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Exact Realization ofSO(5) Symmetry in Extended Hubbard Models
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Zhang recently conjectured an approximate SO(5) symmetry relating antiferromagnetic and supercon-
ducting states in higlz. cuprates. Here, an exact SO(5) symmetry is implemented in a generalized

Hubbard model (with long-range interactions) on a lattice. The possible relation to a more realistic
extended Hubbard Hamiltonian is discussed. [S0031-9007(98)05904-3]

PACS numbers: 71.10.Fd, 74.25.Dw, 74.25.Ha

S.C. Zhang [1,2] recently conjectured that hifh- and SC quantities are obviously predicted. For example,
cuprate compounds possess an approximate SO(5) syiie Néel temperaturEy on one side should equal the SC
metry. His theory aims to explain the proximity of T. on the other side (the real ratio is 5:1 in Yi&as0;).
superconducting (SC) and antiferromagnetic (AF) phaseBurthermore, when converted into the proper units, the
in the phase diagram, and to account for the low-energyensors of superfluid density and AF spin stiffness should
excitations as approximate SO(5) Goldstone modese equal, as should the order-parameter lengths (staggered
Antiferromagnetism and superconductivity are unified inmoment and SC gap magnitude, respectively) and the in-
one grand order parameter fidld*, m”>, m*, ReW,Im¥), terlayer couplings (interlayer superexchange and intrinsic
behaving as a five-component vector, where the firsjosephson coupling, respectively. An order-of-magnitude
three elements are Cartesian components of the staggereduality of the interlayer couplings is indeed expected in
magnetization an®¥ is a spin-singlet SC order parameter. the interlayer tunneling picture [10]. Finally, the SO(5)
(Here “Re¥” = %(\If + ¥, etc.) In this picture, small Ginzburg-Landau theory predicts that vortices have mag-
symmetry-breaking terms drive the system in a “superspimetic cores [1,11]; conversely, in analogy to the Bloch
flop” between antiferromagnetism and superconductivitywall in the SO(3) magnet, it suggests that magnetic do-
just as, in a magnet with approximate SO(3) symmetrymain walls contain SC stripes, as proposed for other rea-
competing spin-space anisotropies and external field caspns by Emery and Kivelson [12].
drive a “spin-flop” transition between magnetic order Microscopic SO(5) symmetrxIn this paper, using
along thez axis and in thexy plane [1]. elementary notations, | implement a literal SO(5) sym-

The SO(5) theory, while positing an intimate relation- metry in a one-band lattice model, construct a Hamil-
ship between SC and AF order, does not imply that théonian with exact SO(5) symmetry, and finally consider
pairing mechanism is AF fluctuations [3,4]. Rather, itwhether a realistic Hamiltonian of an extended Hubbard
quantifies the notion (also relevant to superfltiite) that  form might approximate an SO(5) symmetric Hamilton-
there need not be a sharp difference between interaction&n. Take a lattice withV sites (using periodic boundary
mediated by magnetic and “charge” (number) fluctuationsconditions). Creation operators for the orbitals on site
| pass over Zhang's specific mechanism (whereby the sysre cf(x) for o =1,|. Let Q be the ordering wave vec-
tem accommodates doping by switching from the AF statdor of some two-sublattice AF state, so thé®™ = *1
to a symmetry-related SC state which has a different parat every site. The usual staggered-magnetization compo-
ticle number), for SO(5) symmetry can be valid even ifnents are
another sort of perturbation is found responsible for the

1 .
symmetry breaking and the AF-SC transition. m(x) = > e’Q‘X[cT1(x)c1(x) - ch(x)cl(x)],

The 41 meV mode observed in spin-flip neutron scatter-
ing on YBaCuwO; [5] is interpreted as a Goldstone mode m(f)(x) = eiQ'X[cTT(X)cl(X)], (1)

of SO(5) with a gap due to the symmetry-violating terms,
analogous to the anisotropy gap in a spin-wave branch aind m'©)(x) = m(f)(x)T. The SC order parameter opera-
the unixial magnet [1]. These excitations are created byor has the general form¥(x) = > . ¢(r,r')c)(x +
“#1" operators [6] [SO(5) generators that mix magneticr)ci(x + r’) [which allows different spatial symmetries
and SC components] [7]. They are charged bosons witdepending on the form of the coefficienig(r,r’)].
the quantum numbers of “preformed” Cooper pairs, andVe seek a continuous, unitary operation that turns a
presumably carry the current in the “normal” metal [1]; it component ofm(x) into one of ¥(x), i.e., turns creation
has been speculated [9] that this explains the linear temnto annihilation operators: Clearly, it must be some form
perature dependence of the normal-state resistivity. of Bogoliubov transformation.

To the extent that SO(5)-violating terms are small (as Indeed, a discrete SO(3) symmetry of this sort
in Zhang'’s phase diagrami” [1]), relations between AF is already known for the negatiié- Hubbard
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model [13], for which
der parameter is W(x) = ¢|(x)ci(x). One maps
cj(x) — ' ¥%¢ (x)t [leaving c(x) alone] which implies
[W(x)T, ¥(x),eQ%n(x)] — [m4(x), m—(x), m,(x)]; here
n(x) = c'i(x)er(x) + c(x)e)(x).  The only change
induced in the Hubbard Hamiltonian i§ — —U; thus
a hidden SO(3) symmetry relates SC orda¥r) and
charge-density-wave ordgre’@*n(x)] in the limit of
large negativel.

the appropriate SC or- This BCS state has no remnant of Fermi surface

(<cf:(,ckg> = 1/2 throughout reciprocal space).

One could construct a total of six such rotations, each
of which mixes one of the three componentaoffx) with
one of the two components & (x). The other five could
all be obtained by combining (5b) with the usual SO(3)
rotations acting on the spin labels ofand d operators,
plus the usual SQ) = U(1) gauge symmetry changing
their complex phases. [Zhang has discussed the algebra

To write the exact SO(5) symmetry transparently, and>f SO(5) generators [1,2] ]
to ensure it in the order parameters and Hamiltonians, | For the square lattice, we must haQe= (7, 77) so the

use the duality [14] between the™ operators and an
alternate set of canonically commuting operators,

dk+Q.c = MkCke (2)
(with [7x] = 1). Inreal space, Eq. (2) states
dy(x) = e 7O¥> o(r)c,(x + 1), 3)

wheren, = Y. e *To(r). To make the symmetry (5b)
work, we will need the important condition

Nk+Q = — Mk (4)
for all k, which in real space states that(r) = 0 for

hopping term (12) will be SO(5) invariant. This leaves
much freedom tayy [16], but the simplest choice is

Nk = SQr(cosk, — COSky). (20)

This has inversion symmetky(r) = ¢(—r) in real space,
i.e., n—x = nx [17]. Equation (10) is inspired by the
original and approximate SO(5) symmetry [1], which
had the same form but with coefficientg — cosk, —
cosk,. Kohno [2] discovered independently the exact ver-
sion (10). Comparison with (9) shows that (10) is es-
sentially the Cooper pair wave function and has-,-
pairing symmetry, consistent with strong experimental
evidence in the cuprates [18]. Interestingly, one other

“even” r (vectors connecting sites in the same sublattice)simple, inversion-symmetric choice would also satisfy

Equation (4) impliedc}(x), d,(x')} = 0 if x andx’ are
on the same sublattice (e.g.,= x') [15].
Then the proposed symmetry operation is just

¢! (x) = co96/2)cy(x) + sin6/2)dt (x), (5a)

d (x) = — Sin(G/Z)CL,(x) + co960/2)d,(x).  (5b)
The symmetry (5b) is generated @(ﬁ + #1), where
=iy [c(x)di(x) — di(x)ci(x)]. To transform wave
functions, it is useful to know that the vacuu@) trans-
forms to] [ [cod8/2) + ny sin(e/z)cchiHQJ] |0).

So that it will map exactly under (5b), the SO(5)

staggered magnetization must be defined as

m(x) = %[m(c)(X) - m“(x)],

(6)

wherem@ is (1) with “c” — “d”. Note this gives a
sensible result for the Néel state: nf(“)(x) is up, then
m(@(x) is down (since the/ “orbital” on sitex is a linear
combination ofc orbitals from the opposite sublattice).
The SC order parameter is
o 1

V(x) = @ > [ci(x)di(x) + d|(x)ci(x)].  (7)

Then
m.(x) = cosfm,(x) + sind Re¥(x), (8a)
ReW'(x) = cosd ReW¥(x) — sinfm.(x), (8b)

while the other three components are invariant.
SO(5) rotation of the Néel state with= 7 /2 gives

2N2TT( + eyt 10). (©)
k

The, €k

condition (4): nx = sgr(cosk, + cosk,). That variant

of SO(5), which entails “extendegtwave” pairing, ap-
pears free from internal contradictions (contrary to a sug-
gestion in Ref. [1]).

The coefficients in (3) [Fourier transform of (10)]
are ¢(x,y) = 4/[7*(x*> — y?)] for x + y odd, zero for
x +y even. A possibly useful one-dimensional toy
realization of SO(5) symmetry is given b = 7 and
nr = sgr(cosk), which givese(r) = 2(—1)""Y/2/(zr)
for r odd, zero forr even.

Microscopic Hamiltonian—Next | will produce an
artificial generalization of the Hubbard Hamiltonian which
has exact SO(5) symmetry. The basic Hubbard model
with particle/hole symmetry can be written as

Hi = Hooy + UY 2 In(0) — 17, (11)

Hiop = (DD D e ®ep(x + u) = exelyens
Xo u ko
(12)
with  uw running over nearest neighbors, and

ek = (—1)(cosk, + cosky).

The minimal Hamiltonian that includes the terms in
(11) is simply the SO(5) symmetrization of (11). The
hopping term#y,, is already invariant under all of the
SO(5) rotations [such as (8b)provided that ex+q =
That is true in any bipartite lattice, if and only
if Q describes the original Néel state with opposite spin
orientations on nearest-neighbor sites.

However, SO(5) symmetrization turns the num-
ber operator n(x) into something quite different,
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nf(x) = %[n(x) — nD(x)]. [l take the obvious defini- in the fashion I just outlined; as usual, this is valid only in

tion n@(x) = dTl(X)dl(x) + dJrT(x)dT(x).] In contrast to  the limitz < U* (hencelJ| ~ /U < 1).

the usual number operatop,, n(x) = 0. The n®(x) .Companson to an.extended Hubbard moglel. now
operator includes termg (r)|2n(x + r), all on the oppo- discuss h(_)w one might sea_lrch for approximate SO(5)
site sublattice fromx and largest for nearest neighbors, SYmmetry in some Hubbard-like model, such as

Ir| = 1, as well as long-range hopping between sites 1

of the same sublattice. Thus the SO(5)-symmetrized Hext = Huunp + o V;”(X)”(X +u), (14)

Hubbard model has a modified interaction term: . . . .
with a Coulomb repulsion between nearest-neighbor sites

(of course,V > 0 in the real cuprates [20]).

The aim is to find the point(s) in the parameter space of
H... which make it closest to (13): Can the parameters
When we expana*(x)*, we get a variety of terms, which ¢/, v, and+' of (14) be related td/* in (13)? First, the
include interactions and hoppings (with diminishing coef-y term is crudely guessed simply by retaining only the
ficients) to arbitrarily large distances [16]. In particular, terms from (13) of exactly this form. They come not only
many terms implemertwvo hops, all sites involved being from n(x)? but also from expanding@(x)>. The result
on the same sublattice. isU = 2U1 + 3, lo@*] =2 (1 + §U".

What is the ground state of (13)? W*/r — 0, Next, we estimateV in the same fashion, from
at halffilling, it is the Fermi sea which manifestly the nearest-neighbor term im(x)n@(x), obtaining
possesses SO(5) symmetry. ThgU* — 0 limit of vy ~ —ys|p(u)> = —0.16, whereu is a nearest neigh-
(lS)—as_suming half-filling—is more relevant and morepor, Here the SO(5) symmetry demands atractive
challenging. If, say, we takeny.m) = (1.0) on all " nearest-neighbor electron interaction, which is under-
even sites, then(nT( ),nf )) = (1,0) on all odd sites standable: In theU — « limit, only singly occupied
(recall thatd states are concocted from states on the states could occur in a ground state, so only the AF states
opposite sublattice). This ferromagnetically aligned evercould be ground states. The SC state has a certain density
sublattice has total spitv/4 which could point in any of doubly occupied and vacant sites, so an additional term
direction; similarly, the odd sublattice can be orientedis needed to equalize its energy with that of the AF state.
in an independent direction, and any state of this typeAny pairing interaction might play the same role.
can haven(x) = n¥(x) = 1, thus giving[r*(x)]* = 0 Finally, second-neighbor hopping (which would break
in (13). The two sublattice moments can be added tdhe electron/hole symmetryoes notappear in (13). In
make a total angular momenturh taking any value fact, any single-electron hopping within the same sublat-
{0,1,...,N/2}. Further, as Ref. [2] pointed out, vida  tice would violate SO(5) symmetry and get annihilated by
and#1 operators, as well as familiar spin-space rotationsthe SO(5) symmetrization [21].
each angular momentum is part of an SO(5) multiplet Very recently, an extended Hubbard model was simu-
with a total degeneracy [19] + 1)(/ + 2)(2/ + 3)/6. lated using a new interaction with double hoppings
This includes states with particle numbers differing from[22], >, K(x)?, whereK(x) = Y, ¢} (x)cy(x + u) +
N by multiples of=2. The total degeneracy of this family h.c. There are two suggestions that this model may realize
of states is thugN + 2)(N + 4)>(N + 6)/192, small  SO(5) approximately: (i) It has terms with the same form
compared t@" in the ordinary Hubbard model (11) with as the largest terms (after those previously mentioned) of
t = 0; however, conceivably this family does not exhaustz(x)n¢(x) and [z¢(x)]> in (13); (i) it seems to have a
the ground states. continuous AF/SC transition [22].

A small ¢ value splits these states in second-order Of course, even at the SO(5) multicritical point in
perturbation theory. Within the subspace in which eactzhang’s picture, thenicroscopicHamiltonian might have
sublattice is aligned ferromagnetic, the excitation energieao visible SO(5) symmetry; just as at the spin-flop
and matrix elements are proportional to those in theoint of an anisotropic magnet, a cancellation of terms
ordinary Hubbard model. Therefore, | claim the Néelfavoring competing types of order might suffice, with the
state is in fact one of the < U* ground states—and so symmetry emerging only at long wavelengths [1]. But
is (9), the SO(5) rotation of the Néel state, sing€ has if that length scale is much larger than the numerically
SO(5) symmetry. Thus | conjecture thex< U* ground tractable system size for Hubbard models, then direct
state has SO(H)roken symmetry numerical calculations on finite lattices (such as [23]) are

Group theory could be used to enumerate additionaioo small to address the order-parameter symmetry.
allowed terms in the Hamiltonian as in [2]; in particular, Even if that length scale is comparable to system size,
a bilinear coupling of the order parameter on neighboringhe spatial decay of ground-state correlations is usually in-
sites [SO(5) symmetrization of the exchange interaction]conclusive as a test of order. Yetitis possible that, already
However, | have avoided this SO(BY model analog. It at small system size, the (excited) eigenstates show a well-
could be derived from the SO(5) Hubbard-model analoglefined structure characteristic of a particular symmetry;

H® = Hyop + U D [P (13)
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this provided the convincing evidence for long-range order [8] G. Baskaran and P.W. Anderson, cond-mat/9706076.

in the spiny triangular lattice AF [24]. (Reference [19] [9] C.P. Burgess and C.A. Liitken, cond-mat/9611070.

has sought SO(5) symmetry in this fashion in exact di{l0] S. Chakravarty et al., Science 261, 337 (1993);
agonalizations of the-J model.) | suggest identifying S. Chakravarty (personal communication). Asxact
an SO(5) multiplet numerically in a model with manifest gqs\?“t& V\éas postuFl)?]ted b&/ L. YLm,7§. Cslggagra\g;% and
SO(5) symmetry, and then following its evolution while 'W. Anderson [Phys. Rev. Let8, ( )l

. 7 . . o . however their superexchange couplirg(k) has an
the Hamiltonian is adiabatically modified to a more realis- unusualk-space form.

tic model such as (14). [11] D.P. Arovaset al., Phys. Rev. Lett79, 2871 (1997).

In conclusion, | have identified inklings of SO(5) [12] J.M. Tranquadat al., Nature (London)375, 561 (1996);
symmetry in popular existing models and exhibited the  Vv.J. Emery and S.A. Kivelson, Physica (Amsterdam)
form an exact SO(5) symmetry could take in one- or 263C, 44 (1996).
two-dimensional lattice models. The SO(5) symmetry[13] A. Auerbach,Interacting Electrons and Quantum Mag-
in microscopic models is promising as a spur to the  netism(Springer, New York, 1994), Sect. 3.3; see also
comparison or unification of competing models of high- S- Zhang, Phys. Rev. Le#5, 120 (1990).

T, superconductivity, and to improved understanding of 14l Reference [2] notes [their Eq. (1)] that these opera-
extended Hubbard models. tors can be conveniently written as a “Dirac” spinor:

T T

However, | have not addressed the murkier issu (c1(x), ¢1(x), dy(x), d'y(x). . .
. D I ?15] Thus, if we desire, a complete basis for the states is
of its application to the cuprates. Of the objections defined using both: and d operators on, say, the even

mounted so far to a possible SO(5) relationship between sublattice, thed operators on even sites being related to
the actual AF and SC phases, one seems to be really ihe operators on odd sites by a unitary matrix.
inescapable: the Fermi surface [8]. If the SC metaf16] The awkward long-range power laws i(r), and hence
shows a sharp drop in electron occupation along a certain  in (13), come of course from the line singularities in
surface in reciprocal space, as found in angle-resolved x(k). One can weaken, but not eliminate, such powers
photoemission experiments [25], then [see (2)] its AF by adoptingn (k) with a vortexlike configuration (point
image under SO(5) has a similar surface (shiftedQy singularity) ink space; Eq. (4) topologically forcemme
Apparently, this AF must be a spin-density-wave metal sm_gularlty _[F. D.M. Haldane (personal communication)].
[26]. But the real AF phase of the cuprates looks mord17] This conflicts with Eq. (4) when2k = Q (mod the
like a Mott insulator [4], and its AF correlations are well reciprocal lattice), so the system dimension must be 2
. . (mod 4).
modeled using nearest-neighbor exchange [27].
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