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Microscopic Electron Models with Exact SO(5) Symmetry
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We construct a class of microscopic electron models with exact SO(5) symmetry between antifer-
romagnetic andd-wave superconducting ground states. There is an exact one-to-one correspondence
between both single-particle and collective excitations in both phases. SO(5) symmetry breaking terms
can be introduced and classified according to irreducible representation of the exact SO(5) algebra.
The resulting phase diagram and collective modes are identical to that of the SO(5) nomiinear
model. [S0031-9007(98)05903-1]

PACS numbers: 74.20.Mn, 71.10.—w, 74.25.Ha

One of the most interesting features of the highsu-  sgr(cosp, — cosp,), the SO(5) algebra introduced in [1]
perconductivity is the close proximity and the interplay closes exactly.
between the antiferromagnetic (AF) and ttkevave su- It is easy to write down many electron models with ex-
perconducting (dSC) phases. Recently, a theoretical fomct SU(2) spin rotation invariance, because the electron
malism was introduced based on the concept of a SO(¥)peratorc,, forms a natural spinor representation of the
symmetry between these two phases, and the resultifgU(2) algebra. In writing down SU(2) invariant models,
field-theoretical model describes the cuprate phase diall we have to do is to contract the spinor indices in a nat-
gram and collective modes in a unified framework [1]. Itural way. Therefore, the first step towards constructing
was argued that the microscopic Hubbard model supporta SO(5) invariant electron model is to find a natural def-
an approximate SO(5) symmetry [1-3]. inition of a SO(5) spinor. Spinor representations of the

In this paper, we construct a class of microscopic elecSO(5) Lie algebra can be easily constructed using the Clif-
tron models with exact SO(5) symmetry. In this model,ford algebra of five4 X 4 Dirac matrices [6] satisfying
degeneracy between the AF and dSC phases can be dem¢h¢, I'?} = 268, (a,b = 1,...,5), and the ten SO(5) ro-
strated exactly, and both the fermionic single-particle andation generators are given by> = —i[['%,I'*]. In this
the bosonic collective modes can be mapped onto eagtaper we shall use the following explicit representation for
other with a precise one-to-one correspondence. Thithe Clifford algebra:
model can be used as a starting point around which SO(5) | 0 —iory \ninsa G 0
symmetry-breaking interactions can be introduced and = < ! >F( A4 = < )

t =

] 0
classified according to irreducible tensors of SO(5) algebra. lgy o 7
It is shown that the resulting phase diagram and the col- I = <U Oy )
y

lective modes are similar to those obtained from the effec-
tive SO(5) nonlineaw model with anisotropic couplings whereo = (o, 0y, o) are the usual X 2 Pauli matri-
[1,4]. The purpose of this paper is to demonstrate thates, and the superscripineans transportation. We define
the general SO(5) idea can be realized exactly by explicia four-component spinor by

microscopic Hamiltonians. The microscopic information . — t t

extracted from this class of models, especially the behav- Vo = {ept: ot Or @I pror dr(Pleprait. (D

ior of the fermionic excitations across the AF/dSC transi-Vhere ¢=(p) = sgr(cosp, — cosp,) = *1, and Q =

tion, would greatly complement the effective field theory (7> 7). Since we have two spin degrees of freedom
approach. Within this class of models, we have a consig?t @ given momentunp, such a description must be
tent microscopic theory of the AF/dSC transition. sinceedundant. Indeed, one can easily see that the spinors with

both the AF and the dSC states are stable infrared fixeflomenta outside the magnetic Brillouin zone are related
points, it is plausible that one can deform the parameter® the Spinors inside the magnetic Brillouin zone by &
so that the microscopic SO(5) models can also serve as&@njugation

paradigm for a much more general class of AF/dSC tran-

sitions, including those occurring in the high-cuprates Vpio = x(PIRYZ,. (@)
and 2D organics. _ “The R matrix is an invariant tensor of the SO(5) alge-
The first independent attempt to construct microscopigra enjoying the following propertiesRT“R = —'T,

SO(5) invariant models was undertaken by Henley [S].RT* R = ‘T In our representation it takes the form
He independently made a crucial observation that, ifone 0 1 ) o
replaces the standamhwave factor cog, — cosp, by R = (_1 0). [The existence of such a matrix is related
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to the fact that the spinor representation of the SO(5) Lies
algebra is pseudoreal. Tlag matrix plays a similar role
for SO(3)]. TheW,, spinors obey the anticommutation ;. = > Vi(p,p’;q) (W TW, o) (W1 T*W, o)

relations; p.p’.q
a t ab
+ > Va(p.psq) (WITPW, ) (T TP, )
{\I’;a»q’p’ﬁ} = 8apOpp’ ) p.p’.q P
+ > Volp.phi @) (Wi, ) (Wi W), ()
{‘I’Ja,\lfp,ﬂ} = {¥pa. Vpp} = ~dxz(P)RapSpipq- Pp-a

(4) SinceL.(p,q) E\I’;{F“bll'pm, n.(p,q) = ‘Ing“‘pr+Q+q
andp(p,q) = \I’J\Iqu are the true SO(5) tensor, vector,

If we restrict bothp and p’ inside the magnetic Bril- and scalar, respectively, for any and q; their inner
louin zone, the right-hand side of the second equaproducts naturally gives a manifestly SO(5) invariant
tion vanishes and theV,, spinors commute in the Hamiltonian.
same way as they, spinors. They an be used to  Among three terms iiif;,,, we concentrate on the vec-
construct the SO(5) vector order parameter and theor interaction (first term) in all subsequent analysis, and
symmetry generatorsn, = % hI wp\PgF“\Pp+Q and  assume a factorizable foriy(p,p’;q) = —Vi(qQ)wpwp'.
Lap = é Zp \I'JF“”\I'I,. Here, wp, = w_,. Note that This form is not necessary, but simplifies calculations. In
the definition of ther operatorsLi23.4), L(2.3.4)s) differs real space,
from the ones used in previous works [1-3], where they _ iQ-(R,—R,
are electron pair operators on the nearest-neighbor (nn) Hiny = — 4 % ViR = R,)e @ RR
sites. The problem with this kind of definition is that ’ 1 "
the commutator algebra does not close, and generates X [me ‘m, + E(Aeﬁl + Aeﬁn)] 9)
longer-ranged bonds. Naively, the condition for the clo- i .
sure of the SO(5) algebra appears to be overconstraineddere, m¢ and A, are Néel andd-wave pairing order
The present paper and Ref.[5] start with electron pailP@rameters (operators) at site= Ry, but with extended
operators with a long-ranged profile, given in real spacdntérnal structures determined by,. For the simplest
by the lattice Fourier transform af . (p), choicew, = 1, they become

1 Q-
2 1= () me = > Wlop— xlox)e®™ . (10)

7* m? —n? "’ ©) t tt ot
Ay = Z b= (R — Rj) (cpejp — cocjp) (11)
J

or(m,n) =
whereR = (m, n) is a lattice point. It is truly remarkable
that this simple choice closes the algebra exactly. Noticeslere, we introduced two-component spinoig, =
that, while thes operators have long-ranged profiles, the!(c,,c.) and  y, = (—e’@R¢) X “(bg, by)  with
dSC order parameter can still be short ranged with suitablg,, = Y, ¢-(R¢ — Rj)cj,. The pair wave func-
choices ofw,. Under the SO(5) rotations generated by thetion for dSC condensate is described ¢y and is long

Lgp, Wp transforms as a proper SO(5) spinor ranged. For the choicev, = |cosp, — cosp,|, we
| obtain
[Lab» lI"])Cl:l = _Z (Fab)aﬁ\PpB (6) eiQ'R 1. 1.
me = — Z duRe = R) (i ohe — xi o x0),
for all values ofp. Using these spinors, exact SO(5) in- ! (12)
variant Hamiltonians can be constructed simply by proper
contraction of the spinor indices. Al = S ouRe — R)G,(R; — Rj)(c}c;-rl _ CiTlCJJ'rT)’
We start with the kinetic term, and write it as ij (13)
1
Hyin = Z spcg,gcp,g =5 Z sp‘lf;f\lfp. (7)  where
p.o p ¢ ( ) 4 1+ (_)m+n
m,n) = — .
We see that the property, .o = —&,, valid for a nn tight Y 72 [(m + n)? — 1][(m — n)* — 1]
binding model, is crucial for this construction to work. In (14)

order to construct four-fermion interactions, we first note
that a SO(5) spinor bilinear can in general be decomposetihe interaction between the centers of massnobr A

into a direct sum of a scalar, a vector, and an antisymmefields is controlled by;(R). If we takeVi(q) to be a
ric tensor, i.e.d X 4 =1 + 5 + 10. Therefore, general §é function atq = Q, the A part in Hy,,; becomes the
SO(5) invariant four-fermion interactions can be expressedsual BCS reduced Hamiltonian for drwave pairing. If
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Vi(q) is taken to be a Lorenzian aroumd= Q, the real = T
space form of the spin interaction resembles the potential /\ /\
induced by the AF paramagnon exchange [7-9]. < -

It is not difficult to find degeneracy between AF and + dsC > ( AF +
dSC states in the usual treatment of mean field theories.
However, their excitation spectra are generally different, /é

and quantum fluctuations may remove this degeneracy.
. . - +
In the SO(5) invariant models, symmetry not only ensures \/ \_/

exact degeneracy of the ground states, but a.lso ENSUNBRs 1. The superconducting (dSC) and antiferromagnetic
exact one-to-one correspondence between their excitatiQqdr) gaps. The solid (dotted) line in the AF gap is for the

spectra. This fact is formulated as follows: case with (without) SO(5) symmetry.
Theorem 1—If |W¥y) is a ground state of a SO(5)
invariant Hamiltonian with AF broken symmetry (say, in Bis = —2u, leading toH, = 2uL;s. The other is the
th(e 72) direction), i.e.,(Woln,|Wo) = 8244, then|W¥y) =  anisotropy energy
e!™/2Le W) is a degenerate ground state with dSC _ ta
broken symmetry (inn; direction), i.e.,(W|n.|W)) = H, pgq a=2234 $(@ (Fp I pq)
81.4A. Furthermore, all excited states of the AF ground g
state can be mapped to excited states of the dSC ground X (Up TWpr—q) 17
state at the same energy by wi€"/?%= operator. between AF and dSC states. To study the spectrum of
The proof of this theorem is elementary, siigg com-  H = Hy, + Hin + H, + H,, we takeg(q) = gd40
mutes with the Hamiltonian, ang/(7/2L:p ¢i(™/2l: = and again use mean field approximation. In the dSC

ny. In the following, we shall illustrate this power- phase,ny) lies in the plane(n;,ns). We choose it in

ful theorem in an explicit mean field calculation. We then, direction. Then the Green’s function is given by
take a “generalized BCS reduced Hamiltonian” by se-

- - : h (w+ep,— )18y, —i0yAyBppiiq
lecting Vi(q) = V840 in the vector interaction. The GSC(p.p'. ) = 0 (e A2+ 0 —(ep+tu)-AZ+id
Green’s function in the presence of a mean figlff) = PP (7, Apdppiiq (@+ep+m)ldpy |°
1 tTa . . w—(gp—p)—A7+id w?—(gp+u)-A2+id
(VT W, . q) is given by 1
/ _ . ' where Ap = —16Vid(p)wp 2k wilnk) =Aodr(p)wp
Gap(P,psw) = —i | dte"(TWp o(1)¥p 5(0)) and theg term drops out because of symmetry mismatch.
2
B (0 + €p)8apdpp + Asrgﬁ(sp’p,m Ao is determined by the gap equation= 16V, > Z’T"k
B w? — 812) — (Ag)2 +id ’ where Eyx = \/(sk — w)? + A}. For the choicew, =

(15)  |cosp, — cosp,|, we have a usuat-wave gap. In the
AF phase(ng) lies in the(na, n3, ny) space. If we pick

where A = —16Viw, >k wi(ng). This manifestly the 4 direction, we have

SO(5) invariant Green’s function shows explicitly that
the AF quasiparticles can be mapped onto dSC quasipalGAF(p,P’, w)

ticles. In particular, the AF Green'’s function (in the (@ +65) 18,5+ A, 0. 8p a0

direction) can be obtained directly from the dSC Green’s _ wl—e3—A2+i8 0

function (in the n; direction) by a simple rotation: 0 (@-+ep)18ppr+Ap0:8ppirg
GAF — e*i(ﬂ'/Z)FlzGSCei(ﬂ'/Z)F]z_ If we take wp = 1, w2 —e—A2+id

the AF quasiparticles have a fudtwave gap, while the Here w. = w * u and Ap = =16 X (Viwpwy +

dSC quasiparticles have a full-wave gap, with step 9)(n}) = wplAo + A,. Ay and A, are determined by
discontinuity at(*#/2, =7 /2) points. For the choice the gap equation\, = 16 X (Viwpwi + g)ZATk. The

of wp = |cosp, — cosp,|, the dSC quasiparticles have .., space form oA, has an on-site contribution frods,

thueaslisgftliclceosﬁ)ﬁa;ecgip gn%%?robehz\cgr’ ;Vh\;llihtm% d’i;z and a long-ranged contribution proportionalAge (R).
q P By gap We see that the terms leave the dSC gap unaffected,

at(x/2, +a/2) points (Fig. 1). Because the AF nodes while it removes the AF gap node (See Fig. 1). The

are not “topological,” any small interactions will remove P

. ; . . ground state energy curves are shown in Fig. 2. The

ga[rzmlq?a].inlgoter:tgi;g:;e' the amplitude of the gaps is the‘superspin flop” transition from AF to dSC occurs at
As symmetry-breaking perturbations to the above 0 for H, =0, while it occurs at a finite value of

SO(5) invariant Hamiltonian, we consider two typical n. for g # 0. In this case, the AF/dSC transition is first
. onian, ! 0 YPICAl i der, with a finite jump in hole density. (See Fig. 2).
terms. One is the coupling to external fiellg,,

While the above pictures are based on the mean field

Hexe = — Z BapLap - (16)  approximation, some exact statements can be made about
a<b the AF/dSC transitions. SO(5) is arank 2 algebra, and we
A particular example of this field is the chemical potentialcan choose) = —Li5s and S, = —L,; as the members
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E X In conclusion, we have constructed a class of electron
r EAp(g=0) models with exact SO(5) symmetry. If the model has
/X an AF ground state at half-filling, it will have a dSC
X ground state away from half-filling. The phase diagram
x | and the collective mode spectrum of these models are
E similar to the real high¥. materials. However, our results
P\ se also show that a significant SO(5) symmetry-breaking term
TR \ n i, " H, is required to produce the asymmetry in the size and
angular distribution of the insulating and superconducting
FIG. 2. The ground state energyin both AF and SC phases gaps. It is encouraging that this symmetry-breaking term
&Sef”;‘g;gﬁgeoéﬁc‘é:ﬁégt%”d tlgﬁec;:.lecgionhgensmyversus,u N transforms as a simple irreducible tensor under SO(5), and
P Py Gy (right). its consequences can be worked out systematically by the
of the Cartan (maximal commutative) subalgebra. InWigner-Eckarttheorem. Recent numerical calculations by
addition, we have the Casimir operator= Y ,_, L2,,  Eder, Hanke, and Zhang [14] show that the two symmetry-
which commutes with all of the generators and has arfpreaking termsf, and H,, have compensating effects,
eigenvalud(! + 3). The sefQ, S, C) forms a Cartesian SO that a approximate SO(5) multiplet structure can be
coordinate system labeling the quantum numbers of albbserved in the hole part of the spectrum in tilemodel.
states in the Hilbert space. If we consider only states with The authors are deeply indebted to Professor C. Hen-
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