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Zhang recently conjectured an approximate SO(5) symmetry relating antiferromagnetic and supe
ducting states in high-Tc cuprates. Here, an exact SO(5) symmetry is implemented in a generaliz
Hubbard model (with long-range interactions) on a lattice. The possible relation to a more real
extended Hubbard Hamiltonian is discussed. [S0031-9007(98)05904-3]

PACS numbers: 71.10.Fd, 74.25.Dw, 74.25.Ha
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S. C. Zhang [1,2] recently conjectured that high-Tc

cuprate compounds possess an approximate SO(5) s
metry. His theory aims to explain the proximity o
superconducting (SC) and antiferromagnetic (AF) phas
in the phase diagram, and to account for the low-ener
excitations as approximate SO(5) Goldstone mode
Antiferromagnetism and superconductivity are unified
one grand order parameter fieldsmx , my, mz, ReC, Im Cd,
behaving as a five-component vector, where the fi
three elements are Cartesian components of the stagg
magnetization andC is a spin-singlet SC order paramete
(Here “ReC” ; 1

2 sC 1 Cyd, etc.) In this picture, small
symmetry-breaking terms drive the system in a “supersp
flop” between antiferromagnetism and superconductivi
just as, in a magnet with approximate SO(3) symmetr
competing spin-space anisotropies and external field c
drive a “spin-flop” transition between magnetic orde
along thez axis and in thexy plane [1].

The SO(5) theory, while positing an intimate relation
ship between SC and AF order, does not imply that t
pairing mechanism is AF fluctuations [3,4]. Rather,
quantifies the notion (also relevant to superfluid3He) that
there need not be a sharp difference between interacti
mediated by magnetic and “charge” (number) fluctuation
I pass over Zhang’s specific mechanism (whereby the s
tem accommodates doping by switching from the AF sta
to a symmetry-related SC state which has a different p
ticle number), for SO(5) symmetry can be valid even
another sort of perturbation is found responsible for th
symmetry breaking and the AF-SC transition.

The 41 meV mode observed in spin-flip neutron scatte
ing on YBa2Cu3O7 [5] is interpreted as a Goldstone mod
of SO(5) with a gap due to the symmetry-violating term
analogous to the anisotropy gap in a spin-wave branch
the unixial magnet [1]. These excitations are created
“ p̂y” operators [6] [SO(5) generators that mix magnet
and SC components] [7]. They are charged bosons w
the quantum numbers of “preformed” Cooper pairs, a
presumably carry the current in the “normal” metal [1];
has been speculated [9] that this explains the linear te
perature dependence of the normal-state resistivity.

To the extent that SO(5)-violating terms are small (a
in Zhang’s phase diagram “A” [1]), relations between AF
0031-9007y98y80(16)y3590(4)$15.00
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and SC quantities are obviously predicted. For examp
the Néel temperatureTN on one side should equal the SC
Tc on the other side (the real ratio is 5:1 in YBa2Cu3O7).
Furthermore, when converted into the proper units, t
tensors of superfluid density and AF spin stiffness shou
be equal, as should the order-parameter lengths (stagg
moment and SC gap magnitude, respectively) and the
terlayer couplings (interlayer superexchange and intrin
Josephson coupling, respectively. An order-of-magnitu
equality of the interlayer couplings is indeed expected
the interlayer tunneling picture [10]. Finally, the SO(5
Ginzburg-Landau theory predicts that vortices have ma
netic cores [1,11]; conversely, in analogy to the Bloc
wall in the SO(3) magnet, it suggests that magnetic d
main walls contain SC stripes, as proposed for other re
sons by Emery and Kivelson [12].

Microscopic SO(5) symmetry.—In this paper, using
elementary notations, I implement a literal SO(5) sym
metry in a one-band lattice model, construct a Ham
tonian with exact SO(5) symmetry, and finally conside
whether a realistic Hamiltonian of an extended Hubba
form might approximate an SO(5) symmetric Hamilton
ian. Take a lattice withN sites (using periodic boundary
conditions). Creation operators for the orbitals on sitex
are cy

ssxd for s ­", #. Let Q be the ordering wave vec-
tor of some two-sublattice AF state, so thateiQ?x ­ 61
at every site. The usual staggered-magnetization com
nents are

mscd
z sxd ;

1
2

eiQ?xfcy
"sxdc"sxd 2 c

y
#sxdc#sxdg ,

m
scd
1 sxd ; eiQ?xfcy

"sxdc#sxdg , (1)

andmscd
2 sxd ; m

scd
1 sxdy. The SC order parameter opera

tor has the general formCsxd ­
P

r,r 0 csr, r0dc#sx 1

rdc"sx 1 r0d [which allows different spatial symmetries
depending on the form of the coefficientscsr, r0d].
We seek a continuous, unitary operation that turns
component ofmsxd into one ofCsxd, i.e., turns creation
into annihilation operators: Clearly, it must be some for
of Bogoliubov transformation.

Indeed, a discrete SO(3) symmetry of this sort
is already known for the negative-U Hubbard
© 1998 The American Physical Society
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model [13], for which the appropriate SC or
der parameter is Csxd ­ c#sxdc"sxd. One maps
c#sxd ! eiQ?xc#sxdy [leaving c"sxd alone] which implies
fCsxdy, Csxd, eiQ?xnsxdg ! fm1sxd, m2sxd, mzsxdg; here
nsxd ; c

y
"sxdc"sxd 1 c

y
#sxdc#sxd. The only change

induced in the Hubbard Hamiltonian isU ! 2U; thus
a hidden SO(3) symmetry relates SC ordersCd and
charge-density-wave orderfeiQ?xnsxdg in the limit of
large negativeU.

To write the exact SO(5) symmetry transparently, a
to ensure it in the order parameters and Hamiltonians
use the duality [14] between the “c” operators and an
alternate set of canonically commuting operators,

dk1Q,s ; hkcks (2)

(with jhkj ; 1). In real space, Eq. (2) states

dssxd ­ e2iQ?x
X

r
wsrdcssx 1 rd , (3)

wherehk ;
P

r e2ik?rwsrd. To make the symmetry (5b)
work, we will need the important condition

hk1Q ­ 2hk (4)

for all k, which in real space states thatwsrd ­ 0 for
“even” r (vectors connecting sites in the same sublattic
Equation (4) implieshcy

ssxd, ds0 sx0dj ­ 0 if x andx0 are
on the same sublattice (e.g.,x ­ x0) [15].

Then the proposed symmetry operation is just

c0
ssxd ­ cossuy2dcssxd 1 sinsuy2ddy

2ssxd , (5a)

d0
ssxd ­ 2 sinsuy2dcy

2ssxd 1 cossuy2ddssxd . (5b)

The symmetry (5b) is generated by1
2 sp̂ 1 p̂yd, where

p̂ ­ i
P

xfc#sxdd"sxd 2 d#sxdc"sxdg. To transform wave
functions, it is useful to know that the vacuumj0l trans-
forms to

Q
kfcossuy2d 1 hk sinsuy2dcy

k"c
y
2k1Q,#g j0l.

So that it will map exactly under (5b), the SO(5
staggered magnetization must be defined as

msxd ­
1
2

fmscdsxd 2 msddsxdg , (6)

where msdd is (1) with “c” ! “d”. Note this gives a
sensible result for the Néel state: Ifmscdsxd is up, then
msddsxd is down (since thed “orbital” on sitex is a linear
combination ofc orbitals from the opposite sublattice).

The SC order parameter is

Csxd ; eiQ?x 1
2

fc#sxdd"sxd 1 d#sxdc"sxdg . (7)

Then

m0
zsxd ­ cosumzsxd 1 sinu ReCsxd , (8a)

ReC0sxd ­ cosu ReCsxd 2 sinumzsxd , (8b)

while the other three components are invariant. T
SO(5) rotation of the Néel state withu ­ py2 gives

22Ny2
Y

k
s1 1 hkc

y
k"c

y
2k#d j0l . (9)
-

nd
, I

e).

)

he

This BCS state has no remnant of Fermi surfa
(kcy

kscksl ; 1y2 throughout reciprocal space).
One could construct a total of six such rotations, ea

of which mixes one of the three components ofmsxd with
one of the two components ofCsxd. The other five could
all be obtained by combining (5b) with the usual SO(3
rotations acting on the spin labels ofc and d operators,
plus the usual SOs2d ; Us1d gauge symmetry changing
their complex phases. [Zhang has discussed the alge
of SO(5) generators [1,2].]

For the square lattice, we must haveQ ­ sp , pd so the
hopping term (12) will be SO(5) invariant. This leave
much freedom tohk [16], but the simplest choice is

hk ; sgnscoskx 2 coskyd . (10)

This has inversion symmetrywsrd ­ ws2rd in real space,
i.e., h2k ­ hk [17]. Equation (10) is inspired by the
original and approximate SO(5) symmetry [1], whic
had the same form but with coefficientshk ! coskx 2

cosky. Kohno [2] discovered independently the exact ve
sion (10). Comparison with (9) shows that (10) is e
sentially the Cooper pair wave function and hasdx22y2

pairing symmetry, consistent with strong experiment
evidence in the cuprates [18]. Interestingly, one oth
simple, inversion-symmetric choice would also satis
condition (4): hk ; sgnscoskx 1 coskyd. That variant
of SO(5), which entails “extendeds-wave” pairing, ap-
pears free from internal contradictions (contrary to a su
gestion in Ref. [1]).

The coefficients in (3) [Fourier transform of (10)
are wsx, yd ­ 4yfp2sx2 2 y2dg for x 1 y odd, zero for
x 1 y even. A possibly useful one-dimensional to
realization of SO(5) symmetry is given byQ ­ p and
hk ; sgnscoskd, which giveswsrd ­ 2s21dsr21dy2ysprd
for r odd, zero forr even.

Microscopic Hamiltonian.—Next I will produce an
artificial generalization of the Hubbard Hamiltonian whic
has exact SO(5) symmetry. The basic Hubbard mod
with particle/hole symmetry can be written as

HHubb ­ Hhop 1 U
X
x

1
2

fnsxd 2 1g2, (11)

Hhop ­ s2td
X
xs

X
u

cy
ssxdcssx 1 ud ­

X
ks

ekc
y
kscks ,

(12)

with u running over nearest neighbors, an
ek ­ s2td scoskx 1 coskyd.

The minimal Hamiltonian that includes the terms i
(11) is simply the SO(5) symmetrization of (11). Th
hopping termHhop is already invariant under all of the
SO(5) rotations [such as (8b)],provided that ek1Q ­
2ek. That is true in any bipartite lattice, if and only
if Q describes the original Néel state with opposite sp
orientations on nearest-neighbor sites.

However, SO(5) symmetrization turns the num
ber operator nsxd into something quite different,
3591
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nssxd ; 1
2 fnsxd 2 nsddsxdg. [I take the obvious defini-

tion nsddsxd ; d
y
#sxdd#sxd 1 d

y
"sxdd"sxd.] In contrast to

the usual number operator,
P

x nssxd ; 0. The nsddsxd
operator includes termsjwsrdj2nsx 1 rd, all on the oppo-
site sublattice fromx and largest for nearest neighbors
jrj ­ 1, as well as long-range hopping between site
of the same sublattice. Thus the SO(5)-symmetriz
Hubbard model has a modified interaction term:

H s ­ Hhop 1 Us
X
x

fnssxdg2. (13)

When we expandnssxd2, we get a variety of terms, which
include interactions and hoppings (with diminishing coe
ficients) to arbitrarily large distances [16]. In particular
many terms implementtwo hops, all sites involved being
on the same sublattice.

What is the ground state of (13)? IfUsyt ! 0,
at half-filling, it is the Fermi sea which manifestly
possesses SO(5) symmetry. ThetyUs ! 0 limit of
(13)—assuming half-filling—is more relevant and mor
challenging. If, say, we takesn", n#d ; s1, 0d on all
even sites, thensnsdd

" , n
sdd
# d ; s1, 0d on all odd sites

(recall thatd states are concocted fromc states on the
opposite sublattice). This ferromagnetically aligned eve
sublattice has total spinNy4 which could point in any
direction; similarly, the odd sublattice can be oriente
in an independent direction, and any state of this typ
can havensxd ; nsddsxd ; 1, thus giving fnssxdg2 ; 0
in (13). The two sublattice moments can be added
make a total angular momentuml taking any value
h0, 1, . . . , Ny2j. Further, as Ref. [2] pointed out, viâp
andp̂y operators, as well as familiar spin-space rotation
each angular momentum is part of an SO(5) multipl
with a total degeneracy [19]sl 1 1d sl 1 2d s2l 1 3dy6.
This includes states with particle numbers differing from
N by multiples of62. The total degeneracy of this family
of states is thussN 1 2d sN 1 4d2sN 1 6dy192, small
compared to2N in the ordinary Hubbard model (11) with
t ­ 0; however, conceivably this family does not exhau
the ground states.

A small t value splits these states in second-ord
perturbation theory. Within the subspace in which eac
sublattice is aligned ferromagnetic, the excitation energi
and matrix elements are proportional to those in th
ordinary Hubbard model. Therefore, I claim the Née
state is in fact one of thet ø Us ground states—and so
is (9), the SO(5) rotation of the Néel state, sinceH has
SO(5) symmetry. Thus I conjecture thet ø Us ground
state has SO(5)broken symmetry.

Group theory could be used to enumerate addition
allowed terms in the Hamiltonian as in [2]; in particular
a bilinear coupling of the order parameter on neighborin
sites [SO(5) symmetrization of the exchange interaction
However, I have avoided this SO(5)t-J model analog. It
could be derived from the SO(5) Hubbard-model analo
3592
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in the fashion I just outlined; as usual, this is valid only i
the limit t ø Us (hencejJj , t2yUs ø 1).

Comparison to an extended Hubbard model.—I now
discuss how one might search for approximate SO(
symmetry in some Hubbard-like model, such as

Hext ­ HHubb 1
1
2

V
X
xu

nsxdnsx 1 ud , (14)

with a Coulomb repulsion between nearest-neighbor si
(of course,V . 0 in the real cuprates [20]).

The aim is to find the point(s) in the parameter space
Hext which make it closest to (13): Can the paramete
U, V , and t0 of (14) be related toUs in (13)? First, the
U term is crudely guessed simply by retaining only th
terms from (13) of exactly this form. They come not onl
from nsxd2 but also from expandingnsddsxd2. The result
is U ­

1
2 Usf1 1

P
r jwsrdj4g ­

1
2 s1 1

1
9 dUs.

Next, we estimateV in the same fashion, from
the nearest-neighbor term innsxdnsddsxd, obtaining
V ø 2Usjwsudj2 . 20.16, whereu is a nearest neigh-
bor. Here the SO(5) symmetry demands anattractive
nearest-neighbor electron interaction, which is unde
standable: In theU ! ` limit, only singly occupied
states could occur in a ground state, so only the AF sta
could be ground states. The SC state has a certain den
of doubly occupied and vacant sites, so an additional te
is needed to equalize its energy with that of the AF sta
Any pairing interaction might play the same role.

Finally, second-neighbor hopping (which would brea
the electron/hole symmetry)does notappear in (13). In
fact, any single-electron hopping within the same subla
tice would violate SO(5) symmetry and get annihilated b
the SO(5) symmetrization [21].

Very recently, an extended Hubbard model was sim
lated using a new interaction with double hopping
[22],

P
x Ksxd2, where Ksxd ­

P
su cy

ssxdcssx 1 ud 1

h.c. There are two suggestions that this model may real
SO(5) approximately: (i) It has terms with the same for
as the largest terms (after those previously mentioned)
nsxdndsxd and fndsxdg2 in (13); (ii) it seems to have a
continuous AF/SC transition [22].

Of course, even at the SO(5) multicritical point in
Zhang’s picture, themicroscopicHamiltonian might have
no visible SO(5) symmetry; just as at the spin-flo
point of an anisotropic magnet, a cancellation of term
favoring competing types of order might suffice, with th
symmetry emerging only at long wavelengths [1]. Bu
if that length scale is much larger than the numerical
tractable system size for Hubbard models, then dire
numerical calculations on finite lattices (such as [23]) a
too small to address the order-parameter symmetry.

Even if that length scale is comparable to system siz
the spatial decay of ground-state correlations is usually
conclusive as a test of order. Yet it is possible that, alrea
at small system size, the (excited) eigenstates show a w
defined structure characteristic of a particular symmet
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this provided the convincing evidence for long-range orde
in the spin-12 triangular lattice AF [24]. (Reference [19]
has sought SO(5) symmetry in this fashion in exact d
agonalizations of thet-J model.) I suggest identifying
an SO(5) multiplet numerically in a model with manifes
SO(5) symmetry, and then following its evolution while
the Hamiltonian is adiabatically modified to a more realis
tic model such as (14).

In conclusion, I have identified inklings of SO(5)
symmetry in popular existing models and exhibited th
form an exact SO(5) symmetry could take in one- o
two-dimensional lattice models. The SO(5) symmetr
in microscopic models is promising as a spur to th
comparison or unification of competing models of high
Tc superconductivity, and to improved understanding o
extended Hubbard models.

However, I have not addressed the murkier issu
of its application to the cuprates. Of the objection
mounted so far to a possible SO(5) relationship betwee
the actual AF and SC phases, one seems to be rea
inescapable: the Fermi surface [8]. If the SC meta
shows a sharp drop in electron occupation along a certa
surface in reciprocal space, as found in angle-resolv
photoemission experiments [25], then [see (2)] its AF
image under SO(5) has a similar surface (shifted byQ).
Apparently, this AF must be a spin-density-wave meta
[26]. But the real AF phase of the cuprates looks mor
like a Mott insulator [4], and its AF correlations are well
modeled using nearest-neighbor exchange [27].
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