
VOLUME 80, NUMBER 17 P H Y S I C A L R E V I E W L E T T E R S 27 APRIL 1998

3

Population Diffusion and Equipartition in Quantum Systems of Many Degrees of Freedom
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In the interaction picture, population transfer among coupled degrees of freedom is greatly enhanced
by resonances. We show that statistically the number of resonances increases rapidly with degrees of
freedom, changing the characteristic of population transfer from being bounded to diffusive. From the
diffusion rate we derive simple expressions for the time scales of energy relaxation and equipartition.
These expressions are supported by a wide range of experimental data. The analysis elucidates
quantitatively the dependence of equipartition on resonances. [S0031-9007(98)05893-1]

PACS numbers: 05.30.Ch, 05.20.–y, 31.70.Hq, 82.20.Rp
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Linearity is one of the most amazing features o
quantum mechanics. The spectral decomposition theor
guarantees the existence of a complete orthogonal
of energy eigenstates. In the representation of ener
eigenstates, populations of states do not change w
time; hence population transfer among genuine eigensta
simply does not occur. However, in practice more ofte
the wave functions of eigenstates are too difficult to solv
or use. Therefore, nontrivial quantum dynamic system
are mostly described in the so-called interaction pictur
in which the Hamiltonian is decomposed into a solvab
major partĤ0 and a minor perturbative part̂V . In the
interaction picture the physical system is represented
eigenstates ofĤ0, which are coupled to each other by
V̂ . In this picture the population changes with time. I
Ĥ0 consists of individually solvable parts representin
different degrees of freedom, the population change
interpreted as energy transfer among degrees of freedo

Energy transfer among a group of coupled states
greatly enhanced when they satisfy the resonance c
dition n ? E ; "Dv ø 0, where n  sn1, n2, . . .d is a
nonzero integer array,E  sE1, E2, . . .d is the energy of
the coupled states, andDv is the resonance detuning. Fo
a simple system near the ground state, the number of
volved energy levels is small, the resonance condition
satisfied only by accident. But in systems of many d
grees of freedom where the number of such combinatio
is large, it would not be a surprise to find many reso
nances. In this case it is nearly impossible to track th
population flow of individual states. Instead, a statistic
description of the process is more useful.

Energy transfer in quantum systems has been trea
with various models and methods [1]. In many work
the general emphasis has been greater on the nonlin
dynamics than on statistical average. Thus, these me
ods rely heavily on numerical computation to go beyon
the mathematical formalism. On the other hand, in a s
ries of recent papers Wolynes, Leitner, and Logan ha
brought novel approaches to the problem. By modelin
multidimensional quantum systems with Cayley trees a
analyzing their connectivity with self-consistent solution
682 0031-9007y98y80(17)y3682(4)$15.00
f
em
set
gy
ith
tes
n
e
s

e,
le

by

f
g
is
m.
is

on-

r
in-
is

e-
ns
-
e

al

ted
s
ear
th-
d
e-
ve
g

nd
s

of the renormalized Feenberg perturbation series, the a
thors have addressed important questions such as criter
of quantum ergodicity [2–5], energy relaxation rates [5,6
and probability distribution of the “evenness” of equipar
tition [7]. In this paper we investigate the problem from
a different perspective. Based on the assumption that t
relative phases between states are effectively ergodic
the time scale of energy transfer, we study the evolutio
of the state population rather than the wave function, ig
noring any possible phase correlation effects. Using th
population-only approach we derived a statistical descri
tion of population transfer directly from the quantum equa
tions of motion. For systems of many degrees of freedom
we analyze the probability distribution of resonance de
tuning and its effect on the population transfer. If all th
resonance detunings are sufficiently large, energy could
localized. On the contrary, if there exist sufficiently man
resonances of small detuning, a scaling relation betwe
the magnitude of population transfer and its duration ca
be derived. The relation shows that in such systems pop
lation transfer is a diffusion process in the Hilbert spac
spanned by the eigenfunctions ofĤ0. The magnitude of
the diffusion rate gives an estimation of the time scale for
system to reach equipartition. The analysis shows how t
distribution of resonance detunings dictates energy tran
fer and equipartition.

To facilitate the discussion, let us use a group of couple
anharmonic oscillators as the model system. The syste
is general enough that it covers a wide range of physic
systems in the real world, from vibration of polyatomic
molecules to nonlinear waves. The Hamiltonian has th
form Ĥ  Ĥ0 1 V̂ , where the unperturbed part̂H0 PN

j1 "vjâ
y
j âj is a group of simple harmonic oscillators,

and V̂ is the interaction Hamiltonian. An arbitrary wave
function can be written in the following expansion:

Cstd 
X

n1···nN

Cn1···nN
std exp

√
2i

NX
j1

njvjt

!
jn1 · · · nN l ,

(1)

whereN is the degrees of freedom andnj the energy level
of the jth harmonic oscillator. The equation of motion
© 1998 The American Physical Society
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d
dt

Cm1···mN std  2
i
"

X
n1···nN

Cn1···nN std

3 exp

"
i

NX
j1

smj 2 njdvjt

#
3 Vm1···mN ,n1···nN

, (2)
where Vm1···mN ,n1···nN ; km1, . . . , mN jV̂ jn1, . . . , nN l. To
simplify the notation, let us defineVmn ; Vm1···mN ,n1···nN ,
Dvmn ;

PN
j1smj 2 njdvj, Cm ; Cm1···mN , Cn ; Cn1···nN ,

and rnm ; Cp
mCn, where Dvmn is the detuning of a

particular resonance. In this simplified notation,
d
dt

rmm  2Re

"
2

i
"

X
n

rnmVmneiDvmnt

#
. (3)

Assuming the perturbation is sufficiently weak, so th
the change ofrnm with time is much slower than that
of the phase of the wave functions, one may treatrnm
as constants within a short period of observationDT and
integrate Eq. (3) fromt0 to t0 1 DT .

Drmm ø 2Re

"
1
"

X
n

rnmVmn

Dvmn

3 seiDvmnt0 2 eiDvmnst01DTdd

#
. (4)

Definer to be the array of populationrmm, the total mean
square change ofr is

jDrj2 ;
X
m

sDrmmd2


4

"2

X
m,n

jrnmVmnj2

Dv2
mn

f1 2 cossDvmnDT dg , (5)

where we have averaged over the starting timet0. Be-
causeDvmn is determined byvj from the unperturbed
HamiltonianĤ0, whereasVmn is determined by the non-
linear perturbationV̂ , it is reasonable to assume that, i
general, the distributions ofDvmn andVmn are indepen-
dent. Therefore Eq. (5) can be simplified as

jDrj2 
4

"2

√X
m,n

jrnmVmnj2

! *
1 2 cossDvmnDT d

Dv2
mn

+
,

(6)
where the angle brackets on the right-hand side den
averaging overDvmn. In systems of many degrees o
freedom the number of possibleDvmn is very large. The
average can be written as an integral.*

1 2 cossDvmnDT d
Dv2

mn

+


Z
jxj$jDvjmin

1 2 cossxDTd
x2

3 Psxd dx , (7)
wherePsxd is the distribution ofDvmn, and jDvjmin is
the lower bound ofDvmn. In our previous analysis on
classical nonlinear systems [8], we have shown thatZ

jxj$jDvjmin

1 2 cossxDT d
x2 Psxd dx #

C
jDvjminV

, (8)

whereC ø 3 is a constant andV is the width ofPsDvmnd.
Hence, if jDvjmin is not small, meaning the system is
at

n

ote
f

far from resonances,jDrj2 could be bounded to a near
neighborhood of the initial pointr. But, as we shall
see, in systems of many degrees of freedom, due to
large number of possibleDvmn, jDvjmin is likely orders
of magnitude smaller thanV. If DT is chosen such that
1yV ø DT ø 1yjDvjmin, it was shown that [8]Z

jxj$jDvjmin

1 2 cossxDT d
x2

Psxd dx ø pPs0dDT . (9)

Since
P

m,n jrnmVmnj2 ø 2s
P

m,n rnmVmnd2  2kV̂ l2,
where kV̂ l is the expectation value of̂V , from Eqs. (6)
and (7)

jDrj2 ø
8pPs0d

"2
kV̂ l2DT . (10)

The scaling relation betweenjDrj2 andDT shown above
belongs to that of the random walk, and thus establish
the diffusive character of the population transfer wit
diffusion rateD  8pPs0d kV̂l2y"2.

Thus, it is clear that the magnitude ofjDvjmin deter-
mines the character of the population transfer proces
Diffusion dominates when there exist sufficiently man
resonances of small detuning. This is highly probable
large systems. It should be noted that here the choice
the coarse graining parameterDT is important. IfDT is
too small, the correlation between consecutive points
time is so strong that one falls back to the equation of m
tion, whereas ifDT is too large, one may not be able to
deduce a useful correlation. Only in the appropriate tim
scale1yV ø DT ø 1yjDvjmin the diffusive character is
exposed.

We have clarified the relation between resonance a
population diffusion, and derived a simple expression fo
the diffusion rate. Now we shall refine the theory to giv
an account on how to calculatejDvjmin from PsDvmnd.
In order to do so, we shall first decompose the interactio
Hamiltonian according to the order of interaction.

V̂ 
X̀
q3

V̂q 
X̀
q3

X
osldq

Vl1,...,lN

NY
j1

r
lj

j , (11)

where eachrj is one of the canonical variables of the
jth degree of freedom, andosld ;

PN
j1 lj is the order of

interaction. If all thejDvqjmin ; minosmd1osndq jDvmnj
are sufficiently small,

jDrj2 
X̀
q3

8pPqs0d
"2

kV̂ql2DT , (12)

where Pqsxd is the probability distribution ofDvmn
with osmd 1 osnd  q. It can be shown by probability
analysis [8] that

kjDvqjminl ø
1

2qCN
q Pqs0d

, (13)

where kjDvqjminl is the expectation value ofjDvqjmin

and N the degrees of freedom. Because forq ø N,
kjDvqjminl decreases rapidly with increasingq, it ap-
pears that diffusion occurs more likely for higher orde
interactions. However, it should be noted thatkV̂ql also
decrease rapidly with increasingq. Therefore, although it
3683
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is true that the contribution of high order interactions t
jDrj2 is more likely in the form of population diffusion,
the corresponding diffusion rateDq  8pPqs0d kV̂ql2y"2

is not necessarily large enough to bear any practical s
nificance. Under the general condition thatDq decreases
rapidly with q, it is seen that the dominant contribution
to the diffusion rate comes from the smallestq for which
jDvqjmin is small enough that a coarse graining time sca
DT satisfying1yVq ø DT ø 1yjDvqjmin can be found.

The scaling relation ofjDvqjmin in Eq. (13) reveals
that it does not take a largeN to make the population
transfer diffusive. Let us requirejDvqjmin # 1024V to
leave plenty of room for the choice ofDT , and note that
for evenq, the peak ofPqsDvqd is atDvq  0, therefore
Pqs0dV ø 1. For q  4 the requirement isN $ 13. In
the case of vibrational degrees of freedom of polyatom
molecules, it means the molecule is larger than 5 atom
This simple calculation explains why statistical theorie
(such as the Rice-Ramsperger-Kassel-Macus theory) wo
well in predicting the unimolecular reaction rates and th
energy distribution of the products for molecules large
than 5 atoms [9]. It has been a surprise that statistic
mechanics can be applied to systems of so few degre
of freedom. Yet from our analysis, it is seen that whe
the internal energy is large enough to make the couplin
between degrees of freedom significant, as is the ca
for highly excited molecules, rapid population diffusion
is anticipated. The population diffusion can render th
molecule ergodic before reactions take place, justifyin
the application of statistical mechanics.

The relation between population diffusion and reso
nances deciphered above reinforces the common not
that resonances are the foundation of the ergodicity
equipartition postulate. Yet, in the practical world whethe
equipartition occurs depends on the time scaleTe for the
system to reach equipartition. After clarifying the distinc
tively different roles of resonances from nonlinear cou
pling, we are in a good position to estimateTe. Consider
the expectation value of̂H0.

kĤ0l 
X
n

rnnH0nn 
X
n

√
rnn

NX
j1

nj"vj

!
ø N"v̄n̄ ,

(14)

wherev̄ ;
PN

j1 vjyN is the average frequency of the os
cillators andn̄ ;

P
n osndrnnyN is the average quantum

number per mode. In the classical limit,"n̄ corresponds
to the average action per degree of freedom. Let us defi
Te to be the time for the diffusion to makejDrj twice as
large as a typical root-mean-square distancejrj 

p
Nn̄2,

so that att  Te most of ther space is filled up by popu-
lation diffusion. From Eq. (12) and Eq. (14)

1
Te

;

P
q Dq

s2jrjd2
ø

2pNv̄2
P

q Pqs0d kV̂ql2

kĤ0l2
. (15)

The expression ofTe above is the same as that for
classical nonlinear systems [8]. Its accuracy has be
verified by large scale numerical simulations. In th
3684
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energy range where the perturbation treatment is val
the ratio kV̂ql2ykĤ0l2 decreases rapidly withq, meaning
that it takes a much longer time for high order interaction
to cause equipartition, even though for themjDvqjmin is
smaller. It is also important to note thatTe depends on the
choice ofĤ0. The closerĤ0 is to the full Hamiltonian, the
smallerkV̂ l2ykĤ0l2. Therefore, in discussing the energy
relaxation or equipartition problem one must specify th
basis set as well as the way energy is deposited initial
Ambiguity in these respects has long been a source
controversy.

It might seem strange that Eq. (15) does not depend
", given that it is derived directly from quantum equation
of motion. This is because for systems with many couple
degrees of freedom the diffusion rate and the volum
of the r space to be filled up are both proportional to
1y"2. The dependence on" thus cancels. However,
kV̂ql2ykĤ0l2 may depend on" implicitly, depending on
how other parameters (average energy, frequency, spr
constant, equivalent mass) are scaled with".

Despite its formal similarity to Fermi’s golden rule,
Eq. (15) is much more general and carries much more i
formation. The golden rule is derived under the conditio
that the population of the initial state is not appreciably de
pleted, thus it is not valid beyond the short time limit. In
Eq. (15) the roles of degrees of freedom and average e
ergy in equipartition are apparent, whereas the golden ru
only gives the initial energy relaxation rate of a particu
lar energy eigenstate, not the equipartition time scale th
depends on average energy and degrees of freedom.
does the golden rule tell whether the population transf
will be bounded, as in, e.g., multiple quantum beats. B
focusing on the statistical dynamics and its scaling laws
the r space, as opposed to the energy relaxation rate o
single state, we have derived a much more useful equati

As a demonstration of the usefulness of Eq. (15), let u
treat the problem of intramolecular vibrational energy re
distribution. The problem has attracted much interest sin
the discovery that molecules can be dissociated by abso
ing many infrared photons in the electronic ground sta
[10]. It was hoped that mode-selective photochemistry ca
be done by use of high-power infrared lasers. However,
was soon realized that energy in the pumped mode quick
leaks into other modes. Therefore it is crucial to excite th
molecules faster than the time scale of energy relaxati
Tr . DeterminingTr by experiments has been more diffi-
cult than one might expect. In the time domain, lack of
high-power tunable ultrashort-pulse infrared laser limite
the energy range and molecular species of the experime
[11]. On the other hand, early frequency-domain exper
ments suffered from inhomogeneous broadening. U
ambiguous measurements on homogeneous linewidths
vibrational states in diverse cases were reported only
cently [12–16]. As we shall see, these measuremen
provide direct tests of our theory.

For practical purposes the energy levels of a vibra
tional mode near the ground state can be written
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TABLE I. Comparison with experimental data.

Internal
energy v̄ Experimental

Molecule scm21d n̄ scm21d Tr or 1
4pTr c

data

SF6 4000 0.42 631 0.40 cm21 0.25 cm21 [13]
SF6 4253 0.45 631 5.9 ps 11 ps [11]
SF6 11 500 1.2 631 3.3 cm21 3 cm21 [12]
SF6 17 000 1.8 631 7.2 cm21 5 cm21 [12]
SF6 32 000 3.4 631 25 cm21 12 cm21 [12]
SF6 34 000 3.6 631 29 cm21 15 cm21 [13]
CF3I 5360 0.88 676 0.67 cm21 1 cm21 [14]
CF3I 10 720 1.8 676 2.7 cm21 5 cm21 [14]
CF3I 19 000 3.1 676 8.4 cm21 5 cm21 [15]
C6H6 5186 0.12 1464 9.2 ps 7.6 ps [16]
C6H6 8165 0.19 1464 3.7 ps 6.2 ps [16]
C6H6 9158 0.2 1464 2.9 ps 3.6 ps [16]
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Esnd  n"v 1 n2x, wherex is the anharmonicity con-
stant. For medium-sized molecules,xys"vd is typically
ø0.5%, thereforekV̂ l2ykĤ0l2 ø s0.005n̄d2. Because the
width of the distribution of vibrational frequency is abou
as large as the average frequency itself, from the cent
limit theorem Ps0d ø 0.2yv̄ for low order interactions
[8]. Hence, in a rough sense the only variable in Eq. (1
is n̄, which is just the total vibrational energy divided by
N"v̄. Note that because it should take a considerab
longer time for the population to diffuse to the entirer
space than just diffusing out of a pumped mode, it is re
sonable to postulate thatTeyTr is just the ratio of the typi-
cal mean square distances,Nn̄2 and n̄2, respectively, in
the two cases. Hence

1
Tr

ø 2pN2v̄ 3 0.2 3 s0.005n̄d2. (16)

Comparison of Eq. (16) with experiments is shown i
Table I. Tr is related tog, the measured half-width-
at-half-maximum of the resonance spectrum, by1yTr 
4pg. It is seen that experimental data agree wit
Eq. (16) to within a factor of 2. Considering that minima
information is required to use Eq. (16), and that no fittin
parameter is involved, the agreement is remarkable.

In conclusion, our analysis points out that, when th
perturbation is weak, resonance plays a dominant ro
in determining whether or not a system will reac
equipartition, whereas the magnitude of coupling streng
or equivalently the internal energy, determines the tim
scale for that to happen. This explains why, in genera
statistical mechanics works well in systems of man
degrees of freedom, whether or not their internal ener
is large enough to make the coupling between degre
of freedom significant. It also explains why statistica
mechanics works in nonchaotic systems, such as latt
vibration at low temperature.

Our analysis also explains why the microcanonical e
semble can be constructed in the Schrödinger pictu
Since there is no population transfer in the Schröding
picture, how can the ensemble average be relevant? T
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fact is that as long as there is any tiny, high order pe
turbation left out from the unperturbed Hamiltonian, the
can be no ideal Schrödinger picture. For systems of a f
coupled degrees of freedom, the effect of such tiny pert
bation is indeed negligible, because the population tra
fer is bounded to a small region in ther space. However,
in systems of many coupled degrees of freedom, even t
perturbations cause population diffusion. Therefore, in t
long run the partition function becomes valid.
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