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An Uncontrolled Walking Toy That Cannot Stand Still
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We built a simple two-leg toy that can walk stably with no control system. It walks downhill
powered only by gravity. It seems to be the first McGeer-like passive-dynamic walker that is statically
unstable in all standing positions, yet is stable in motion. It is one of a few known mechanical devices
that are stable near a statically unstable configuration but do not depend on spinning parts. Its design
is loosely based on simulations which do not predict its observed stability. Its motion highlights the
possible role of uncontrolled nonholonomic mechanics in balance. [S0031-9007(98)05783-4]

PACS numbers: 87.45.Dr, 46.10.+z

Human walking on level ground involves dynamic bal- While human walking motion is mostly in the sagittal
ance which, if viewed in a coarse-grained way, is pre{fore-aft and vertical) plane, the stability of out-of-
sumably asymptotically stable. This observed stability ofplane (sideways) motions is also important. McGeer’s
walking must depend on some combination of neurologicaJ2] numerical 3D studies only led to unstable periodic
control and mechanical features. The common view is thamnotions. Fowble and Kuo [10] numerically simulated a
neuromuscular control is responsible for this balance. T@assive-dynamic 3D model of walking but also did not
what extent is neuromuscular coordination of animal locofind stable passive motions.
motion, say human walking, really necessary? The bold Our recent investigations of walking balance have been
proposal of McGeer [1-3] is that much of the stabilizationbased on attempts to design mechanisms that vaguely
of walking might be understood without control. mimic human geometry and walk without control. This

That asymptotically stable balance might be achievegaper describes one such primitive design (first reported
without control is somewhat nonintuitive since top-heavyin [11]) which extends to three dimensions, at least
upright things tend to fall down when standing still experimentally, McGeer's remarkable two-dimensional
or, more generally, since dynamical systems often rumvalking mechanisms.
away from potential energy maxima. Two mechanics is- Spinning parts and nonholonomic constrairts.
sues that bear on such stability considerations are th&tumans are notably lacking in gyros, flywheels, or other
(i) Hamiltonian (conservative and holonomic) dynamicalspinning parts. Things with spinning parts, like tops and
systems cannot have asymptotic stability, and (ii) congyros, are well known to be capable of balancing near a
servativenorholonomic systems can have asymptoticallypotential energy maximum. The common model of an
(exponentially) stable steady motions in some variablesgnergy conserving point-contact gyro, however, does not
as recalled in Zenkoet al. [4]. have asymptotic stability since it is Hamiltonian. Adding

Since before the clever patent of Fallis in 1888 [5], therea rounded tip to the top, with nonholonomic rolling con-
have been two- and four-leg passive-dynamic walking toysact, is not stabilizing. A spinning top with dissipation,
that can walk downhill. All such toys that we know about however, can be asymptotically stable in a transient sense
are statically stable when they are not walking. Whilein that, over a limited time until the spinning rate has
their motion is engaging to watch, their dynamic stability slowed too much, vertical motion is approached exponen-
is perhaps not so great a surprise. tially. The observed asymptotic stability of rolling coins

McGeer's passive-dynamic walkersinspired by a and the like also depends on dissipation.
double pendulum simulation of swinging legs [6] and We know of only a few uncontrolled three-dimensional
by simple walking toys, McGeer found two-dimensional, devices that can have asymptotically stable steady mo-
straight-legged and kneed walking models that displayetions at or near a potential energy maximum, without
graceful, stable, humanlike walking on a range of shallowdepending on fast spinning parts. These devices are all
slopes with no actuation (besides gravity) and no controlnonholonomically constrained and conservative: (i) a “no-
McGeer termed these motiopassive-dynamievalking.  hands” bicycle with massless wheels (say skates) and a
All of McGeer’s successful designs, as well as those of hispecial mass distribution [12,13], (ii) a no-hands tricycle
imitators thus far [7—9], have been more or less constraine@here gyroscopic terms do not affect the dynamics) with
against falling over sideways so that their dynamic balanca mildly soft decentering (negative spring constant) spring
is fore-aft only. These machines cannot stand stablyn the steering [14,15], (iii) a rigid rider attached appro-
upright except when their legs are spread fore and aft. Thpriately to a moving skateboard [16], and (iv) a statically
dynamic stability of these devices could be dependent onnstable boat with an ideal keel that is steered by the boat
the static stability of this spread-leg configuration which islean. Certain gliding aircraft might also be considered as
visited momentarily. an example, but defining a potential energy maximum is
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less clear for planes since no well defined reference folegs are connected by a frictionless hinge at the hip with
measuring potential energy exists. center pointHd and orientatiom normal to the symmetry
All of these devices differ from walking mechanisms plane of the legs. Each of the two legs can make rolling
in that they are constrained against fore-aft tipping (theand collisional contact with the ground (slope«). The
walking devices have fore-aft dynamics), they conserveravitational acceleration is.
energy (the walkers lose energy at joint and foot impacts The (reduced) dynamical state of the model is deter-
and use up gravitational potential energy), and they arenined by the orientations and angular velocities of the legs.
nonholonomically constrained (most of the walkers areThe stance leg orientation is determined by standard Euler
well modeled as piecewise holonomic). anglesys, 0y, ¢ for lean, pitch, and steer, respectively.
Intermittent  contact and  nonholonomicit.  The configuration of the swing leg is described by the
Asymptotically stable mechanical systems must beangled,,. The absolute position of the walker on the plane
non-Hamiltonian. Two mechanisms for losing the Hamil-does not enter into the governing equations. The instan-
tonian structure of governing equations are dissipationaneous point of contact of the stance leg with the ground
and nonholonomic constraints. The primary examples ofs C and the point of the impending contactlis We as-
nonholonomic constraint are rolling contact and skatelikesume ground collisions are without bounce or slip.
sliding contact. For these two smooth constraints, and The unreduced accessible configuration space is six
other less physical nonholonomic constraints, the set afimensional (the above angles plus position on the slope)
allowed differential motions is not integrable. That is, thewhereas at any instant in time the accessible velocity
constraints are not equivalent to a restriction of the spacspace is four dimensional (the four dynamical state
of admissible configurations. For smooth nonholonomicvariables), hence the overall nonholonomiciéy> 4) of
systems, the dimension of the configuration space accethis system. The model is also dissipative due to kinetic
sible to the system is greater than the dimension of thenergy loss at the collisions.
velocity space allowed by the constraints. The model is well posed since the governing equa-
An intermittent nonslipping contact constraint can alsotions for rigid bodies in hinged, rolling, and plastic-
cause the dimension of the accessible configuration spacellisional contact are well established. The equations
to be greater than the dimension of the accessible velocitywhich govern the evolution of the state of the system
space. As suggested by one simple example [18], thi§g = {¢, ¢, ¥, i, O, Oy, sy, O} follow from angular
discrete nonholonomicity may account for exponentialmomentum balance (or other equivalent principles).
stability of some systems. The walking models we studyBetween collisions, we have angular momentum balance
are all nonholonomic in this intermittent sense (and also irfor the whole system about the contact paint
the conventional sense if they have rounded feet). They
can, for example, translate forwards by walking although z rG,/c X mg = Z [rG,/c X ma; + w; X (L;w;)
the contact constraint does not allow forward sliding. i=12 i=12
Dynamical modeling—Figure 1 shows a 3D model + Liw;], (1)
which probably captures the essential geometric and N
mass-distribution features of the physical model presente@nerére,/c = rq, — rc, the center of mass velocities and
here. The device, at least at the level of approximatioriccelerations are;, anda,, and the angular velocities
which we believe is appropriate, is a pair of symmetric@€ @1.2. Angular momentum balance for the swing leg
rigid bodies (leg 1: stance leg; leg 2: swing leg) that have*Pout the hip axid is
massmn, symmetrjcally located (in the rest state) cer'lters.of fi - {rg,)n X mg =rg,yn X may + w, X (LLw,)
massG 2, and mirror-symmetry-related moment of inertia .
matrices with respect to the center of mdss. The + Lo}, )

The eight collisional jump conditions come from continu-
" ity of configuration through the collision, conservation of
0 T 9\ angular momentum of the system about the new contact
pointD,

Z IrG,/D X mv; + Iiw,» ’
i=12 -

= Z Irc,/D X mv; + Iiwi (3)
i=12 +

swing leg
(leg2) <

and conservation of angular momentum for the swing leg

C
stance leg about the swing hinge axis

(leg 1)
n- {rGl/H X mv; + LLw{|-

FIG. 1. A rigid body model of the simple walker. Parameters

and state variables are described in the text. = TGym X mvy + Lo}, )
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where the respective sides are to be evaluated just befovégth the maximum eigenvalue corresponds to falling over
(—) and after ¢) foot collision with the ground. The sideways (i.e., is dominated by, components) as
second jump condition Eqg. (4) is applied to the same leg asxpected. The most stable mass distributions we have
it switches from stance (subscript 1) to swing (subscript 2)found do not have very humanlike parameters; each leg
Equations (3) and (4) also assume no collisional impulséas a center of mass closer to the foot than the hip, and
from the ground to the leg which is just leaving the ground.laterally displaced at about 90% of the leg length.

The governing equations and jump conditions above In this almost-stable case, the walker’s legs have a mass
are expressed in terms of positions, velocities, and addistribution corresponding roughly to laterally extended
celerations, which are functions of the state variablesbalance bars, like what might be used for tightrope walk-
The governing equations are massive expressions (pageg. In the limit, as the lateral offset of the center of mass
long). We assembled the kinematic expressions and gowgets very large, the device approaches, for sideways bal-
erning differential equations using symbolic algebra soft-ance, an inverted pendulum with large rotational inertia.
ware (Maplé€). The step periods remain bounded. Negligible falling ac-

The no-slip rolling condition is that the velocity of the celeration can thus occur in one step and the modulus of
material point in contact af is zero. So far, we have the maximum eigenvalue of the linearized step-to-step map
studied only a simplification with point-contact feet (=  asymptotically approaches one, or apparent neutral stabil-
r, = 0) and no hip spacingi = 0). In this case, when a ity, from above Thus, the closeness of the largest map
foot is on the ground, the contact acts like a ball-and-socketigenvalue modulus to one is not a complete measure of
joint and the only nonholonomy is that of intermittent closeness to stability. However, when averaged over a step
contact. At all times in between collisions, this point-foot cycle, this model falls more slowly than a corresponding
system is smooth and holonomic. inverted pendulum and the low eigenvalue is not just a re-

In order to study the stability of such systems, fol- sult of slowed falling due to large rotary inertia.
lowing McGeer, we represent an entire gait cycle by a The toy—As a nonworking demonstration of the
Poincaré map kinematics and mass distributions in our simulations, and

. not for walking experiments, we assembled a device
Flai) = Qe ®) " similar to the one shown in Fi i
g. 2. It has two straight
from the state of the systeqy justafter a foot collisionto legs, separated by simple hinges at the hips, laterally
the statay,+; justafter the next collision of the same foot extending balance mass rods, and rounded feet. Playing,
(two leg swings and two foot collisions per map iteration).with no hopes of success, we placed the toy on a ramp.
We evaluatd using numerical integration of Eqgs. (1) and Surprisingly, it took a few serendipitous, if not very steady
(2) between collisions and applying the jump conditionsor stable, steps. After some nonquantifiable tinkering, we
Egs. (3) and (4), at each foot collision. For this model,arrived at the functioning device shown.
the map is seven dimensiond& ¢ 1), but we treat it as Our physical model is constructed from a popular
eight dimensional for numerical convenience. American child’s construction toy, brass strips to round

Fixed points of the return map [q with f(q) = q] the feet bottoms, and various steel nuts for balance
correspond to periodic gait cycles (not necessarily stablejnasses. The walking ramp has about & 4l6pe and is
We find fixed points by numerical root finding on the narrow enough to avoid making contact with the balance
functionf — q, sometimes using fixed points from models
with nearby parameter values to initialize searches.

We determine the stability of periodic motions by nu-
merically calculating the eigenvalues of the linearization o
of the return map at the fixed points. If the magnitudes ,’0'\"

. X { )5/~~balance mass
of some of the eigenvalues are less than one (with all oth- @ assembly
\ /)

"orange\
ers equal to one), then the fixed point is asymptotically ’ ﬁs g
stable in those variables. Because there is a family of yellow spool

limit cycles at different headings one eigenvalue is always fedydﬂ
one. Because we use eight instead of seven dimensions
. . . alance mass assembly
in our map, one eigenvalue is always zero. 2851 &
To date, like McGeer [2] and Fowble and Kuo [10] who allen-head bolt ——

. L . . (T )e1/2" - #20 nut Side view, yellow sp
stughed S|m|I§1r simulations, we have found only unstable . 1/4 " flat washer —~ spool center
periodic motions, though less uns_table thz_;m theirs. A =1/4" - #28 nut R254 fat section 0.05| —
nearly stable case from our numerical studies has maxi- \ """"""""""""""""" —r
mum eigenvalue modulus of about 1.15, one of exactly “brass strip

ﬁne, ?nddth% other rs]lx Iejs "[thhag/von; For_e—af;[ balls.ncl?IG. 2. The 3D Tinkerto§ walking model with hardware
as already been achieved wi O-dimensional wa Inngescription and dimensions (in cm, not drawn to scale). The

models whose stable fixed points we use as starting poinisalance masses and the brass strips are fastened with tape (not
for the 3D analysis. Thus the eigenvector associatedhown).
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masses as the walker rocks side to side. Another more In conclusion, we have constructed a device which can
complex assembly of similar toy parts (not described herepalance while walking but cannot stand in any configu-
walks on a wide ramp. ration. Although our new machine does not have a very
Construction details—The device is built using the humanlike mass distribution, it does highlight the possibil-
PlayskooP Tinkertoy® Construction System: Colossal ity that uncontrolled dynamics may not just contribute to
Construction®', 1991 set. One leg is made from a yellow fore-aft walking balance, as indicated by previous McGeer
spool, a light green rod, and a dark green hinge (plu% “ models, but also to side-to-side balance. The mechanism
shaped) glued together. Then, we slid the legs onto a rgadins a small collection of statically unstable devices which
rod (loose fit) which acts as an axle. The green hingeslynamically balance without any rapidly spinning parts.
are separated and kept from sliding apart by three orange Our too-simple mathematical/computational model
washers, friction fit to the red axle. The legs and axle camloes not explain this behavior. We do not yet know
rotate independently. what key modeling features need be included to predict
To support the side weights, we glued a yellow spoolthe observed dynamic stability. An open and possibly
rigidly to the end of a red rod and inserted the other endinanswerable question is whether the stability of this
into the side of a yellow foot with a friction fit to allow intermittently dissipative system can be explained, in
for rotational adjustment. part, by the fact that its piecewise holonomic contact
We assembled each balance mass from two stacked steminstraints act somewhat like honholonomic constraints.
nuts held together between two washers by a nut and bolt. The authors thank Les Schaffer, Saskya van Nouhuys,
Each nut assembly has a mass of about 50 grams. Theand Mariano Garcia for editorial comments.
each balance mass assembly was located on the yellow
spools at the end of the balance rods and held in place with
vinyl electrical tape. The balance mass assembly is tilted
behind the leg. As aresult, the legs have low mass centers
located laterally at a distance comparable to the leg length[1] T. McGeer, Int. J. Robot. Re$, 62 (1990).
above the center of curvature of the feet, and just behind[2] T. McGeer, in Proceedings of the Experimental
the leg axes. The mass of the fully assembled walking  Robotics II: The 2nd International Symposiuetlited by
device is about 120 grams, only 20 grams more than the R. Chatila and G. Hirzinger (Springer-Verlag, Berlin,
two balance masses. When the toy is in its unstable- 1992), pp. 465-490.

P . . . : [3] T. McGeer, J. Theor. Biol163 277 (1993).
equnlbrlum. standing position the nominally vertical legs [4] D. Zenkov, A. Bloch. and J. Marsden, University of
are approximately orthogonal to the ramp.

: : Michigan report (unpublished).
To ensure that the walker is statically unstable (cannot[s] G.IT_',%a”iS ?_J.S.(;a‘t)euntho. 3?76 588 (1888).

stand on the flat sections or in any other way), a small[e] S. Mochon and T. McMahon, Math. Bioscb2, 241
(0.50 cm wide) strip of thin (0.013 cm) brass shim stock (1980).
material was fastened over the flat section contacting thg7] M. Garcia, A. Chatterjee, A. Ruina, and M.J. Coleman,
floor so as to ensure its curvature there. ASME J. Biomech. Eng. (to be published).

Observed motior—Because the center of mass is [8] M.J. Coleman, Ph.D. thesis, Cornell University, Ithaca,
above the center of curvature of the round feet, we cannot  NY, 1998.
stably stand this device with parallel or with splayed legs. [9] B. Thuillot, A. Goswami, and B. Espiau, iRroceedings
When aimed downhill on a ramp, tipped to one side, and of the 1997 .IEEE International Conference on Robotics
released, the device rocks side to side and, coupled with . 2nd Automation|EEE, New York, 1997), pp. 792798,

swinding of the leas. takes tinv steps. When a foot hit 0] J.V. Fowble and A.D. Kuo, irBiomechanics and Neu-
ging gs, y PS. ral Control of Movement, Proceedings of the Engineer-

the grour_1d, it st_icks and then rolls, until the swinging foot ing Foundation Conference€FC, Mount Sterling, OH,
next collides with the ground. Except at the moment of  1996) pp. 28, 29.

foot collision, only one foot is in contact with the ground [11] M. J. Colemaret al.,in Proceedings of the IUTAM Chaos
at any time. When the swinging foot collides with the '97 Symposium (to be published).

ground, the trailing leg leaves the ground. The gait ig12] R.S. Hand, Master’s thesis, Cornell University, Ithaca,
more or less steady; after small disturbances the toy either NY, 1988. . o .

falls or stumbles a few steps while returning to near-{13] J. Papadopoulos (private communication) (unpublished).
periodic gait. At a slope of 4% it takes a step about [14] Y. Rocard,.Ge.neraI Dynamics of VibrationgFrederick
every 0.47 s and advances forward about 1.3 cm per ste 5 gngarszubhslwg Co-a,NeW \f(or:k' g?}G&?{gg gd' -
where a step is measured from a foot collision to the next:?] R-S- Sharp, irProceedings of the 8t ymposium.
collision of that same foot. The side-to-side tilt is about The Dynamics of Vehicles on Roads and Traekited by

N f . T . . J.K. Hedrick (Swets and Zeitlinger B. V., Lisse, 1983),
4°; there is no visible variation irp during a step, but pp. 564-577.

there is slight directional drift (one way or another) over(1g] M. Hubbard, J. Appl. Mech46, 931 (1979).

many steps. The rounded metal strips at the feet bottom7] T. cardanha and R. Bennet, Cornell University Engineer-
deform during foot collision in a way that may or may not ing Undergraduate Research Project (unpublished).

be essential; we do not know. [18] A. Ruina, Rep. Math. Phys. (to be published).
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