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We devise a new and highly accurate quantization procedure for the inner product representation,
both in configuration and momentum space. Utilizing the representd#ti@n = >; a;,[E]¢'Rg(€), for
an appropriate reference functiaRg(¢), we demonstrate that the (convergent) zeros of the coefficient
functions,q;[E] = 0, approximate the exact bound state energies with increasing accuradcy as
The validity of the approach is shown to be based on an approximation to the Hill determinant
guantization procedure. Our method has been applied, with remarkable success, to various quantum
mechanical problems in one and two space dimensions. [S0031-9007(98)05988-2]

PACS numbers: 03.65.Ge, 02.30.Hq

One of the most basic procedures for solving quantuntorresponding representation,
systems is the Hill determinant approach [1]. It involves

1
approximating the bound state wave function in terms of a V(x) = Z vix'Rg(x). (4)
suitable truncated basi®(x) = >!_, v;B;(x), and solv- i
ing the finite dimensional problerﬁjz_o Mi,j[E[(I)]Uj = In some cases, the recursive structure of the Hill
0, through the Hill determinant equation determinant for increasing values bfcan be computed
3]. This allows one to analyze the asymptotic behavior
Det M (£} = 0. ® ) e

with respect tol, for the roots of the Hill-determinant

.’M,-(D — M, for 0=i, j=1I, and M,[E]= equation._ In general, th_is anal_ys_is can be difficult and
<B{|IHIB»> ~ E(B;|B;). Fora suitable basis, rf(s—» o, comput.atlonally demanding. Itisin .th|s context t'hat we
the rooté of the HiII]determinant converge to the truehave discovered a remarkable relation whose simplicity

eigenvalues of the Hamiltoniar indexes the roots): has app_arently gone u.nrecognlzed until now, despite the
suggestive, but specialized, nature of the work by Bender,
) (2) Dunne, and Moshe [4]. Specifically, we demonstrate that
the convergent zeros of the coefficient functions
Another basic analytical tool is the power series expan- (i-1)
sion method [2]: alEy 1=0 )

(exact)

lim £ = E|

J—x

. converge to the exact discrete state energf&?ﬁ), asi
V(x) = (Z ai[E]xl>RB(x)’ (3)  increases. The simplicity of this approach, implemented
! either in configuration or momentum space, belies its
where Rg(x) is an appropriate reference function. Thehighly efficient and effective computational power, par-
coefficient functions,a;[E], are generated through the ticularly in generating high accuracy eigenenergies and
standard power series expansion method for differentiatonfigurations (not discussed here). Other groups have
equations. For simplicity, the above expansion assumealso examined the configuration space coefficien{s; ],
that x = 0 is a regular point. If the functions’'Rg(x)  with respect to their energy dependence. Of particular im-
define a complete basis (not necessarily orthonormalportance are the works of Rosenthal, Wilson, and Alexan-
one can also pursue a Hill determinant analysis for theler [5]. However, their complicatedlgebraic shooting
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method solely concentrates on generating eigenenerg¥ABLE I. The calculated ground and first excited state
bounds and explicitly overlooks the advantages of Eq. (5)¢nergies for the quartic anharmonic oscillator with= 1.

A heuristic justification of our method proceeds as fol- ) n E,
lows. Let B;(x) = x'Rg(x) and assume that the cor- 10 12 0 a1
responding Hill determinant method yields convergent 1 19
resul_ts for the physical gnergies and co_rresponding wave 1 0 1.392
functions. Denote the eigenvector solution to the Hill de- 1 4.65
terminant matrix bys — VO[E\]: 40 1/2 0 1.392349
I 1 4.648 84
Dy DDy 1 0 1.3923516414
M EVIVIE T=0 6
j;) WlECIViTLE] © 1 464881270
160 1/2 0 1.392351641530291
for 0 < i < I, where we normalize/,(” = 1. It follows 1 4.648812704 212
)y (1) a;[E"] . . 1 0 1.392351641530291 855657507876
that asl — o, V; [E; ] — "', for 0 = j =< 1, since 1 4.64881270421207753637703291
each sequence of coefficients generates the same wawuefs. [6,7] Ey 1.392 351641530291 85
function: E, 4.648812704
I I (D
(D) (D i a;lE]
D VIUTEN W Rp(x) = D meﬁ(x) — W(x).
Jj=0 j=0 arLk ; ; i
(7) appropriate reference function (usually, the asymptotic
_ o o form), our method reproduces the exact solutions.
In this context we equate the coefficiefs[£; '] # 0): Consider a nonexactly solvable problem, such as the
D) aj[El(I)] quartic anharmonic oscillato#/ (x) = x> + gx*. Using
Vi lE"] = £ =j=1I. (8)  Rp = exp(—Bx?) obtains the recursion relation
ajlk;

Case (1):a;[E] a rational fraction—This corresponds an(E)
to most one dimensional configuration space problemsand ~ Q,a, »(E) + (1 — 48%)a,—4(E) + ga,—¢(E)
some special momentum space problems. The expression — n(n — 1) ’
PE] = X!y M, ;[Ela;[E] will also be a rational (11)

fraction in E and continuous ak = E}”. From Egs. (8) where O, = 48n — 68 — E and a, = 0 for n < 0.

and (6), we havé’,-[E,(I)] =0,solongas = 1. Weare Table | shows the calculated energies of the ground and
interested in evaluatinff,=;_|[E] atE = El(lil)- In this  first excited states. Our method shows systematic con-

regard, the partial sunﬁj;é M,-y,»[Ey*l)]a,-[Eyfl)] — vergence for increasing, exceeding some of the high
I=1) ] -1 Ty D (=14 . accuracy solutions published [6—8]. Figure 1 shows the
aj-1[E; C12-0 MiGlE; lvy [E; ] is zero

! ) dependence of the ground state energy on the coupling
since the latter summation corresponds to Eq. (6) fobaramete[g for ¢ = 10.

I — I — 1. Accordingly,

MulE alE! 1= BIEVT (@) ‘
. . . (-1 ) e
for 0=i=<1— 1. Since lim_«(E, - E/ ) —0, 1.35} s
and Q’,»[E,(I)] = 0, we then have (iﬂVl,»S,_l,I[Ey*l)] #0 i **
A
lim a[£}""] = 0. (10) 1.25]
_ e
Therefore, the zeros ofy;[E] should converge to the 83 *2.4
physical energies. 115l e 20
Case (2)—The more general case corresponds to ' a 5
a;[E,x]1 = Y¢2D;([Elxe, where theD; [E]s are ra- o 6
tional fractions inE. The preceding “proof” applies pro- 105 1
vided one works with the continuous functidR[E, y ] . f '
satisfyingP[E\", 3] = 0, from Eq. (8). ful - - 2, 196, 8 T
We now demonstrate the capabilities of the preceding 0.0 0.2 0.4 0.6 0.8 1.0
method. It is important to mention that in cases of g

exactly solvable models, where the wave function carkiG. 1. The ground state energy for the quartic anharmonic
be expressed as a finite polynominal multiplied by anoscillator for0 = g < 1 (inset:0 < g =< 10).
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TABLE Il. The calculated ground and first excited state We can readily extend the method to parity nonconserv-
energies for the potentiad (x) = —Z°x* + x*. ing potentials. In this case, thg,’s are linearly depen-
72 Parity E. dent on¥(0) and¥/(0): a,[E, ¥, V'] = >, o Me(n =

N + 6,,D¥®, 5, =0,1. Since theMg(n,l) are ex-
pected to be independent for any two successiveval-

0 + 1.060362090484 182899647 046016
3.799673029801 394 168 783094 188 ) - )
0.657653005180715123059021723 ues, we can solve for the energies by takmg(%t ) =

1 +
- 2.834536202119304214654676208 0 as N — «. For example, forV(x) = x + x*, using
5 + —3.410142761239829475297 709 653 Rpg = e~ we obtain Ey = 0.930546034 1899, E; =
- —3.250675362289235980228513775 3781 896248 5030, and E, = 7.435067 263287, utiliz-
10 + —~20.633576 702947 799 149958554634 i nr — 1
- —20.633546 884404 911 079 343874 899 " S
15 + ~50.841387 284381 954366 250996 515 TTﬁ Se'fCt'?”Vc(’f )”f fffj_fe“ge func“‘;ﬂ '3 'mplfrt."]i‘”t'
- ~50.841387 284187005154 710149735 ' 0" 1€ POLGANAVIX) = X ¥ gx, OUF MEIOT WOTKS
25 + —149.219 456 142 190888 029 163 966 538 Rp(x) = ¢ , 0 =2,and 3. Foro = 4, correspond-

—149.219456 142 190 888 029 163 958 974 ing to the asymptotic form of the wave function, no con-

vergent roots were observed. We have also checked this

for the higher order potentials and have found this prop-
An important version of the quartic anharmonic os-€Y t0 be true. In generaky(x) should fall off slower

cillator potential is the double well probleny(x) = than the asymptotic form of the wave function (except for

—72x% + x*. Itis well known that in the deep well limit the special cases of_ exa_lctly solvable problems).

(z* — ), the two lowest states are almost degenerate, OUr method applied in momentum space presents ad-

Application of our method (refer to Table I1) readily con- ditional features not encountgred in most configqration
firms this, and by its high accuracy nature, significantlySPacé problems. The most important of these is that
disagrees with the predictions of de Saavedra and BuefPOre variables [themissing momentsvithin the eigen-
dia (SB) [9]. In particular, forz2 = 25, we observe that value moment method (EMM) [10] approach] are en-
the quasidegenerate nature of the ground and first excitégpuntered, regardless of the spatial dimensi@n, of
state energies become apparent only after 26 significafif® Problem. In particular, problems corresponding to
digits, not the 16 predicted by SB. D=2 Wlll involve an infinite hlgrarchy of missing mo-
The results for higher degree potentials, such as the segoent variables. Nevertheless, within our formalism, solv-

tic, octic, and dectic anharmonic potentials, are given if"d 2 = 1 problems presents similar challenges to those
Table Il in higher dimensions. We outline the essentials for both

The generality of our method permits the study of(2 = 1and2). _ .
large classes of problems. In particular, transcendental FOr simplicity, consider¥(x) to be symmetric. The

potentials can be analyzed, provided the potential funccoefficients of the power series expansion for the mo-

tion, V(x), admits a power series expansion which ismentu(r_nkzs)ppace wave functioW,(k) = [dk e * W (x) =
monotonically convergent (nonalternating). For instance2.,—o ) #(p), satisfy a linear moment recursion
in the case ofV(x) = exp(x?) — 1, we can readily ob- equationu(p) = 3~y Me(p,O)u(€), 0 = p < »; where
tain the first three energy level€E, = 1.356 371 240,

E| = 4.633078503, and E, = 8.9706782. [Rg(x) =

¢, anda, generated up ta = 80]. 6

Another type of potential which can be investigated
is V(x) = Vylxo + x|*, wherea > —2. For the two al
cases -2 < a <0 and 0 < a <o the asymptotic
forms for the wave function can be studied vig(x) = 5|
é_(x)e VEr andW(x) = ¢ (x)e B, respectively. In
Fig. 2 we plotE[«] vs « for the cases ofxg = 1,V = S 0
—2;2<a<0land{xg =1,V = 1,0 < a < 4}. =
TABLE Ill. The calculated ground state energies of the sex- -1}
tic, octic, and dectic anharmonic potentials for= 1.

Eo
14 Ref. [3 E -2 . . . . . .
(x) (Ref. [3)) 0 L ~ : : .

x2 4+ x° 1.4356246190 1.435624619003 392231569 o
x2 + x8 1.491019895 1.491 019895662 i ) .
X2+ x0 1.5462635126 FIG. 2. The calculated ground and first excited state energies

for the potentialV (x) = Vylxg + x|* for =2 < a < 2.
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the Mg (p,€)'s are known, and thenissing momendrder, Hamburger momentg.(2p) = [~ dzz**W¥(z) = u(p)

my, is problem dependent [10]. permit the analysis represented by Eqgs. (12)—(15). Appli-
Implementing our quantization procedure on the repreeation to the Coulomb potential yielded rapidly converging
sentation® (k) = (3, a,k*")e ¥, we obtain estimates to the exact energies. A similar analysis with
my respect toH = —1 & LIED L (yilizing the
au[E,u(0),...,u(mg)] = D Dy JEu(C), (12)  m, = 2 missing moment equations in Ref. [13]) converges
=0 to the correct ground state enerdy= —0.082 86242
where (l=1,b=1,Rg(k) = ¢ ¥ andN = 100). The same

5 (=D""Mg(p1, €) B applies for the potentiaV(x) = ;7L [i.e., for sym-
prtpi=n 2p1)! po! ' metric statesu(p) = [, dx x?W¥(x) depend linearly on
¥(0), u(0), and u(1)]. For f =1 and o = 1073 the

In accordance with _Eq_. (10), there will be a SCQUENCS ot three (even parity) energy levels ar®.969 109 93,
of energy and missing moment values satlsfylng_0 8513725, and—0.7449059 (8 = 1, andN — 44)

(n) f,,(n) = i i
an[E™. {u™(0)}] = 0 converging to the physical values o oo of multidimensional problentd, = 2, the

gzﬁ’;‘ ;aofj'e SlmneCthethrfw eﬁ?i’;[fo ]rsmgreasnno'[_)eipagegarfo momentum space expansion coefficients will assume the
g ! ’ form a, u[E, u(0,0),...,u(pe=w,, qe=n,,)], involving a

approximate the convergi_ng sequence by considering thlf‘hear dependence on the filst+ N, ,, missing moments,
[ms + 1] [mSer 1] matrix equation {u(pe,qe) |0 = € < ). One must then properly select
. _ the finite subset ofa, .} coefficients to be zero, leading
Z Du+e.alElu(t2) =0, (14) in turn to a relation equivalent to Eq. (15). For the =
0 angular momentum states of the quadratic Zeeman
problem, Hy; = —3V? — L + IB2(x? + y?), in para-
Det(D[E]) = 0. (15)  bolic coordinates{ = r — z > 0,andy = r + z > 0)
Performing this for the quartiém, = 1) and sextic [10b], excellent results are obtained provided we work

(my; = 2) anharmonic oscillators yields results consistentVith {anmIn +m = 2L+ Lm = L}, which depend on
with those cited in Tables | and Il the missing momentg«(i,i) |0 = i = L}. One then im-

Some problems can involve no missing momentd?lements exactly the same computation as described for
(m, = 0). One of these is the aforementioned sextic an{h® one dimensional case. The first two binding energy
harmonic oscillator, provided one implements the abovd€Vels are given in Table (8 = 1,L = 25). They are
formalism with respect to the configuration space ex-onsistent with those of Rosnet al. [14].

. E 4 . . For the Hamiltoniar,, = — (92 + 92) + x> + y> +
pressionV(x) = W(x)e <+ . The ensuing calculation 2 th . f 4 i " Y lied In —
yields excellent results. The same holds for the problerrqu) » the previous Tormalism was applie {.0””" n=

., gx? ided ¥ (x) — Y Sl 1 L,0 = m = L}, which depend on the missing moments
V(x) = x* + 55, providedV(x) = oo e [11]  1r4,0)]0 =i = L}. The calculated ground state energy
Table IV summarizes our results for the case, WhIC Table V) agrees with that of Vrscay and Hang§ =
surpass the accuracy calculated through an analytic co

urpa; cure 75, = 20) [15].
tinuation quantization procedure [12]. , In summary, we have developed a highly accurate inner
For problems on the half real axig,= 0, despite the

ol fih e ) h product quantization procedure involving the zeros of the
Stielties nature of the moment$p) = [y dr r*¥(r), the underlying energy dependent coefficient functions. We

asymptotic form of the wave functio®(r) — ¢ VIEl"  have applied this method to several representative one

does not lead to a bounded and analytic Fourier transforngimensional problems in configurations space. We then

In order to achieve this, one must map the problem onto thextend our method into momentum space enabling the

real axis:z? = r, and¥(z) = |z|¥(z?), for —0 < z <  study of multidimensional problems.

®. Since ¥(z) — e*\/mzz, the corresponding Fourier ~ This work was supported in part by the National

transform should be better behaved. The even (nonzer@cience Foundation under Grant No. HRD9450386,
Air Force Office of Scientific Research under Grant

No. F49620-96-1-0211, and Army Research Office under
TABLE IV. The first four symmetric state energies for the Grant No. DAAH04-95-1-0651.

8x~

rational fraction potentialV(x) = x*> + 5= for A =g =

Dn,é’[E] =

(13)

€2=0
and the ensuing determinant equation,

0.1.

TABLE V. First two symmetric energy levels fdt,; (B =
n Ex 2) and H,,.
0 1.043173 713044 445 233 778 700 870 546 094
2 5.181094 785884 700927 1104090728883 _11 Eground Eftirst excited
4 9.272816 970 035 252 254 582 438 478 9 Hoz 1 — 1.0222140 1 —0.1739397
6 13.339390 726 973551 2329331705 H, 2.195918 086 7.031272466
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