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Theory of ac Josephson Effect in Superconducting Constrictions
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We have developed a microscopic theory of the ac Josephson effect within the general model
of a high-transparency Josephson junction: short superconducting constriction with either ballistic or
diffusive electron transport. Applications of the theory were studied, including smearing of the subgap
current singularities by pair-breaking effects in the superconducting electrodes of the constriction,
and the structure of these singularities in constrictions between the composite superconducting-normal
electrodes with the proximity-induced gap in the normal layer. [S0031-9007(98)05901-8]

PACS numbers: 74.50.+r, 73.20.Dx, 74.80.Fp

The mechanism of electron transport in high-vanced, and Keldysh matrixég®4 andG [13]. To calcu-
transparency Josephson junctions at finite bias volt&ges late the current we need to know the asymmetric paot
is known to be the process of multiple Andreev reflectionghe Green'’s functiodd = G(p,;) — G(—p.;), wherep, is
(MAR) [1]. Considerable progress has been made recentlihe momentum in transport direction, apd= 1, 2 num-
in quantitative understanding of this process. Developbers the constriction electrodes. Solving the quasiclassi-
ment of the controllable break junction technique [2] madecal equations folG inside the two electrodes and match-
it possible to study the current-voltage V) characteris- ing the solution across the constriction with the boundary
tics of atomic-size Josephson junctions with transparencgonditions [10(b)] one can show that the matfi, ¢') is
D varying from the tunnel-junction limiD < 1 to almost continuous inside the constriction and is given by the ex-
ballistic contacts withD — 1. Junctions of other types pression—see Eq. (35) of [10(b)]:
that exhibit MAR-related features in tiieV’ characteristics 7 _ opg_ « &, « (1 — DG_ * G_)!
include semiconductor/superconductor heterostructures [3], . . . . y .
with different mechanisms of electron transport, and tun- = G- * (G4 + iAl)™! = (G+ + iAl) ™'+ G-. (1)
nel junctions with hlgh critical current density [4] Most Here the product denoted by means the convolu-
of these junctions have complex structure, with superconton with respect to the internal time variable, i.e.
ductivity in the junction electrodes complicated by the(;u * (;7] = fdtlé,u(t,tl)én(tl,t/)y and we used the
proximity effects and elastic and inelastic scattering. Th%llowing notations:A = /(1 — D)/D, 1 = 18(t — 1),
aim of this work was to develop the theory of MAR in high- & = _— (G = G)/2,  Git,)) = 5;(0g,(t — ().
transparency Josgphsqn ju'nction's with arpitrary micr.om the last equationg; (r) — fgj(e)'exp('—iet)de/(%r)
scopic structure, including inelastic scattering and pairig the equilibrium Green’s function ofth superconduc-
break_lng processes. All these effects cannot be account%ir: 2i(e) = [gf(e) _ g}fx(e)] tanh(e/2T), gf(e) _
for within the existing approaches to MAR [5-8] based Re)s. + fR(e)it, = —[84(e)]" and $.(1) =
on the Bogolyubov—de Gennes (BdG) equations [5—7] of/ \ €7 T T > TN J
Hamiltonian methods [8], and require the Green’s functionexdwj(t)TZ/z]’ where (1) is the phase of the or-

’ der parameter of thgth electrode. The curremt(z) is

technique. Despite the long history of applications of this : ¥ RS

. . _-fetermined by the Keldysh componentjoés Tr#,J(z, ¢
technique to ac Joseph_son effe(;t [.6(b)’.9_12].’ there. IS S'['FIS], and us%g Eq. (13)/ we Capn write it in 1§oll(owi)ng
no tractable theory of this effect in junctions with arbitrary symmetric form:

transparency. In this work we present such a theory
and apply it to _s.tudy the ;mearin_g of the MAR—reIated (1) = V@) + 81a(1) + 81y (),
current singularities by pair-breaking scattering, and the Ry
ac Josephson effect between the normal conductors with - . .
the proximity-induced superconducting order parameter. 07jx(t) = ol #(G] = g — e = G (1,1). (2)

The basic model of a high-transparency Josephson junc- 0
tion is a short superconducting constriction (shorter thadn these equations, we have separated the normal-state
the coherence length and elastic and inelastic scattering currentV /Ry, whereRy = Ro/D, andRy = w/i/e* for
lengths of the constriction) with a transparer2y Inthe @ single-mode constriction. Other notations in Eq. (2) are
Green’s function technique, the constriction is describeds follows: g = 7 * (&F * f — f * 80) * @5, 4% =
with the nonequilibrium quasiclassical Green’s functien  2/(G} + g + 2iAl)~!, f(r,¢) = [f(e)exd—ie(r —
which is a4 X 4 matrix consisting o X 2 retarded, ad- ¢')]de/27, and f(e) = tanhe/2T). For a constriction
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with a cross-section aredl and a large number of propa- following equations:
gating electron modes, angular averaging over directions R OBR . AR AR A,
of momentum should be carried out in (2), aRd = (pr — Ij = dp) x ay = rl + 17, 3)
(gg/eppl)iﬁ%/ﬂ,Whel’epFlAj minprj., The fl/JI’l(itIO/nS and a(e. ) = [a% (e )]t. Here r =T —D is
Gi ang Gy In Eq. (2) areGy = 5(1)g; (r - t).S ('), the reflection amplitude of the constrictiofff(t, t') =
where S(r) = exdie(£)7,/2], and the phase difference -z NSNS A Ri,y _ R )

: . . T = 808z, T/ () = [vi(e)exp(—iet)de/
¢ = ¢» — ¢ is determined by the applied voltad&r): 5 R\ /R Rie) + 1 A~ Rx
¢(1) = (2¢/R)V(r). It is convenient to expresgy, and ( ,zT)’ / Yi(g) - J;I'R(e)/[gf, (f) gl N/ (e/) — Y i(é)'
g% through the matricesGF + #,) * g& = (&f + #.) p’;e(t’t) N O f,){f;“ and #; (r,1) = —rl +
and (21 — #,) * 5]?‘1( N (ij ~ %), where#, = #.8(1 — ll“k ('t —fr )rx_. Interms ofa ;" ', Eq. (2) reduces to the fol-
t'). After this transformation, Eq. (2) is simplified and owing form:

1
can be written in terms of the functiorﬂ@'-i’A obeying the | 81 (1) =

8eR0

Jix(e, €) = Trity [y (e)Wi(e)afy (e, €') — i (eWi(e)afy (e, €))]

e
0 T [ SE wiepadie enadiene).

d .
ﬁfdos]jk(e,e —w)e ', (4)

where Wi (e) = [1 — |yf(e)[*]f(e). Equations (3) and! Josephson oscillations and typical frequency of voltage
(4) show that the problem of finding the current in avariations) are much smaller than the inverse time of
short ballistic superconducting constriction with arbitraryelectron motion through the constriction.
time-dependent bias voltage reduces to the problem of Equation (3) can be solved easily for the dc bias voltage
solving Eqg. (3), whichis a Fredholm integral equation (seey, when the phase difference is(t) = w;t + ¢g, and
e.g., [14]). wy; = 2eV /h is the Josephson oscillation frequency. In
Equations (2)—(4) can also be used to find the currenthis case, the solution of Eq. (3) can be written as a
in short diffusive constrictions, i.e., constrictions with series, & (e, €') = 27 ., &(jx)(€')8(e — € — nhwy)
a large number of propagating modes and a lengtliwe omit the superscripR), in which the amplitudes
d that satisfies the condition < d < &, where ! is &, jk) are determined by a system of recurrence relations.
elastic scattering length. Indeed, in this case, solution ofo obtain these relations explicitly it is convenient to
the quasiclassical equations gives the expresgign= write the matrixé j; in the formé ;, = %qu(%xajk +
(2lvr,/dvr)In(Gy * Gy) for the asymmetric part of the b%)(1 + s#.). Equation (3) shows that the pairs of
Green’s function [9]. This expression reduces to [15]functionsaj,, b}, with s == satisfy the same equations
Jait = Qlvg,/dvr) [4dDI(D)/DNT — D, whereJ(D)  with the different polarity of the bias voltage. For the dc
coincides with Eq. (1). Thus, we find that in diffusive bias, we get the following recurrence relations for these

constrictions functions:
1 — ,
I(t) _ 2772'h f dD I(I;D), (5) ap+1 YJ(62n+l)7k(€2n)a)1
¢Ry Jo DV1 =D = —rlyjl€m+1)bn — vil€+2)bus1] + yi(€1)8,0, (6)
where I(t; D) is given by Egs. (2) for a single-mode  ¢(ey,.)bn+1 — d(€2y)bn + c(€xy—1)bn—1 = —FSno,

constriction andRy is the normal-state resistance of the N N

diffusive constriction. Equation (5) shows that similarly Where a, = a,(jn(€), b =b,y(e), and e, =

to the approach based on the BdG equations [7], in thé t neV. The coefficients in these recurrence re-
general Green’s function approach, the current in thdations —are c(e) = Dy;(e)yc(e + eV)/[1 — yj(e)]
diffusive superconducting constriction can be written as @nd d(e) = 1 — y;(e) + Dyi(e + eV)/[1 — yj(e +
sum of independent contributions from an infinite numbereV)] + Dyi(e)/[1 — yf(e —¢eV)]. The amplitudes
of ballistic propagating modes with the distribution of a,j and b, jx determine Fourier components of
transparencies given by the Dorokhov's [16] densitythe current I(x) = >, I, explinw;t), which accord-
function(w7/2¢*Ry)/D~/1 — D. It should be noted that ing to Egs. (2) and (4) are given by the expression
this approach assumes that all frequencies (frequencY @f = Vé,0/Rn + Iya2) + Iy21), Where

1 * " " *
Ly = 2eRo f,m deW(e) - {—J’k(fzn)an(jk)(f) — Yi(€—2n)aZ,(ji(€) + Z[l + vi(€m+20) vy (€2m)]

X [bnimb’ — an+ma;](,-k>(e)}. @

For a constriction between two BCS superconductors the recurrence relations (6) and Eq. (7) for the current reproduce
the corresponding expressions that can be obtained from the BdG equations—see [6(a)], where these expressions were
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derived for a symmetric constriction. This means that forcrete states disappear, and the current is carried only by
the purpose of description of the ac Josephson effect in the continuum of states above the gap. We note fhat
short constriction all information about the microscopiccorresponds to rather high transparencies even for small
structure of its electrodes is contained in the functionpair-breaking parameter on the order of 0.1. For exam-
vR(e) [introduced after Eq. (3)] which has the meaningple, for the PB caused by magnetic field parallel to a thin
of the amplitude of Andreev reflection from the fully Alfilm with d ~ 100 nm,{ = 0.1 impliesH in the range

transparent superconducting-normi@/ N) interface. of 100 G, the field that is much smaller than the parallel
Equations (6) can be solved by standard metheritical field H.j. Figure 1 shows how the changes in the
ods [14]. Namely, it follows from (6) that,(e) =  quasiparticle spectrum caused by the PB are reflected in
bo(e)[ 1=+, p=(€e2), Where the functionsp.(e) are the current-voltagél-V) characteristics. All gap-related
solutions of the equationsp+(e) = c(e+1)/[d(e) —  features are rapidly broadened at smalland the curves
c(e+1)p=(e+2)]; the two signs(*) here correspond to become practically linear in the gapless regiihe 1.
n=1(n=—-1), and bo(e) = r[d(e) — c(e1)p+(e) — The changes in the spectrum are reflected also in the

c(e—1)p—(e)]"'. These relations provide the basis for ac current. This can be seen explicitly in the case of the
convenient numerical evaluation of the current, andully transparent constriction) = 1, and low voltages,
therefore allow us to find the current in constrictionseV < A, f(A,), when the recurrence relations (6) can be
between the superconductors with arbitrary quasiparticlsolved directly and we get the current:

spectrum. As we will see below, all deviations of the

guasiparticle spectrum from its “ideal” BCS form affect I(¢) = f de

strongly MAR-related current singularities and especially 2eRy

the low-voltage behavior of the current. y ReiSin oFi(e,V) + 2uu? — 1F_(e,V)
The quasiparticle spectrum of a superconductor can dif- u*(e) — cos(¢/2)

fer significantly from the BCS form due to pair-breaking

(PB) effects which can be caused by several factorsHereF=(e,V) = [F(e,V) = F(e, —V)]/2, and
scattering on paramagnetic impurities, magnetic field, su- € ,af (€
percurrent flow—see, e.g., [17]. For disordered super- F(e,xV) = f(e) — f+ de =7~
conductors, various PB processes can be described in a ’A*’E,

unified manner, the difference between various mecha- X ex;{—f d_E|n|72(E)|>.
nisms contained only in the microscopic expressions for e eV

the pair-breaking parametér that gives the strength of
the PB. For instance, in the case of paramagnetic i
purities, ¢ = h/7,A with 7, being the spin-flip scatter-

The current in the constriction as a function of the (time-
maependent) phase differencg calculated from these
! : . . X X equations is shown in the inset in Fig. 1. We see that
ing time. For a th'f‘ sgperconductmg film OT th'CkneSSeven relatively small’ has a strong effect on the dynamic
d < £ in a magnetic fieldr parallel to the film,; = current-phase relation, suppressing the dc component of

2 . . .
lvp(eHd)”/18hA. As the first application of our general.the current and making it more similar to the stationary

theory we consider the ac Josephson effect in a Consm%urrent-phase relation

tion between two disordered superconductors with some

PB mechanism. The retarded Green’s functions of such 6

superconductors are [17]: 4
R _ u _ /R |: _ { i| 571
= /= =Uu . — =u|l ———— I
& Vu? —1 f A V1 — u? 4
8 o
5 3L
Weak PB effects result in smearing of the BCS sin- 2
gularity in the quasiparticle spectrum and suppression =2

of the superconducting energy gap to a reduced value
A, = A(1 — )32, The gap disappears completely
at { = 1. Even weak PB affects strongly the current- 0 - .
carrying states of the constriction. For example, symmet- 0 L oaya 2 3

re constrictions are kr_lown to S_uppf)rt two discrete Sta'[eT:IG. 1. dcl-V characteristics of a short ballistic constriction
in the subgap range with energies = *¢,. In the case between the two superconductors with pair-breaking (PB)
of BCS superconductors,, /A = J1 — Dsirt(¢/2) =  effects. The curves are shifted for clarity along the current axis
u,, and the dc supercurrent is carried entirely by the disand illustrate the smearing of the subharmonic gap structure
crete states [18]. At finite PB, these states exist whel/ith increasing strength of the PB. The upper curve witk-

; 1/3 : e . .0 corresponds to the regime of gapless superconductivity.
|sin(¢/2)l > ¢'/*/V/D and their position is determined The inset shows the dynamic current-phase relation at low bias

by the expressioe, = Au, (1 — {/D [sin(e/2)]). In voltages andD = 1 for £ = 0, 0.1, 0.3, and 0.7 (from top to
constrictions with transparenciés < (/3 = D, the dis-  bottom).
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We consider next a constriction between two normalkonductors with the proximity-induced superconductivity.
conductors in which superconductivity is induced by theThe effects studied in this work should be observable in
proximity effect, i.e., anS/NcN/S junction. Besides high-transparency Josephson junctions either as a complex
general interest to the proximity effect, the importance ofstructure of the subharmonic singularities (similar to the
this model is due to its relevance for realistic descriptionone shown in Fig. 2) or as smearing of these singularities.
of the high-critical-current tunnel junctions [19]. We This work was supported in part by the ONR Grant
study a particular case of a thin dirtfy layer of No. N0O0014-95-1-0762, Russian Fund for Basic Re-
thicknessd,, < &, with the S/N interface that has low search, Grant No. 96-02-18613, and by the U. S. Civilian
transparency(D’) <« 1, but resistance still negligible Research and Development Foundation under Award
in comparison to the constriction resistance [20]. TheNo. RP1-165.
Green'’s functions of theV layer are given then by the
first equation in (8) withu = (e + iy,g8)/iv,f¥: see,

e.g., [19,21], and references therein. Hefe and /& [1] T.M. Klapwijk, G.E. Blonder, and M. Tinkham, Physica
are the Green’s functions of the superconductor, and (Amsterdam)109&110B+C 1657 (1982); M. Octavio
vu/h = (D')vg,/4d, is the characteristic tunneling rate et al., Phys. Rev. B27, 6739 (1983).

across theS/N interface which is assumed to be larger [2] N. van der Poset al., Phys. Rev. Lett73, 2611 (1994);
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due to the proximity effegct. If theS electrode of the (81 A Frydman and Z. Ovadyahu, Solid State Comme,

. ) 79 (1995); J. Kutchinskyet al., Phys. Rev. Lett78, 931
structure is the BCS superconductor with energy gap (1957)_ ) ¥ y

the induced gap\, is determined by the equatidh, = 4] A.W. Kleinsasseet al., Phys. Rev. Lett72, 1738 (1994).
Avyy/l A2 — A§ + vy,]. Existence of the induced gap [5] E.N. Bratus, V.S. Shumeiko, and G. Wendin, Phys. Rev.
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FIG. 2. dc current-voltage characteristics of a short symmetric it breaks down when the reflection coefficient is finite

S/NcN/S constriction for different values of the constriction

transparencyD. The curves show the complex subharmonic because of the quantum mechanical interference between
gap structure associated with the two energy gapin the S different quasiparticle trajectories in the energy space.
region, and proximity-induced gap, in the N region. For [21] A.F. Volkov and A.V. Zaitsev, Phys. Rev. B3, 9267
discussion, see text. (1996).
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