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Exact Coherent States of a One-Dimensional Quantum Fluid
in a Time-Dependent Trapping Potential
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We find exact coherent states for a one-dimensional quantum fluid interacting by an inverse-square
pair potential, contained by a time-dependent harmonic trapping potential. These states are those that
would evolve from the ground state of the time-independent problem. Correlations are determined, and
a hydrodynamic description is shown to be exact. We treat the case of a nondissipative “sloshing”
mode characteristic of superfluidity, free expansion where time-of-flight measurements do not give the
momentum distribution, and a periodically varying trapping potential exhibiting alternating regions of
stable and unstable behavior. [S0031-9007(98)05857-8]

PACS numbers: 03.75.Fi, 03.65.Db, 05.30.Jp, 32.80.Pj

Bose-Einstein condensation in a noninteracting gas wasituations. We then briefly treat three important cases:
predicted many years ago [1], and the superfluid transia nondissipative “sloshing” mode, which indicates a type
tion, first seen in the strongly interactirfgde system [2], of superfluidity; free expansion, where time-of-flight mea-
confirms our basic understanding of this phase transitiorsurements are shown to not give the momentum distri-
However, as has often been emphasized, the superflulmition; and a system driven by a periodically varying
transition and the finite occupation of the zero momen+trapping potential, which exhibits alternating regions of
tum state—the Bose-Einstein condensation—are distincttable and unstable behavior. A final section summarizes
phenomena. Therefore, it would be of interest to observand discusses the significance of our results.
experimentally the original Bose-Einstein condensation as We consider a one-dimensiongdbody system obeying
a delta-function peak in the momentum distribution. Suchthe time-dependent Schrédinger equation

a peak should be most evident in the ground state at zero N .o
temperature, and should even exist for systems of reduced _L_ Z o + il v _ V(1)
dimensionality [3]. PA X7 v ot

Recently, evidence for such an “ideal” Bose-Einstein . N AX = 1)
condensation has been observed [4] in a cloud of ap- N L (= x)?
proximately 200%’Rb atoms cooled to temperatures as k() & /
low as 20 nK. Signatures of the Bose-Einstein conden- +— sz- =V, + Vi(r). (1)
sation were seen by relaxing the magnetic trap, allowing 2 =

the atoms to expand freely, and then imaging the cloud—y/a now and. henceforth. use units in whieh= 7 = 1.

and, hence, the velocity distribution of the atoms in ther,4 potential V(s) consists ofV,, a time-independent
cloud—hy laser light. One of the purposes of this papek '

) . b ol bl e that the i kmverse-square pair potential of strengifh — 1), and
IS to point out by a simple soluble example that the linky, ) '3 time-dependent one-body harmonic trapping po-
between the velocity distribution seen and the momentu

"ential with i e (1). W ke the fol-
distribution inferred is indirect at best. ntial with a spring paramete (1) © maxe the fo

In this Letter, we consider the exactly soluble [5] ex_lowmg ansatz for the SOIL;VFIOH Bk N
ample of a one-dimensional system of identical particlesq, _ w(t)fN[1+A(N71)]/2 l—[ o @(0x]/2 l—[ I, — x|
interacting by an inverse-square pair potential. This sys- =1 j>i=1 ! l
tem must be confined or trapped by some external poten- ' 2)

tial; we choose a harmonic well with a time-dependents. . . :
; ; . - Since the wave function vanishes whenever two particles
spring parameter. In the following, we will explore this touch, the statistics of the particles can be putpin “by

simple system in detail. We first show that the most im- 4 U luati fnd that th lex f
portant time-dependent coherent states—those that evoly: nd. pon evaiuation, we 1ind that the compiex func-

from the ground state for a time-independent trap—ca ion of time w (r) must obey the differential equation

be found exactly. There is no restriction on the time rate ’ do(t)

of change of the harmonic trapping potential. Then we w™(1) = YYa T K(@). (3)
review the previous exact results for the ground state o{_h ining diff tial tion f .

such a system in a time-independent trap. For the time- e remaining differential equation fgr(¢) is
dependent trap, the correlations are determined, and a hy- 1 ody() . 4
drodynamic description is shown to hold exactly in all () dr fo(r). (4)
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This second equation provides both a time-dependerity the Feynman-Hellmann theorem; exactly half the total
phase and ensures that the wave function remainsnergy is from the harmonic well, a sort of “equipartition
normalized. theorem.”

Equation (3) forw(z) is the well-known Riccati equa-  The diagonal correlations are independent of statistics.
tion, and (4) is a familiar change of variables to a functionWe first evaluate the number densityx | w) as
¢ (¢) which satisfies the equivalent linear equation

2N
2 =1 — x2/x3, x? = x3;
2 ¢12(t) + K()y(t) = 0. G dxlo) :{ 70 2
dt 0, x> = x5 =2N)M w.
Writing K(t) = Ko — K;(¢), this equation is much like (7)

the time-independent Schrodinger equation with a potenthis density serves as the local thermodynamic variable
tial K; and energy eigenvalu€,. Suppose the equations and allows a hydrodynamic description, so that the total
are satisfied withw(r), (1), and K(r). Thenaw(ta), chemical potential is constant, ot = u(d) + w?x?/2.
#(ta), and a’K (ta) also satisfy the equations. Thus, if Comparing this with the expression (7) then allows us
K(tr) has a characteristic time or frequencyr, then we to determine the thermodynamics of the bulk inverse-
can put the problem in a standard form by choosing thequare fluid throughu(d) = 72A%d?/2, implying an
scale factor to ber or 1/v. energy densitys(d) = w2A%d*/6. All local properties
There are some physical requirementsioft). First, such as total energy density, pair correlation function,
it should be real. Second(r) should be non-negative and momentum distribution are then those of the inverse-
so that the system is stable. This is particularly signif-square fluid at the local densiti(x | ). These all scale
icant when we examine Eg. (5) for the functigi(r).  simply with density.
Writing K (1) = Ky — K,(t), the conditionK(¢) = 0 be- One finds (i) for bosons, the momentum distribution
comesK, = min[K,(¢)], a reasonable requirement for the n(p) has a divergence at zero momentum, given by
Schrodinger equation. Left; »(¢) be any two independent n(p) — |p|®®W, as |p| — 0, with a,(A) = A/2 — 1;

solutions to (5). Then the general solution fofr) will (i) for (spinless) fermions there is a singularity at the
be given by Fermi momentump, = 7d of the formn(p) — |p —
. . . . ap(A) _ _ =
Adn + B Lo b—if prlWsgr(p — py) aslp — psl — 0, where ay(2)
w(t) = —iu = —i%ef(b_m%. 6) (A+1/0)/2-1.
Ay + By Y + e i

We divide w(f) = w,(t) + iw;(¢) into real and imag-

Here we have parametrized the complex numB¢r  inary parts. For the diagonal correlations, only the real

as B/A = ¢ ?71%; this gives us two independent real part of w enters, since

parameters to fit the boundary conditions fofr). Par- V()W (x) = |¢(t)|—N[1+/\(N—1)]

ticular solutions will be investigated later. Here, we sim- v N
ly remark that the time-independent case is given b 2

% — ¢itVK, " ’ ’ 8 jljle_w,(t)x/ [T - @

We begin by reviewing the results for a time- ) L -
independent harmonic well with spring constant@nd this expression is independent of statistics. Further,

K = 02, » real. The ground state energy is given all diagonal correlations are exactly the same as for the
by E = Nw[l + A(N — 1)]/2. We can decompose this time-independent case, with the time-dependentr)

into kinetic, pair-potential, and trapping-potential energy:)efF:Lag?)?stgﬁqt:;ngi'\i/g?]egindem Thus, the local density

j>i=1

2N [a2 v 5,2 2 200\,
A1) = d(x] w,(1) = { e ©
0, x2 = x3 (1) = 2N w,(1).

The boundary xo(f) moves in time asxy(t) = ! Thus, integrating over all variables but one, if
V2N XA/ w,(t). Other correlations are exactly as in the p(rd(x)| A) denotes théx + r/2,x — r/2) element of
stationary problem withw,(¢) replacingw. the one-particle density matrix of the wave function for

For the off-diagonal correlations, we must include thethe time-independent inverse-square potential, then the
imaginary part ofw(¢), and so actual local, time-dependent one-particle density matrix

. _ CN[FAN-1)] is pi(rix,t) = D% p (rd(x,1)). Thus, when we
V()W) lw(t)}l calculate the momentum distributiorik; x, ) at pointx
% l—[ o100 (7 =D/ 2=, () (y+3D)/2 and time¢, by Fourier transforming with respect to the

difference r, we find it to be given by the momentum

N distribution of the stationary problem, scaled by the

% l_[ lc; — x) (y; — yol*. (10) local density d(x,7) and centered at a shifted origin
j>i=1 given by the local average velocity(x, ) = —xw;(¢).
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This local average velocity increases linearly as awith k = 7./K,, andt/r replaced byt, the equation for

function of x to a maximum at the boundary given by ¢ is in the dimensionless form ¢ + k% /(1 + e ') =

vo(t) = v(xg,t) = —w;(t)2NA/w,(2). k*y. This is exactly of the form of a standard quantum
The results that we have derived by exact calculatioomechanics problem; see, for instance, the text of Landau

suggest the following hydrodynamic description. At eachand Lifshitz. Our boundary condition is that the system is

point in space and time, there is a local average densitipitially in the ground state, o (r) — e'*, ast — —.

d(x, 1) and local average velocity(x,z). These have a In the corresponding quantum problem, this means that

position and time dependence given by the energy is exactly equal to the height of the step
N potential—a special case. The general solution of (5),
d(x,t) = \ 1 = [x/x0(2)]%, which has the correct asymptotic form can be written
m2xo(1) (11)  in terms of the hypergeometric functidi{a, 8; y; x] as
v(x, 1) = xolf) —— . y(t) = e™Flik, ik; 1 + 2ik; —e'].
xo(t) The parametek serves as the dimensionless scaling
Using the equation of motion fow (), one can verify parameter. The two limits are (i) when the expansion is
that the continuity equationd(x,r)/or + 9j(x,t1)/ox =  Slow,thenk — o, and sow (1) = w,(t) = /K(1); (i) in
0 is satisfied, with the current(x, r) given by j(x,r) = the other limit of afast expansion, wherk — 0, then

d(x,t)v(x,1). Also, using the expression for the chemical @ (1) = V/Ko/(1 + it:/Kp). _ _
potential, one can verify the hydrodynamic equation of When the system undergoes a rapid free expansion, not

motion in the form only is the energy conserved, but so are all the other in-
Du(x, 1) P 9 tegrals of motion. Thus, the asymptotic momenta are de-
D—t’ = [5 + v(x, t)a—:|v(x, 1) termined by the asymptotic Bethe ansatz. A region of the

X

fluid x — x + dx with densityd(x) contributes asymp-
totic momenta or velocities with a densiyxp(k; x),
wherep (k; x) is given as [5]

The last expression follows from the expression for (127, k| < 7Ad;

the thermodynamics of the inverse-square fluid. These pk) = {0’ k| > 7Ad. (14)

equations are also sufficient to determidéx,r) and Th the total ol i density i

v(x, 1), subject to the given initial or boundary conditions. en e total asymploic momentum density 1S

Locally, the fluid is otherwise in equilibrium, and so obtained by 2|ntegrat|_ng over the fluid, giving

all other thermodynamic quantities are the same as if° V! ~ (k/ko)*/mko, With ko = 2AN /xo = \/ZAN ay,

equilibrium, apart from appropriate scaling byx, r) and and. wo = v/Ko. . By time of flight, this leads to

v(x,t). Thus, the fluid behaves like an ideal Euler fluid,a final expanding density of the formi(x,r) =

without dissipation. 2N4/1 — x2/x3(t)/mxo(t), With xo(r) = kor. Using the
Before we treat a time-dependent spring param&ter result for a rapid expansion in (9), these two results are

let us first return and reconsider the fluid confined inexactly the same.

a time-independent harmonic well. In addition to the With a time-dependent trapping potential driving the

time-independent ground state wave function, there is #uid, we have the possibility of a very rich dynamical

time-dependent coherent sloshing mode, which we cahehavior. As an example, we can drive the system with

determine by returning to Eq. (5) fap(r). Since this a spring parameter periodic in time with peridg/», an

is the Schrodinger equation for a free particle, writingexample beingk(r) = Ko — 2K, cog2vt). Once again,

K = k2, we immediately find the solution from Eq. (6) the parameter can be scaled away, so with= K/v?,

- _ai [nx, 1) + K()x*/2].  (12)
X

to be g = K,/v?, andvt replaced by, Eq. (5) fory is in the
oikt — p=d—ilkt+0) dimensionless form
w(t) = k— — 2
et + emomilrt0) 4 d‘fz(t) + 2g co20)y(t) = ap(t).  (15)

sinh¢ + isin(2kt + 6
- ¢ + isin ) (13)  This is the standard form for Mathieu’s equation. How-

Cod2k + 6) + coshe ever, everything we have to say in what follows holds for

The frequency ik = 2+/K independent of amplitude, a general periodic spring parameter.
and@ is the phase of the oscillation. Let us definey,(r) to be the real even solution nor-

The physical situation we now have in mind is when themalized so thai;(0) = 1, and ¢,(7) to be the real odd
system has been trapped in a time-independent harmongolution normalized so thaf,(0) = 1. Then we write
well with spring constantk, for a long time in the a general solution withy(0) = Ay and #(0) = By, as
past. Then around time= 0, the trapping potential is () = Aoty1(r) + Boiho(z) for 0 = ¢t = w. When we
“turned off,” over a time interval of order. Thus,K(r) get to # = =< 27, we start all over again, writing
is to be something lik& (1) = Ko[1 — tanh(z/27)]/2 = (1) = A1 (t — 7) + Biin(t — m) for 7 =t < 277.
Ko/(1 + ¢'/7). The parameter can be scaled away, so The new coefficients are related to the old through
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Ay = Aoy (7)) + Bop(w) and By = Ao () +  aform of one-dimensional superfluidity. The correlation
Bo[pz(w). In this way, we go on forever, with functions exhibit power law decay, similar to the behavior
found for the Kosterlitz-Thouless transition. The system
(A"> = (*.”1(77) *.”2(77)> (A"1>_ (16) exhibits a suppression of condensate fragmentation and
B, Yi(m)  ga(m) J\ By—i phase coherence, as emphasized by Nozierés [3].
Evaluatinge (1) only at the points = nar from Eq. (6), Now, let us list th.e pec_uliarities of the system. Firs_t,
we find the system is one dimensional, so most of the interesting
physics must happen at zero temperature. Second, the
system is integrable; this is what allows us to solve
it. One might then argue that the persistent sloshing
: L . mode is the result of the system being integrable with a
i g () l_%(ﬂ)w"_l b~ e large number of conservation laws. Third, the system is
Yi(m) = i (m)w,— long ranged. In fact, the potential and kinetic energies
Sincegbl(t)(,/}z(t) _ %(,)%(Z) is constant, and so equal to scalg in ex_actly th_e same way, SO that the strgngth of
1, thenad — be = 1. Sincea, b, ¢, andd are real, this _the interaction is dlmensmnles_s. All of these points are
transformation is equivalent to a Mdbius transformation;interrelated, and the system gives us the opportunity to
such transformations form the group of proper isometrie§Xplore such questions in detail, and perhaps arrive at
of the hyperbolic plane in the Poincaré representation o$0Me answers. _
hyperbolic geometry. They also map the right half of This work was supported in part by a grant from the
the complex plane onto itself. Under the action of theNational Science Foundation.
transformationw moves along invariant flow lines. The
nature of these flow lines depends on the nature of the
transformation: (i) If the transformation is elliptic with
la + d| < 2, then flow lines are closed circles enclosing [1] A. Einstein, Sitzungsber. K. Preuss. Akad. Wi$924 261
the complex fixed point in the right half plane; (ii) if (1924); S.N. Boze, Z. Phy26, 178 (1924).
the transformation is hyperbolic witht + d| > 2, then  [2] L. Tisza, Nature (London}41 913 (1938). o
flow lines are segments of circles in the right half plane [3] For a coIIgcuon of reviews and articles on .Bose-Elnsteln
connecting the two imaginary fixed points. For the gon(iensatloq Just prior tg the recent zxrl;enmentsf],cfsee the
equivalent Schrédinger equation, the energy is either in DO?N B(S)iignsgﬁg' gogtﬁﬁzztr'ffzdc';%br%gﬁ S:ivee?éity
an allowed or forbidden band, respectively. For the wave Press, Camb;ridge, 1995).

function to be normalizablew (1) must have a positive [4] M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E.

. B
onm) = w, =i A_:

i - .
d — icw,—

real part, and so case (ii) is unstable. Wieman, and E.A. Cornell, Scienc69, 198 (1995).
To summarize, we have carried out the program we out-  Many other experiments have since followed: see K.B.
lined in the introduction. We have solved very explicitly Davis, M.-O. Mewes, M.R. Andrews, N.J. van Druten,

a one-dimensional example of a time-dependent interact- D.S. Durfee, D.M. Kurn, and W. Ketterle, Phys. Rev.
ing quantum many-body system; there are very few other _%_?)fltét?ér?g? ((319:3)&C#%SBgg\l/eyl_’e;'sAiasé%d((legéé;' J.
such examples. We found important time-dependent co- » and R. . ' - Rev. h L

herent states, correlations in these states were determine(ii5 ﬁ: expertlments onf.sotdlurln a(;ld “tg'ug'zﬁ relspgcti]ve:\s/l/. "
and a hydrodynamic description was shown to hold ex- 2! T1is system was first solved in B. Sutherland, J. Math.

. - . - . Phys. 12, 246 (1971);12, 251 (1971); based on earlier
actly in all situations. We then examined three important work of F. Calogero, J. Math. Phys0, 2191 (1969):10,

cases: (i) a nondissipative sloshing mode, (i) the free ex- 5197 (1969). In addition, we draw also on B. Sutherland,
pansion of the system, and (iii) the system driven by a  ppys Rev. A4, 2019 (1971);5, 1372 (1972). These
periodically varying trapping potential. The behavior of  in turn rely on the work of F.J. Dyson, M. Gaudin,
this system is interesting. The system exhibits a persis- and M.L. Mehta, in M.L. Mehta,Random Matrices,
tent sloshing mode, which one might argue is evidence of  (Academic Press, New York, 1967).
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