
VOLUME 80, NUMBER 16 P H Y S I C A L R E V I E W L E T T E R S 20 APRIL 1998

tifer-
dence
terms
gebra.
ar

3586
Microscopic Electron Models with Exact SO(5) Symmetry

Silvio Rabello,1 Hiroshi Kohno,2 Eugene Demler,1 and Shou-Cheng Zhang1

1Department of Physics, Stanford University, Stanford, California 94305
2Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan

(Received 3 July 1997)

We construct a class of microscopic electron models with exact SO(5) symmetry between an
romagnetic andd-wave superconducting ground states. There is an exact one-to-one correspon
between both single-particle and collective excitations in both phases. SO(5) symmetry breaking
can be introduced and classified according to irreducible representation of the exact SO(5) al
The resulting phase diagram and collective modes are identical to that of the SO(5) nonlines

model. [S0031-9007(98)05903-1]

PACS numbers: 74.20.Mn, 71.10.–w, 74.25.Ha
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One of the most interesting features of the high-Tc su-
perconductivity is the close proximity and the interpla
between the antiferromagnetic (AF) and thed-wave su-
perconducting (dSC) phases. Recently, a theoretical f
malism was introduced based on the concept of a SO
symmetry between these two phases, and the resul
field-theoretical model describes the cuprate phase d
gram and collective modes in a unified framework [1].
was argued that the microscopic Hubbard model suppo
an approximate SO(5) symmetry [1–3].

In this paper, we construct a class of microscopic ele
tron models with exact SO(5) symmetry. In this mode
degeneracy between the AF and dSC phases can be dem
strated exactly, and both the fermionic single-particle a
the bosonic collective modes can be mapped onto ea
other with a precise one-to-one correspondence. T
model can be used as a starting point around which SO
symmetry-breaking interactions can be introduced a
classified according to irreducible tensors of SO(5) algeb
It is shown that the resulting phase diagram and the c
lective modes are similar to those obtained from the effe
tive SO(5) nonlinears model with anisotropic couplings
[1,4]. The purpose of this paper is to demonstrate th
the general SO(5) idea can be realized exactly by expli
microscopic Hamiltonians. The microscopic informatio
extracted from this class of models, especially the beha
ior of the fermionic excitations across the AF/dSC trans
tion, would greatly complement the effective field theor
approach. Within this class of models, we have a cons
tent microscopic theory of the AF/dSC transition. Sinc
both the AF and the dSC states are stable infrared fix
points, it is plausible that one can deform the paramet
so that the microscopic SO(5) models can also serve a
paradigm for a much more general class of AF/dSC tra
sitions, including those occurring in the high-Tc cuprates
and 2D organics.

The first independent attempt to construct microscop
SO(5) invariant models was undertaken by Henley [5
He independently made a crucial observation that, if o
replaces the standardd-wave factor cospx 2 cospy by
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sgnscospx 2 cospyd, the SO(5) algebra introduced in [1
closes exactly.

It is easy to write down many electron models with e
act SU(2) spin rotation invariance, because the elect
operatorcps forms a natural spinor representation of th
SU(2) algebra. In writing down SU(2) invariant models
all we have to do is to contract the spinor indices in a n
ural way. Therefore, the first step towards constructi
a SO(5) invariant electron model is to find a natural de
inition of a SO(5) spinor. Spinor representations of th
SO(5) Lie algebra can be easily constructed using the C
ford algebra of five4 3 4 Dirac matrices [6] satisfying
hGa, Gbj ­ 2dab sa, b ­ 1, . . . , 5d, and the ten SO(5) ro-
tation generators are given byGab ­ 2ifGa, Gbg. In this
paper we shall use the following explicit representation f
the Clifford algebra:

G1 ­

µ
0 2isy

isy 0

∂
Gs2,3,4d ­

µ
$s 0
0 t $s

∂
G5 ­

µ
0 sy

sy 0

∂
,

wheres ­ ssx , sy , szd are the usual2 3 2 Pauli matri-
ces, and the superscriptt means transportation. We defin
a four-component spinor by

tCp ­ hcp", cp#, fp spdcy
2p1Q,", fpspdcy

2p1Q,#j , (1)

where fpspd ­ sgnscospx 2 cospyd ­ 61, and Q ­
sp , pd. Since we have two spin degrees of freedo
at a given momentump, such a description must be
redundant. Indeed, one can easily see that the spinors
momenta outside the magnetic Brillouin zone are relat
to the spinors inside the magnetic Brillouin zone by an “R
conjugation”

Cp1Q ­ fpspdRCp
2p . (2)

The R matrix is an invariant tensor of the SO(5) alge
bra enjoying the following properties:RGaR ­ 2tGa,
RGabR ­ tGab . In our representation it takes the form

R ­ s 0 1
21 0 d. [The existence of such a matrix is relate
© 1998 The American Physical Society
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to the fact that the spinor representation of the SO(5) L
algebra is pseudoreal. Thesy matrix plays a similar role
for SO(3)]. TheCpa spinors obey the anticommutation
relations;

hCy
pa , Cp0bj ­ dabdp,p0 , (3)

hCy
pa , Cp0bj ­ hCpa , Cp0bj ­ 2fpspdRabdp1p0 ,Q .

(4)

If we restrict bothp and p0 inside the magnetic Bril-
louin zone, the right-hand side of the second equ
tion vanishes and theCpa spinors commute in the
same way as thecps spinors. They an be used to
construct the SO(5) vector order parameter and t
symmetry generators:na ­

1
4

P
p wpCy

p GaCp1Q and

Lab ­
1
8

P
p Cy

p GabCp . Here, wp ­ w2p. Note that
the definition of thep operatorssL1s2,3,4d, Ls2,3,4d5d differs
from the ones used in previous works [1–3], where the
are electron pair operators on the nearest-neighbor (
sites. The problem with this kind of definition is tha
the commutator algebra does not close, and genera
longer-ranged bonds. Naively, the condition for the clo
sure of the SO(5) algebra appears to be overconstrain
The present paper and Ref. [5] start with electron pa
operators with a long-ranged profile, given in real spa
by the lattice Fourier transform ofspspd,

spsm, nd ­
2

p2

1 2 s2dm1n

m2 2 n2
, (5)

whereR ­ sm, nd is a lattice point. It is truly remarkable
that this simple choice closes the algebra exactly. Notic
that, while thep operators have long-ranged profiles, th
dSC order parameter can still be short ranged with suita
choices ofwp . Under the SO(5) rotations generated by th
Lab , Cp transforms as a proper SO(5) spinor

fLab , Cpag ­ 2
1
4

sGabdabCpb (6)

for all values ofp. Using these spinors, exact SO(5) in
variant Hamiltonians can be constructed simply by prop
contraction of the spinor indices.

We start with the kinetic term, and write it as

Hkin ­
X
p,s

´pcy
p,scp,s ­

1
2

X
p

´pCy
p Cp . (7)

We see that the propertýp1Q ­ 2´p , valid for a nn tight
binding model, is crucial for this construction to work. In
order to construct four-fermion interactions, we first not
that a SO(5) spinor bilinear can in general be decompos
into a direct sum of a scalar, a vector, and an antisymm
ric tensor, i.e.,4 3 4 ­ 1 1 5 1 10. Therefore, general
SO(5) invariant four-fermion interactions can be express
ie
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Hint ­
X

p,p0 ,q
V1sp, p0; qd sCy

p GaCp1qd sCy
p0GaCp02qd

1
X

p,p0 ,q
V2sp, p0; qd sCy

p GabCp1qd sCy
p0GabCp02qd

1
X

p,p0 ,q
V0sp, p0; qd sCy

p Cp1qd sCy
p0Cp02qd . (8)

Since Labsp, qd ;Cy
p GabCp1q, nasp, qd ; Cy

p GaCp1Q1q

andrsp, qd ; Cy
p Cp1q are the true SO(5) tensor, vector,

and scalar, respectively, for anyp and q; their inner
products naturally gives a manifestly SO(5) invarian
Hamiltonian.

Among three terms inHint, we concentrate on the vec-
tor interaction (first term) in all subsequent analysis, an
assume a factorizable formV1sp, p0; qd ­ 2V1sqdwpwp0 .
This form is not necessary, but simplifies calculations. I
real space,

Hint,1 ­ 2 4
X
,,n

V1sR, 2 RndeiQ?sR,2Rnd

3

∑
m, ? mn 1

1
2

sD,Dy
n 1 D

y
, Dnd

∏
. (9)

Here, m, and D, are Néel andd-wave pairing order
parameters (operators) at site, ; R,, but with extended
internal structures determined bywp. For the simplest
choicewp ­ 1, they become

m, ­
1
2

scy
, sc, 2 x

y
, sx,deiQ?R, , (10)

D
y
, ­

X
j

fpsR, 2 Rjd scy
,"c

y
j# 2 c

y
,#c

y
j"d . (11)

Here, we introduced two-component spinorsc, ­
tsc,", c,#d and x, ­ s2eiQ?R,d 3 tsb,", b,#d with
b,s ­

P
j fpsR, 2 Rjdcjs . The pair wave func-

tion for dSC condensate is described byfp and is long
ranged. For the choicewp ­ j cospx 2 cospyj, we
obtain

m, ­
eiQ?R

2

X
i

fMsR, 2 Rid scy
i sc, 2 x

y
i sx,d ,

(12)

D
y
, ­

X
i,j

sMsR, 2 RidfpsR, 2 Rjd scy
i"c

y
j# 2 c

y
i#c

y
j"d ,

(13)

where

fMsm, nd ­
4

p2

1 1 s2dm1n

fsm 1 nd2 2 1g fsm 2 nd2 2 1g
.

(14)

The interaction between the centers of mass ofm or D

fields is controlled byV1sRd. If we takeV1sqd to be a
d function at q ­ Q, the D part in Hint,1 becomes the
usual BCS reduced Hamiltonian for nnd-wave pairing. If
3587
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V1sqd is taken to be a Lorenzian aroundq ­ Q, the real
space form of the spin interaction resembles the poten
induced by the AF paramagnon exchange [7–9].

It is not difficult to find degeneracy between AF and
dSC states in the usual treatment of mean field theori
However, their excitation spectra are generally differen
and quantum fluctuations may remove this degenera
In the SO(5) invariant models, symmetry not only ensur
exact degeneracy of the ground states, but also ensu
exact one-to-one correspondence between their excitat
spectra. This fact is formulated as follows:

Theorem 1.—If jC0l is a ground state of a SO(5)
invariant Hamiltonian with AF broken symmetry (say, in
the n2 direction), i.e.,kC0jnajC0l ­ d2,aA, then jC

0
0l ­

eispy2dL12 jC0l is a degenerate ground state with dS
broken symmetry (inn1 direction), i.e., kC0

0jnajC
0
0l ­

d1,aA. Furthermore, all excited states of the AF groun
state can be mapped to excited states of the dSC grou
state at the same energy by theeispy2dL12 operator.

The proof of this theorem is elementary, sinceL12 com-
mutes with the Hamiltonian, ande2ispy2dL12 n1eispy2dL12 ­
n2. In the following, we shall illustrate this power-
ful theorem in an explicit mean field calculation. We
take a “generalized BCS reduced Hamiltonian” by se
lecting V1sqd ­ V1dq,Q in the vector interaction. The
Green’s function in the presence of a mean fieldkna

pl ­
1
4 kCy

p GaCp1Ql is given by

Gabsp, p0; vd ­ 2i
Z

dteivtkTCp,astdCy
p0,bs0dl

­
sv 1 ´pddabdp,p0 1 Da

pG
a
abdp,p01Q

v2 2 ´2
p 2 sDa

pd2 1 id
,

(15)

where Da
p ­ 216V1wp

P
k wkkna

kl. This manifestly
SO(5) invariant Green’s function shows explicitly tha
the AF quasiparticles can be mapped onto dSC quasip
ticles. In particular, the AF Green’s function (in then2
direction) can be obtained directly from the dSC Green
function (in the n1 direction) by a simple rotation:
GAF ­ e2ispy2dG12 GSCeispy2dG12 . If we take wp ­ 1,
the AF quasiparticles have a fulls-wave gap, while the
dSC quasiparticles have a fulld-wave gap, with step
discontinuity ats6py2, 6py2d points. For the choice
of wp ­ j cospx 2 cospy j, the dSC quasiparticles have
the usual cospx 2 cospy gap behavior, while the AF
quasiparticles have an anisotropics-wave gap with nodes
at s6py2, 6py2d points (Fig. 1). Because the AF node
are not “topological,” any small interactions will remove
it [10]. In either case, the amplitude of the gaps is th
same in both phases.

As symmetry-breaking perturbations to the abov
SO(5) invariant Hamiltonian, we consider two typica
terms. One is the coupling to external fieldsBab,

Hext ­ 2
X
a,b

BabLab . (16)

A particular example of this field is the chemical potentia
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FIG. 1. The superconducting (dSC) and antiferromagne
(AF) gaps. The solid (dotted) line in the AF gap is for th
case with (without) SO(5) symmetry.

B15 ­ 22m, leading toHm ­ 2mL15. The other is the
anisotropy energy

Hg ­ 2
X

p,p0,q

X
a­2,3,4

gsqd sCy
p GaCp1qd

3 sCy
p0GaCp02qd (17)

between AF and dSC states. To study the spectrum
H ­ Hkin 1 Hint,1 1 Hm 1 Hg, we takegsqd ­ gdq,Q
and again use mean field approximation. In the dS
phase,kna

pl lies in the planesn1, n5d. We choose it in
then1 direction. Then the Green’s function is given by

GSCsp, p0, vd ­

0B@ sv1´p2md1dp,p0

v22s´p2md22D2
p1id

2isyDpdp,p01Q

v22s´p 1md22D2
p1id

isyDpdp,p01Q

v22s´p2md22D2
p1id

sv1´p1md1dp,p0

v22s´p 1md22D2
p1id

1CA ,

where Dp ­ 216V1fpspdwp
P

k wkkn1
kl ; D0fp spdwp

and theg term drops out because of symmetry mismatc

D0 is determined by the gap equation1 ­ 16V1
P

k
w2

k
2Ek

,

where Ek ­
q

s´k 2 md2 1 D
2
k. For the choicewp ­

j cospx 2 cospyj, we have a usuald-wave gap. In the
AF phase,kna

pl lies in thesn2, n3, n4d space. If we pick
then4 direction, we have

GAFsp, p0, vd

­

0B@ sv11´pd1dp,p0 1Dpsz dp,p01Q

v
2
12´2

p2D2
p1id

0

0
sv21´pd1dp,p0 1Dpsz dp,p01Q

v2
22´2

p 2D2
p1id

1CA .

Here v6 ­ v 6 m and Dp ­ 216
P

k sV1wpwk 1

gd kn4
kl ; wpD0 1 Dg. D0 and Dg are determined by

the gap equationDp ­ 16
P

k sV1wpwk 1 gd Dk

2Ek
. The

real space form ofDp has an on-site contribution fromDg

and a long-ranged contribution proportional toD0fMsRd.
We see that theg terms leave the dSC gap unaffecte
while it removes the AF gap node (See Fig. 1). Th
ground state energy curves are shown in Fig. 2. T
“superspin flop” transition from AF to dSC occurs a
m ­ 0 for Hg ­ 0, while it occurs at a finite value of
mc for g fi 0. In this case, the AF/dSC transition is firs
order, with a finite jump in hole densityxc (See Fig. 2).

While the above pictures are based on the mean fi
approximation, some exact statements can be made a
the AF/dSC transitions. SO(5) is a rank 2 algebra, and
can chooseQ ­ 2L15 and Sz ­ 2L23 as the members
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FIG. 2. The ground state energyG in both AF and SC phases
as functions ofm (left) and the electron densityx versusm in
the presence of anisotropy energyHg (right).

of the Cartan (maximal commutative) subalgebra.
addition, we have the Casimir operatorC ­

P
a,b L2

ab ,
which commutes with all of the generators and has
eigenvaluelsl 1 3d. The setsQ, Sz , Cd forms a Cartesian
coordinate system labeling the quantum numbers of
states in the Hilbert space. If we consider only states w
even number of electrons, these states form a pyram
with the l ­ 0 singlet on top, thel ­ 1 vector next, and
the l ­ 2 traceless symmetric tensor on the third lay
etc. States on the same layer are all connected by
repeated actions of the eight root generators.

Theorem 2.—In SO(5) invariant models, it is sufficien
to diagonalize the Hamiltonian at half-filling withQ ­ 0
andSz ­ 0. All of the other states (with even number o
electrons) in the Hilbert space can be obtained from th
states through the action ofsSx , Sy, p , pyd.

In this sense, states at half-filling fully determine th
states away from half-filling. In the presence of theHm

term, thepy
a and pa operators are exact eigenoperato

of the Hamiltonian with eigenvalue62m. Therefore,
Hm commutes with the Casimir operator, and simp
shifts the energy of theQ fi 0 states linearly without
changing the wave function of these states. In a sys
with spontaneous symmetry breaking, lowest states w
different l quantum numbers are separated by an inve
system size. In the infinite system limit, these shifts, d
to chemical potential, converge to the parabola as depic
in Fig. 2 [11].

The symmetry-breaking terms,Hg andHm, produce the
mass gap in the Goldstone mode spectrum. ForHg ­ 0,
the mass of thep triplet mode is exactly2jmj. For
finite Hg we employed the equations of motion (EOM
[12,13] for na to get the spectrum of collective mode
In the dSC state, we takeknasqdl ­ kn1lda,1dq,0, and
linearize the EOM to obtain the energy of thep triplet
v0 ­ 2

p
m2 2 m2

c, where mc ­ kn1l
p

gV1, g ; gsQd,
andV1 ; V1sQd, which is also consistent with the result o
[1]. Similar calculation in the AF state gives the energi
of the p doublet v0 ­ 2kn4l

p
gsV1 1 gd 6 2m, where

we assumed AF ordering alongn4. We therefore see
that the two symmetry-breaking termsg and m partially
compensate each other for thep triplet andQ ­ 22 p

doublet.
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In conclusion, we have constructed a class of electr
models with exact SO(5) symmetry. If the model ha
an AF ground state at half-filling, it will have a dSC
ground state away from half-filling. The phase diagra
and the collective mode spectrum of these models a
similar to the real high-Tc materials. However, our results
also show that a significant SO(5) symmetry-breaking te
Hg is required to produce the asymmetry in the size a
angular distribution of the insulating and superconductin
gaps. It is encouraging that this symmetry-breaking te
transforms as a simple irreducible tensor under SO(5), a
its consequences can be worked out systematically by
Wigner-Eckart theorem. Recent numerical calculations
Eder, Hanke, and Zhang [14] show that the two symmetr
breaking terms,Hg and Hm, have compensating effects
so that a approximate SO(5) multiplet structure can
observed in the hole part of the spectrum in thet-J model.
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