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Exact Coherent States of a One-Dimensional Quantum Fluid
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We find exact coherent states for a one-dimensional quantum fluid interacting by an inverse-sq
pair potential, contained by a time-dependent harmonic trapping potential. These states are thos
would evolve from the ground state of the time-independent problem. Correlations are determined,
a hydrodynamic description is shown to be exact. We treat the case of a nondissipative “slosh
mode characteristic of superfluidity, free expansion where time-of-flight measurements do not give
momentum distribution, and a periodically varying trapping potential exhibiting alternating regions
stable and unstable behavior. [S0031-9007(98)05857-8]
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Bose-Einstein condensation in a noninteracting gas w
predicted many years ago [1], and the superfluid trans
tion, first seen in the strongly interacting4He system [2],
confirms our basic understanding of this phase transitio
However, as has often been emphasized, the superfl
transition and the finite occupation of the zero momen
tum state—the Bose-Einstein condensation—are distin
phenomena. Therefore, it would be of interest to obser
experimentally the original Bose-Einstein condensation
a delta-function peak in the momentum distribution. Suc
a peak should be most evident in the ground state at ze
temperature, and should even exist for systems of reduc
dimensionality [3].

Recently, evidence for such an “ideal” Bose-Einstei
condensation has been observed [4] in a cloud of a
proximately 20087Rb atoms cooled to temperatures a
low as 20 nK. Signatures of the Bose-Einstein conde
sation were seen by relaxing the magnetic trap, allowin
the atoms to expand freely, and then imaging the cloud
and, hence, the velocity distribution of the atoms in th
cloud—by laser light. One of the purposes of this pape
is to point out by a simple soluble example that the lin
between the velocity distribution seen and the momentu
distribution inferred is indirect at best.

In this Letter, we consider the exactly soluble [5] ex
ample of a one-dimensional system of identical particle
interacting by an inverse-square pair potential. This sy
tem must be confined or trapped by some external pote
tial; we choose a harmonic well with a time-dependen
spring parameter. In the following, we will explore this
simple system in detail. We first show that the most im
portant time-dependent coherent states—those that evo
from the ground state for a time-independent trap—ca
be found exactly. There is no restriction on the time ra
of change of the harmonic trapping potential. Then w
review the previous exact results for the ground state
such a system in a time-independent trap. For the tim
dependent trap, the correlations are determined, and a
drodynamic description is shown to hold exactly in a
0031-9007y98y80(17)y3678(4)$15.00
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situations. We then briefly treat three important cases
a nondissipative “sloshing” mode, which indicates a type
of superfluidity; free expansion, where time-of-flight mea-
surements are shown to not give the momentum distr
bution; and a system driven by a periodically varying
trapping potential, which exhibits alternating regions o
stable and unstable behavior. A final section summarize
and discusses the significance of our results.

We consider a one-dimensionalN-body system obeying
the time-dependent Schrödinger equation

1
2C

NX
j­1

≠2C

≠x2
j

1 i
1
C

≠C

≠t
­ V std

­
NX

j.i­1

lsl 2 1d
sxj 2 xid2

1
Kstd

2

NX
j­1

x2
j ; V2 1 V1std . (1)

We now and, henceforth, use units in whichm ­ h̄ ­ 1.
The potentialV std consists ofV2, a time-independent
inverse-square pair potential of strengthlsl 2 1d, and
V1std, a time-dependent one-body harmonic trapping po
tential with a spring parameterKstd. We make the fol-
lowing ansatz for the solution [5]:

C ­ cstd2Nf11lsN21dgy2
NY

j­1

e2vstdx2
j y2

NY
j.i­1

jxj 2 xij
l.

(2)

Since the wave function vanishes whenever two particle
touch, the statistics of the particles can be put in “by
hand.” Upon evaluation, we find that the complex func
tion of timevstd must obey the differential equation

v2std 2 i
dvstd

dt
­ Kstd . (3)

The remaining differential equation forcstd is

1
cstd

dcstd
dt

­ ivstd . (4)
© 1998 The American Physical Society
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This second equation provides both a time-depende
phase and ensures that the wave function rema
normalized.

Equation (3) forvstd is the well-known Riccati equa-
tion, and (4) is a familiar change of variables to a functio
cstd which satisfies the equivalent linear equation

d2cstd
dt2

1 Kstdcstd ­ 0 . (5)

Writing Kstd ­ K0 2 K1std, this equation is much like
the time-independent Schrödinger equation with a pote
tial K1 and energy eigenvalueK0. Suppose the equations
are satisfied withvstd, cstd, and Kstd. Then avstad,
cstad, anda2Kstad also satisfy the equations. Thus, i
Kstd has a characteristic timet or frequencyn, then we
can put the problem in a standard form by choosing th
scale factora to bet or 1yn.

There are some physical requirements onKstd. First,
it should be real. Second,Kstd should be non-negative
so that the system is stable. This is particularly signi
icant when we examine Eq. (5) for the functioncstd.
Writing Kstd ­ K0 2 K1std, the conditionKstd $ 0 be-
comesK0 $ minfK1stdg, a reasonable requirement for the
Schrödinger equation. Letc1,2std be any two independent
solutions to (5). Then the general solution forvstd will
be given by

vstd ­ 2i
A Ùc1 1 B Ùc2

Ac1 1 Bc2
­ 2i

Ùc1 1 e2f2iu Ùc2

c1 1 e2f2iuc2
. (6)

Here we have parametrized the complex numberByA
as ByA ­ e2f2iu; this gives us two independent rea
parameters to fit the boundary conditions forvstd. Par-
ticular solutions will be investigated later. Here, we sim
ply remark that the time-independent case is given b
cstd ­ eit

p
K .

We begin by reviewing the results for a time
independent harmonic well with spring constan
K ­ v2, v real. The ground state energy is give
by E ­ Nvf1 1 lsN 2 1dgy2. We can decompose this
into kinetic, pair-potential, and trapping-potential energ
nt
ins

n
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by the Feynman-Hellmann theorem; exactly half the tot
energy is from the harmonic well, a sort of “equipartitio
theorem.”

The diagonal correlations are independent of statisti
We first evaluate the number densitydsx j vd as

dsx j vd ­

8<:
2N
px0

q
1 2 x2yx2

0, x2 # x2
0 ;

0, x2 $ x2
0 ; 2Nlyv .

(7)

This density serves as the local thermodynamic variab
and allows a hydrodynamic description, so that the to
chemical potential is constant, orm ­ msdd 1 v2x2y2.
Comparing this with the expression (7) then allows u
to determine the thermodynamics of the bulk invers
square fluid throughmsdd ­ p2l2d2y2, implying an
energy densitý sdd ­ p2l2d3y6. All local properties
such as total energy density, pair correlation functio
and momentum distribution are then those of the invers
square fluid at the local densitydsx j vd. These all scale
simply with density.

One finds (i) for bosons, the momentum distributio
nspd has a divergence at zero momentum, given
nspd ! jpjabsld, as jpj ! 0, with absld ­ ly2 2 1;
(ii) for (spinless) fermions there is a singularity at th
Fermi momentumpf ­ pd of the form nspd ! jp 2

pf jaf sldsgnsp 2 pfd as jp 2 pf j ! 0, where afsld ­
sl 1 1yldy2 2 1.

We dividevstd ­ vr std 1 ivistd into real and imag-
inary parts. For the diagonal correlations, only the re
part ofv enters, since

CpsxdCsxd ­ jcstdj2Nf11lsN21dg

3

NY
j­1

e2vr stdx2
j

NY
j.i­1

jxj 2 xij
2l, (8)

and this expression is independent of statistics. Furth
all diagonal correlations are exactly the same as for t
time-independent case, with the time-dependentvr std
replacing the time-independentv. Thus, the local density
of the system is given by
dsx, td ­ dsssx j vr stdddd ­

8<: 2N
p

q
x2

0 std 2 x2yx2
0 std, x2 # x2

0 std ;

0, x2 $ x2
0 std ; 2Nlyvr std .

(9)
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The boundary x0std moves in time as x0std ­p
2Nlyvrstd. Other correlations are exactly as in the

stationary problem withvr std replacingv.
For the off-diagonal correlations, we must include th

imaginary part ofvstd, and so

Cps ydCsxd ­ jcstdj2Nf11lsN21dg

3

NY
j­1

eivistd s y2
j 2x2

j dy22vr std s y2
j 1x2

j dy2

3

NY
j.i­1

jsxj 2 xid s yj 2 yidjl. (10)
e

Thus, integrating over all variables but one,
r1sssrdsxd j lddd denotes thesx 1 ry2, x 2 ry2d element of
the one-particle density matrix of the wave function fo
the time-independent inverse-square potential, then
actual local, time-dependent one-particle density mat
is r1sr; x, td ­ eivistdxrr1sssrdsx, tdddd. Thus, when we
calculate the momentum distributionnsk; x, td at point x
and time t, by Fourier transforming with respect to th
differencer, we find it to be given by the momentum
distribution of the stationary problem, scaled by th
local density dsx, td and centered at a shifted origin
given by the local average velocityysx, td ­ 2xvistd.
3679
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This local average velocity increases linearly as
function of x to a maximum at the boundary given by
y0std ­ ysx0, td ­ 2vistd

p
2Nlyvr std.

The results that we have derived by exact calculati
suggest the following hydrodynamic description. At eac
point in space and time, there is a local average dens
dsx, td and local average velocityysx, td. These have a
position and time dependence given by

dsx, td ­
2N

px0std

q
1 2 fxyx0stdg2,

ysx, td ­ Ùx0std
x

x0std
.

(11)

Using the equation of motion forvstd, one can verify
that the continuity equation≠dsx, tdy≠t 1 ≠jsx, tdy≠x ­
0 is satisfied, with the currentjsx, td given by jsx, td ­
dsx, tdysx, td. Also, using the expression for the chemica
potential, one can verify the hydrodynamic equation
motion in the form

Dysx, td
Dt

­

∑
≠

≠t
1 ysx, td

≠

≠x

∏
ysx, td

­ 2
≠

≠x

£
msx, td 1 Kstdx2y2

§
. (12)

The last expression follows from the expression fo
the thermodynamics of the inverse-square fluid. The
equations are also sufficient to determinedsx, td and
ysx, td, subject to the given initial or boundary conditions
Locally, the fluid is otherwise in equilibrium, and so
all other thermodynamic quantities are the same as
equilibrium, apart from appropriate scaling bydsx, td and
ysx, td. Thus, the fluid behaves like an ideal Euler fluid
without dissipation.

Before we treat a time-dependent spring parameterK ,
let us first return and reconsider the fluid confined
a time-independent harmonic well. In addition to th
time-independent ground state wave function, there is
time-dependent coherent sloshing mode, which we c
determine by returning to Eq. (5) forcstd. Since this
is the Schrödinger equation for a free particle, writin
K ­ k2, we immediately find the solution from Eq. (6)
to be

vstd ­ k
eikt 2 e2f2iskt1ud

eikt 1 e2f2iskt1ud

­ k
sinhf 1 i sins2kt 1 ud
coss2kt 1 ud 1 coshf

. (13)

The frequency is2k ­ 2
p

K independent of amplitude,
andu is the phase of the oscillation.

The physical situation we now have in mind is when th
system has been trapped in a time-independent harmo
well with spring constantK0 for a long time in the
past. Then around timet ­ 0, the trapping potential is
“turned off,” over a time interval of ordert. Thus,Kstd
is to be something likeKstd ­ K0f1 2 tanhsty2tdgy2 ­
K0ys1 1 etytd. The parametert can be scaled away, so
3680
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with k ­ t
p

K0, andtyt replaced byt, the equation for
c is in the dimensionless form2c̈ 1 k2cys1 1 e2td ­
k2c. This is exactly of the form of a standard quantu
mechanics problem; see, for instance, the text of Land
and Lifshitz. Our boundary condition is that the system
initially in the ground state, orcstd ! eikt , as t ! 2`.
In the corresponding quantum problem, this means t
the energy is exactly equal to the height of the st
potential—a special case. The general solution of (
which has the correct asymptotic form can be writte
in terms of the hypergeometric functionFfa, b; g; xg as
cstd ­ eiktFfik, ik; 1 1 2ik; 2etg.

The parameterk serves as the dimensionless scalin
parameter. The two limits are (i) when the expansion
slow, thenk ! `, and sovstd ø vr std ø

p
Kstd; (ii) in

the other limit of a fast expansion, whenk ! 0, then
vstd ø

p
K0ys1 1 it

p
K0d.

When the system undergoes a rapid free expansion,
only is the energy conserved, but so are all the other
tegrals of motion. Thus, the asymptotic momenta are d
termined by the asymptotic Bethe ansatz. A region of t
fluid x ! x 1 dx with densitydsxd contributes asymp-
totic momenta or velocities with a densitydxrsk; xd,
wherersk; xd is given as [5]

rskd ­

Ω
1y2pl, jkj , pld ;
0, jkj . pld .

(14)

Then the total asymptotic momentum density
obtained by integrating over the fluid, giving
2N

p
1 2 skyk0d2ypk0, with k0 ­ 2lNyx0 ­

p
2lNv0,

and v0 ­
p

K0. By time of flight, this leads to
a final expanding density of the formdsx, td ­

2N
q

1 2 x2yx2
0 stdypx0std, with x0std ­ k0t. Using the

result for a rapid expansion in (9), these two results a
exactly the same.

With a time-dependent trapping potential driving th
fluid, we have the possibility of a very rich dynamica
behavior. As an example, we can drive the system w
a spring parameter periodic in time with period2pyn, an
example beingKstd ­ K0 2 2K1 coss2ntd. Once again,
the parametern can be scaled away, so witha ­ K0yn2,
q ­ K1yn2, andnt replaced byt, Eq. (5) forc is in the
dimensionless form

2
d2cstd

dt2
1 2q coss2tdcstd ­ acstd . (15)

This is the standard form for Mathieu’s equation. How
ever, everything we have to say in what follows holds f
a general periodic spring parameter.

Let us definec1std to be the real even solution nor
malized so thatc1s0d ­ 1, and c2std to be the real odd
solution normalized so thatÙc2s0d ­ 1. Then we write
a general solution withcs0d ­ A0 and Ùcs0d ­ B0, as
cstd ­ A0c1std 1 B0c2std for 0 # t # p . When we
get to p # t # 2p , we start all over again, writing
cstd ­ A1c1st 2 pd 1 B1c2st 2 pd for p # t # 2p.
The new coefficients are related to the old throug
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A1 ­ A0c1spd 1 B0c2spd and B1 ­ A0
Ùc1spd 1

B0
Ùc2spd. In this way, we go on forever, with√

An

Bn

!
­

√
c1spd c2spd
Ùc1spd Ùc2spd

! √
An21

Bn21

!
. (16)

Evaluatingvstd only at the pointst ­ np from Eq. (6),
we find

vsnpd ; vn ­ i
Bn

An

­ i
Ùc1spd 2 i Ùc2spdvn21

c1spd 2 ic2spdvn21
; i

b 2 iavn21

d 2 icvn21
.

Sincec1std Ùc2std 2 c2std Ùc1std is constant, and so equal to
1, thenad 2 bc ­ 1. Sincea, b, c, andd are real, this
transformation is equivalent to a Möbius transformation
such transformations form the group of proper isometrie
of the hyperbolic plane in the Poincaré representation o
hyperbolic geometry. They also map the right half of
the complex plane onto itself. Under the action of the
transformation,v moves along invariant flow lines. The
nature of these flow lines depends on the nature of th
transformation: (i) If the transformation is elliptic with
ja 1 dj , 2, then flow lines are closed circles enclosing
the complex fixed point in the right half plane; (ii) if
the transformation is hyperbolic withja 1 dj . 2, then
flow lines are segments of circles in the right half plane
connecting the two imaginary fixed points. For the
equivalent Schrödinger equation, the energy is either i
an allowed or forbidden band, respectively. For the wav
function to be normalizable,vstd must have a positive
real part, and so case (ii) is unstable.

To summarize, we have carried out the program we ou
lined in the introduction. We have solved very explicitly
a one-dimensional example of a time-dependent interac
ing quantum many-body system; there are very few othe
such examples. We found important time-dependent co
herent states, correlations in these states were determin
and a hydrodynamic description was shown to hold ex
actly in all situations. We then examined three importan
cases: (i) a nondissipative sloshing mode, (ii) the free ex
pansion of the system, and (iii) the system driven by
periodically varying trapping potential. The behavior of
this system is interesting. The system exhibits a persi
tent sloshing mode, which one might argue is evidence o
;
s
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e

n
e

t-

t-
r
-

ed,
-
t
-
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f

a form of one-dimensional superfluidity. The correlation
functions exhibit power law decay, similar to the behavior
found for the Kosterlitz-Thouless transition. The system
exhibits a suppression of condensate fragmentation an
phase coherence, as emphasized by Nozierès [3].

Now, let us list the peculiarities of the system. First,
the system is one dimensional, so most of the interestin
physics must happen at zero temperature. Second, th
system is integrable; this is what allows us to solve
it. One might then argue that the persistent sloshing
mode is the result of the system being integrable with a
large number of conservation laws. Third, the system is
long ranged. In fact, the potential and kinetic energies
scale in exactly the same way, so that the strength o
the interaction is dimensionless. All of these points are
interrelated, and the system gives us the opportunity t
explore such questions in detail, and perhaps arrive a
some answers.
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