where the number of such combinations To facilitate the discussion, let us use a group of coupled
is large, it would not be a surprise to find many reso-anharmonic oscillators as the model system. The system
nances. In this case it is nearly impossible to track thés general enough that it covers a wide range of physical
population flow of individual states. Instead, a statisticalsystems in the real world, from vibration of polyatomic
description of the process is more useful. molecules to nonlinear waves. The Hamiltonian has the

Energy transfer in quantum systems has been treatddrm A = H, + V, where the unperturbed paf, =

with various models and methods [1]. In many workszj.v=1 ﬁwja;faj is a group of simple harmonic oscillators,

the general emphasis has been greater on the nonlin€ghy ' is the interaction Hamiltonian. An arbitrary wave
dynamics than on statistical average. Thus, these methgnction can be written in the following expansion:

ods rely heavily on numerical computation to go beyond N

the mathematical formalism. On the other hand, in a se-¥(¢) = Z Chyony () exp(—i Z njwjt) [ny - ny),
ries of recent papers Wolynes, Leitner, and Logan have ey j=1

brought novel approaches to the problem. By modeling (1)

multidimensional quantum systems with Cayley trees anavhereN is the degrees of freedom angthe energy level
analyzing their connectivity with self-consistent solutionsof the jth harmonic oscillator. The equation of motion
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reads ar from resonancedAp|* could be bounded to a near
d far f dAp|? Id be bounded
d o neighborhood of the initial poinp. But, as we shall
dt Conyoomy (1) = K Z Coyony (1) see, in systems of many degrees of freedom, due to the
""""”N large number of possiblA wmn, |Aw|min is likely orders
< exd i Z(m_ — et of magnitude smaller thaf. If AT is chosen such that
=i J e 1/Q < AT < 1/|Aw|min, it was shown that [8]
X le'“mNﬂl'"”N ’ (2) [ I_L?CAT) P(.X) dx = WP(O)AT (9)
where Vo oymomy = {mi,...,mylVIng,...,ny).  TO lel=[AwImin *

simplify the notation, let us defin®mn = Vi omynyeny,  SINCE > |onm Vinnl> = 2 mn Pom Vinn)? = 2(V)?,
Awmn EZ;V:l(mj — nj)@j, Cm = Cpyemy, Cn =Chp,..ny,  Where(V) is the expectation value of, from Egs. (6)
and pym = CyCh, Where Awny IS the detuning of a and (7)

particular resonance._ In this simplified notation, |Ap|* = LI;(O)W)ZAT_ (10)
d i iAwmnt . . h
7 Pmm = 2Rg — o D pamVmne™e™ 1. (3)  The scaling relation betwedd p|?> and AT shown above
n

belongs to that of the random walk, and thus establishes

Assuming the perturbation is sufficiently weak, so thatie giffusive character of the population transfer with
the change ofpnm With time is much slower than that e \cion raten = 87 P(0) (V)2 /A2,

of the phase of the wave functions, one may tgah Thus, it is clear that the magnitude pfw|mn deter-

as constants witr}in a short period of observatidh and  ines the character of the population transfer process.
integrate Eq. (3) fromo to 7o + AT. Diffusion dominates when there exist sufficiently many
~ 1 Pnm Vimn resonances of small detuning. This is highly probable in
Apmm 2R .
h T Awmn large systems. It should be noted that here the choice of
Aot iAo (to - AT) the coarse graining paramet®f is important. IfAT is
X (e!Reomt — g!BemiTRU) 10 (4)  too small, the correlation between consecutive points in
) . time is so strong that one falls back to the equation of mo-
Definep to be the array of populatiopmm, the total mean i \yhereas ifAT is too large, one may not be able to
square change gf is deduce a useful correlation. Only in the appropriate time
Ap|? = Z(Apmm)2 scalel/Q < AT < 1/|Aw|min the diffusive character is
p— exposed.
4 |pnm Vinn|* We have clarified the relation between resonance and
=73 > A2 [1 — cofAwmnAT)], (5)  population diffusion, and derived a simple expression for
m,n

where we have averam?ed over the starting time Be- the diffusion rate. Now we shall refine the theory to give
g g tm an account on how to calculatA | min from P(Awmn).

i'aus$tAan; de’;]ermln(;:‘/d by"fd frtom _thedulglp(te;turbed In order to do so, we shall first decompose the interaction
amiitoniantio, WNeréasymn IS determined by € non- . myijonian according to the order of interaction.

linear perturbatiorif/, it is reasonable to assume that, in ® N
general, the distributions af w,, and Vy, are indepen- V= Z v, = Z Z Vit l_[ rjl.f', (11)
dent. Therefore Eq. (5) can be simplified as q=3 4=3 o(l)=¢ j=1
4 2\ /1 — coOdAwmaAT) where eachr; is one of the canonical variables of the
|Ap|” = ) Z |oam Vinn| B . _ N ;
h2\ & Awl, jth degree of freedom, andl) = >, ; is the order of

(6) interaction. If all the|Awglmin = MiNo(m)+om=¢ |A@mnl
where the angle brackets on the right-hand side denow@e sufficiently small, o
averaging overAwpny,. In systems of many degrees of 2 _ 8P, (0) .
freedom the number of possibdewy,, is very large. The Ap] ; h2 (Vo aT, (12)

b itt int l. . . s

avelra_giggzwe varlT)en as an integra | — cosxAT) where P,(x) is the probability distribution 0fAwmy,

< > mn = ] — with o(m) + o(n) = ¢. It can be shown by probability

Awin [xI=lA®Imin X analysis [8] that
X P(x)dx, @) (Awy ) = 1

where P(x) is the distribution ofA @mn, and |A |min is AT 24CN P, (0)
the lower bound ofAwn,,. In our previous analysis on N . _
classical nonlinear systems [8], we have shown that ;V:g r](\e, <|tﬁ: zjlggiels;r:)? f?ggggﬁtloggféﬁedféﬁln&n

(13)

f Mp(x)dx - L, @) (|Awglmn) decreases rapidly with increasing it ap-
[x|=|A®|min x? |A@]|min{2 pears that diffusion occurs more likely for higher order
whereC = 3is aconstantanf is the width ofP(Awmn).  interactions. However, it should be noted tkgf) also

Hence, if |Aw|min is not small, meaning the system is decrease rapidly with increasimg Therefore, although it
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is true that the contribution of high order interactions toenergy range where the perturbation treatment is valid,
|Ap|? is more likely in the form of population diffusion, the ratio(V,)*/(H,)* decreases rapidly with, meaning
the corresponding diffusion rat, = 87 P,(0)(V,)?/A>  that it takes a much longer time for high order interactions
is not necessarily large enough to bear any practical sigo cause equipartition, even though for théfw, | is
nificance. Under the general condition ti} decreases smaller. Itis also important to note thAt depends on the
rapidly with ¢, it is seen that the dominant contribution choice ofH,. The cloself is to the full Hamiltonian, the
to the diffusion rate comes from the smallestor which  smaller(V)?/{H,)*>. Therefore, in discussing the energy
|Aw,|min Is small enough that a coarse graining time scaleelaxation or equipartition problem one must specify the
AT satisfyingl/Q, < AT < 1/|Awylmin can be found. basis set as well as the way energy is deposited initially.
The scaling relation ofAw,|min in Eq. (13) reveals Ambiguity in these respects has long been a source of
that it does not take a larg¥ to make the population controversy.
transfer diffusive. Let us requirR\w,|min = 1074Q to It might seem strange that Eq. (15) does not depend on
leave plenty of room for the choice &7, and note that #, given that it is derived directly from quantum equations
for eveng, the peak ofP,(Aw,) is atAw, = 0, therefore  of motion. This is because for systems with many coupled
P,(0)Q) = 1. Forg = 4 the requirement i&% = 13. In  degrees of freedom the diffusion rate and the volume
the case of vibrational degrees of freedom of polyatomiof the p space to be filled up are both proportional to
molecules, it means the molecule is larger than 5 atomd./#%. The dependence oh thus cancels. However,
This simple calculation explains why statistical theories(V,)?/{H,)*> may depend orfi implicitly, depending on
(such as the Rice-Ramsperger-Kassel-Macus theory) wotkow other parameters (average energy, frequency, spring
well in predicting the unimolecular reaction rates and theconstant, equivalent mass) are scaled ith
energy distribution of the products for molecules larger Despite its formal similarity to Fermi’'s golden rule,
than 5 atoms [9]. It has been a surprise that statisticatq. (15) is much more general and carries much more in-
mechanics can be applied to systems of so few degredsrmation. The golden rule is derived under the condition
of freedom. Yet from our analysis, it is seen that whenthat the population of the initial state is not appreciably de-
the internal energy is large enough to make the couplingleted, thus it is not valid beyond the short time limit. In
between degrees of freedom significant, as is the cadeq. (15) the roles of degrees of freedom and average en-
for highly excited molecules, rapid population diffusion ergy in equipartition are apparent, whereas the golden rule
is anticipated. The population diffusion can render theonly gives the initial energy relaxation rate of a particu-
molecule ergodic before reactions take place, justifyindar energy eigenstate, not the equipartition time scale that
the application of statistical mechanics. depends on average energy and degrees of freedom. Nor
The relation between population diffusion and reso-does the golden rule tell whether the population transfer
nances deciphered above reinforces the common notionill be bounded, as in, e.g., multiple quantum beats. By
that resonances are the foundation of the ergodicity ofocusing on the statistical dynamics and its scaling laws in
equipartition postulate. Yet, in the practical world whetherthe p space, as opposed to the energy relaxation rate of a
equipartition occurs depends on the time sdaldor the  single state, we have derived a much more useful equation.
system to reach equipartition. After clarifying the distinc- As a demonstration of the usefulness of Eq. (15), let us
tively different roles of resonances from nonlinear cou-treat the problem of intramolecular vibrational energy re-
pling, we are in a good position to estim&fe Consider distribution. The problem has attracted much interest since

the expectation value d¥,. the discovery that molecules can be dissociated by absorb-
R N o ing many infrared photons in the electronic ground state
(Ho) = annHOm, = Z Pnn Z njho; | = Nhaoi, [10]. Itwas hoped that mode-selective photochemistry can
n n j=1

(14) be done by use of high-power infrared lasers. However, it
B N ] was soon realized that energy in the pumped mode quickly
wherew = >, w;/N is the average frequency of the 0s- |eaks into other modes. Therefore itis crucial to excite the
cillators andi = 3., o(n)pan/N is the average quantum molecules faster than the time scale of energy relaxation
number per mode. In the classical limitz corresponds 7, DeterminingT, by experiments has been more diffi-
to the average action per degree of freedom. Let us defingit than one might expect. In the time domain, lack of a
T, to be the time for the diffusion to maké p| twice as  high-power tunable ultrashort-pulse infrared laser limited
large as a typical root-mean-square distajgde= VN7,  the energy range and molecular species of the experiments
so that at = T, most of thep space is filled up by popu- [11]. On the other hand, early frequency-domain experi-

lation diffusion. From Eg. (12) and Eq. (14) ments suffered from inhomogeneous broadening. Un-
D 2rN@2S  P.(0) (V)2 a_mblguous measurements on homogeneous linewidths of

L _ Zq_q e Zj] 2‘1( ) V) (15) vibrational states in diverse cases were reported only re-

T, Qlpl)? (Ho) cently [12—-16]. As we shall see, these measurements

The expression off, above is the same as that for provide direct tests of our theory.
classical nonlinear systems [8]. Its accuracy has been For practical purposes the energy levels of a vibra-
verified by large scale numerical simulations. In thetional mode near the ground state can be written as
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TABLE I. Comparison with experimental data.

Internal
energy @ Experimental
Molecule (cm™) it (cm™) T, Of 777~ data

SK 4000 0.42 631 0.40 cm! 0.25 cn! [13]
Sk 4253 0.45 631 5.9 ps 11 ps [11]
SFK 11500 1.2 631 3.3cm! 3cm! [12]
SFs 17000 1.8 631 7.2 cnm! 5cm ! [12]
SFK 32000 3.4 631 25 cmi! 12 cmi! [12]
Sk 34000 3.6 631 29 cm! 15 cm ! [13]
CFKl 5360 0.88 676 0.67 cm'! 1cm! [14]
CFKl 10720 1.8 676 2.7 cn! 5cm ! [14]
CFKl 19000 3.1 676 8.4 cn! 5cm ! [15]
CeHs 5186 0.12 1464 9.2 ps 7.6 ps [16]
CsHs 8165 0.19 1464 3.7 ps 6.2 ps [16]
CsHs 9158 0.2 1464 2.9 ps 3.6 ps [16]

E(n) = nhw + n’x, wherex is the anharmonicity con- fact is that as long as there is any tiny, high order per-
stant. For medium-sized molecules/(% w) is typically  turbation left out from the unperturbed Hamiltonian, there
~0.5%, therefore(V)?/(H,)* =~ (0.0057)>. Because the can be no ideal Schrédinger picture. For systems of a few
width of the distribution of vibrational frequency is about coupled degrees of freedom, the effect of such tiny pertur-
as large as the average frequency itself, from the centrélation is indeed negligible, because the population trans-
limit theorem P(0) = 0.2/@ for low order interactions fer is bounded to a small region in tlpespace. However,
[8]. Hence, in arough sense the only variable in Eg. (15)n systems of many coupled degrees of freedom, even tiny
is i, which is just the total vibrational energy divided by perturbations cause population diffusion. Therefore, in the
Nha. Note that because it should take a considerablyong run the partition function becomes valid.

longer time for the population to diffuse to the entjpe
space than just diffusing out of a pumped mode, it is rea-
sonable to postulate th#t /7T, is just the ratio of the typi-

cal mean square distance¥ii> and 722, respectively, in *Author to whom correspondence should be addressed.
the two cases. Hence Electronic address: jwang@ltl.iams.sinica.edu.tw
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