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Sinai's model of diffusion in one dimension with random local bias is studied by a real space
renormalization group which yields asymptotically exact long time results. The distribution of the
position of a particle and the probability of it not returning to the origin are obtained, as well as the
two-time distribution which exhibits “aging” with Ir/Int’ scaling and a singularity at(r) = x(¢/).

The effects of a small uniform force are also studied. Extension to motion of many domain

walls yields nonequilibrium time dependent correlations for the 1D random field Ising model with

Glauber dynamics and “persistence” exponents of 1D reaction-diffusion models with random forces.
[S0031-9007(98)05800-1]

PACS numbers: 64.60.Ak, 75.10.Hk

The development of order in systems with a broken symvariable f; = U; — U, is defined on each bond,: +
metry is of interest in many contexts. “Coarsening” of 1) with thesef; independent random variables. Since one
domain structures evolving towards equilibrium has beeran group together neighboring bonds with the same sign
studied extensively [1]. But little is known analytically of the force, we study with no loss of generality, a “zigzag”
about domain growth in the presence of quenched disordgrotential (see Fig. 1) with th¢g; alternatively positive
[2,3]. Nevertheless, phenomenological descriptions of thand negative but with a distribution of “bond” lengths
nonequilibrium dynamics of various random magnetic sysOur model is thus defined bg; = (—1)'*'F;, where the
tems have been developed in terms of “droplets” separatgubsitive F; = |U; — U;+|, which are effectively energy
by domain walls [3]. Because of the very slow dynamicsbarriers, are the natural variables. The pairs of bond vari-
associated with activation over large free energy barriergblesF, [ are chosen independently from bond to bond
even the apparent equilibrium properties of these systenfsom a distributionP(F, ). In the presence of a direc-
are dominated by the nonequilibrium dynamics, as also odionality bias one needs two distinct distributioA§F, [)
curs in infinite-range models [3,4]. Even in one dimensionfor “descending bonds” angl(F, ) for “ascending bonds.”
some random systems exhibit ultraslow growth and aging We are interested in long times when the behavior will
phenomena. Exactresultsin 1D could thus be used as tesie dominated by large barriers and it is on these that we
ing grounds for more compleR > 1 cases which have must focus. Our RG procedure is conceptually simple: in
resisted analytic attack. a given energy landscape it consists of iterative decimation

In this Letter we study the diffusion of a particle in a of the bond with thesmallest barriersayF, = U; — Us,
1D random potential which itself has the statistics of a 1Das illustrated in Fig. 1. At time scales much longer than
random walk [5]. Extensions to many interacting particles
allow us to study, via domain walls, the Glauber dynam- U @
ics of 1D Ising models, in particular random field ferro-
magnets and spin glasses in a magnetic field. This leads
also to the consideration of more general diffusion-reaction
processes in such energy landscapes. Various analytic re- X
sults are known for the single particle model (Sinai model) (b) l
[5—11] but these primarily concern single time quantities.

Here we use a real space renormalization group (RSRG) :
method related to that used to study disordered quantum F, | F'=F-E+F,
spin chains [12—14]. This allows us to compute a host B e :
of quantities such as first passage (persistence) exponents, .\ E
single time correlations, and even two time correlations :
that are probed in aging experiments. Despite its approxi- el
mate character, the RSRG yields results that are asymptoti- I L Iy

cally exact at _Iong t_'mes' . . FIG. 1. (a) Energy landscape in Sinai model (b) decimation

The model is defined as follows: Particles diffuse on amethod: the bond with the smallest barriét,, = F, is
1D lattice in a potential/;, with i the site index. A *“force” eliminated resulting in three bonds being grouped into one.
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exp(F,/T), local equilibrium will be established between solutions of the RG equations (1). The rescaled proba-
sites 2 and 3 and the rate for the walker to get frombility P(n,A) = (I'*/o)P(n»T, AT?/c,T) in terms of the
4 to 1 will be essentially the same as it would be ifrescaled variableg = /T", A = lo/I'?, when Laplace
sites 2 and 3 did not exist but 1 and 4 were insteadransformed inA to s, is found to be [13]P(%,s) =
connected by a bond with barrigt’ = F; — F, + F3  [/s/sinh({/s )]exd —n+/s coth(\/s)]. The average bond
and length’ = [; + I, + I3. We thus carry out exactly |ength is] = 5o 12 and we recover the scaling~ In* ¢
this replacement which preserves the zigzag structurs]. The large scale variance of the potential/; —
and the larger scale extrema of the potential. With  U;)?) =~ 2¢|;_;|, with [, the distance fronito j is con-
defined to be the smallest remaining barrier at a givererved by the RG, fixingr.
stage of the RG, we eliminate the barriers in the range The fact that the renormalized barrier distribution be-
' <F <T +dI'. The new variables arimdependent comes infinitely broad is the source of the exactness of our
from bond to bond. Introducing = F — I' > 0 one |ong time results. At late stages of the RG, the chances
finds the following RG flow equations for the probabilities that two neighboring bonds hav&s that are within order
P(¢,1,T) andR(Z,1,T): T of each other tends to zero for lardle Thus substan-
(0r — 97)P = R(0,") *; P x5 P + (POr — ROF)P, ) tial errors that are introduced by assigning a particle to one
. r r of two almost-equal-depth neighboring valleys rather than
(Or = 0o)R = P(0,-) # R *7 R + (Ry = Py)R. splitting its distri(?)ution tﬁ)etwee% the tw% valleél/s will occur
Here =, denotes a convolution with respectfmnly and

) 7 rarely atlong scales. Furthermore, any such error is wiped
*¢ With respect to bothy and / and we definePy = oyt py a later decimation which eliminates the two valleys

JodlP(¢ =0,1,T) and similarly forR; . The dynamics  in favor of a deeper valley. Since in a deep renormalized
implied by this RG is rather simple. Making the obvious yajley, the particle tends to be very close to the bottom
identification of I' = T'In(z/1) from Arrhenius dynam- o the scale of(I'), the rigorous results [5,7] imply that
ics, we see that at very long time the renormalized landwe can obtain the scaled distribution of the position of a
scape consists entirely of deep valleys separated by highurticle at timer that started at the origin at time zero,
barriers. A good approximation to the long time dynamicsdirecuy fromP(I,T = TInt). We henceforth sef = 1
is thus to place the walkeat the bottonof the renormal-  g3nd measure distances in units such that 1. The dy-
ized valley at scalgd Inz in which it was initially, since, namics “within” a bond and errors in early stages of the
with high probability, it will be near to that point [5]. Upon RG will only change the microscopic cutoff timg
proper rescaling of space and time this becomes exdc¢tas The renormalized dynamics corresponds to moving the
tends to~ as was proven in Ref. [5] for the unbiased caseparticle from its starting point (distributed uniformly on
It remains valid in the weakly biased case in the limit thaty bond) to the lower-potential end of the bond. The
the bias parameter that controls the long time properties, dijstribution of its position at time averaged over the
defined implicitly for the original model with unit length ansemble of random potentials is thRsol(x, 7|0, 0) =
bonds byexp(—w/:/T)) = 1, is very small (see [8,9]). 1 f* g/ p(1,1)/I(T'). With T = Int, it takes the scaling
The RG equations (1) are identical to those derived f0|r20rm Prolx.7]0.0) = 1 (=) where
the random transverse field Ising chain (RTFIC) in [13] T > 9inTs
with the identification of Ih, = F», and InJ, = For 44 4 (—1y o )
in the RTFIC with the ascending and descending barriers, g(X) = — Z e 3™ XIGnEDE (2)
respectively [15]. Thus duality in the RTFIC corresponds 7T = 2n t 1
to reversing the average force. Criticality then corre- ) ) . ) L
sponds to the zero drift case, while the Griffiths phase ifVith o reinserted, this coincides with Kesten’s rigorous
the RTFIC [13] corresponds to the biased phase with zer§#Sult [7] for a Brownian potential, as it should [S].
velocity [8,9]. The deviation from criticality parameter  BUt We can now generalize to the biased case with a
[13] 8 = ((In k) — (InJY)/[var(in k) + var(in J)] is analo- small average potentla_ll drop per unit Iep@tjﬁ >_0. The
gous at smalb to u/2. RG flows Eq. (1) now mvo!ve the two distributio®sand _
We consider first the long time dynamics of a single par£ - The asymptotic behavior of these flows was found in
ticle, starting with the symmetric, zero bias, case that hakl3l: it o?tams in the scaling limit thal" is large, while
the same distribution for all the bonds: i.&,—= P. For A =1{/I" andy = T4 are both fixed but arbitrary. In

— 2
largeT", the distribution flows to one of a family of scaling t/(:énz)sb t(;];nt?sr 'ﬁ‘;"glggﬁet:;?zs;ggg (];;Olgl (—2)|X|/ I"tos,

>2[0(X)LT_1%<1 - ke 7 ) + 0(—X)LT_1%<1 - Kel ﬂ

Kk coshk — vy sinhk K coshk + vy sinhk
3

with k = /s + y? and the two terms arising from del metric case Eqg. (2). Butfor largg, i.e., Inr > 1/8, the
scending and ascending renormalized bonds, respectivelgistribution is heavily concentrated to the right of the origin
In the limit of smally, the behavior reduces to the sym- Prol(x,¢]0,0) = 0(x) exp(—x/x(z))/x(t) with the mean
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displacement: (1) =~ 12 /(462), consistent with the small from a high temperature. At low temperatures fawall
w limit of the known “Levy front”LM(t/(Mx)l/“) [6,9], quickly falls to the bottom of a valley only to move to the
although the exponenti of the anomalous diffusion ~  bottom of a neighboring lower valley whendmeaches the
t* is correct only to leading order if, due to corrections barrier height of the intervening bond. Likewidgwalls
to scaling neglected in our RG. We find that the modelmove from top to top of “mountains.” When ak and
renormalizes onto a directed model with traps (ascending B meet, they annihilate preserving the alternathRAB
bonds) of “release time” distributiop(r) ~ 7~ (*#) [9].  sequence. Analytic treatment is difficult because decima-
Our method also enables us to compute two time quantkion generates correlations among thend B positions.
ties, e.g.,B(x,1,x',t') = Prolxz|x¢’|00) which contains  Performing the RSRG numerically on a large sample [16]
information about the dynamics after the system hasve find that the system evolves to a state with dnat
“aged” froms = 0 to ¢/, but the full calculation and result each minimum and onB at each maximum of the renor-
[16] are too complicated to reproduce here. In the regimenalized landscape. We thus make the ansatz that this is
I' =Inr andI'’ = Int' large witha = Int/In¢' afixed the correct form of the asymptotic states. The RG analy-
number, we obtain a scaling for® ~ B(a, %,%') in the  sis is then again simple [14], and the results asymptotically
rescaled variables = x/I'? and ¥’ = x//T'2. Our two  exact if the ansatz is correct. The equal time spin corre-
time correlations thus exhibit a iy Inz aging regime, lations can be obtained from the difference between the
as found numerically in [11] and argued in [3] for spin probabilities that an even or an odd number of extrema of
glasses in higher dimensions. Interestingly, the rescaleghe renormalized potential—i.e., domain walls—exist be-

distribution has a delta function componentrat= X', of  tween a given pair of points. For a symmetric distribution
weight f(«), suggested in [11], that we have obtained anaof random fields, we obtain

lytically [16]. It arises from bonds not decimated between
t' andt, i.e., from particles staying within the same valley. —————
The mean square additional displacement betwéamd (So(D)SL(1)) = nzz_w
t can be obtained from our general results. For large

a=Int/Int’, (x(t) — x(t)?) = %O(mty independent With X = % distances normalized as earlier ahd=

of the motion up to time’. But when Iz and Ins’ are  T'Inz. At sufficiently long timesl' > T'; = 4/, we can
not too separated, i.ez, = 1, the mean square additional NO longer ignore creation of pairs of walls. But, at this

displacement is only=(In t’)‘*%(ln t/Int’ = 1). In this point, the energy cannot be lowered furthernyprocess.

regime of times the particle is typically trapped in a deep! NUS if the renormalization is stopped iy, in the small
well, but there is a probability of ordéi” — I")/T" that field, the lowT scaling limit the configuration of the walls

one of the barriers of the well at timéis less tha™. If ~ corresponds, up to negligible thermal fluctuations, to the
so, the walker will jump to the bottom of a deeper Va”eyequmbrlum state. The_above equation s_hould_ then give
a distance of ordeKI"”) ~ I'? = I'2 away yielding the the mean e_qwhbnum spin correlation function with Igngths
above result. Note, however, that there is a subtle limif€asured in units of the Imry-Ma length above which the
implicit here: fixede > 1 as Int —  implies that no random fields dominate the exchange. _ ,
matter how closer is to one,r > /. The physics when  Since 1D Ising spin glasses in a field are equivalent via a
t and:' are much closer together is quite different, in par-9auge tra_nsformatlon to random field ferromagnets, we can
ticular, when(r — #/)/t' = O(1) or less. With probability a}lso .obtal.n results for such a system. If a large magnetic
that approaches one ds— =, in this regime there will be ~ fi€ld is quickly reduced to be<J but nonzero, the domain
nojumps to a new (deeper) valley betwetandr and the wall d.ynamlcs. \{v!ll be like that for the ferromagnet W!th
additional displacement will typically be small. But its domain walls initially at every extremum of the potential.
mean square will be dominated by rare ConfigurationsJ—_he decay of_the magnetization for log times upltpis
absent in the scaling limit—in which the valley at time glven.by the difference between the probabllltles thatasplln
t has two almost degenerate minima. Jumping betweeh@s flipped an even or an odd number of times. We obtain
such minima within a valley persists even for> o with  (Si(1)) ~ 1(t)"* with A = 5. Note that this value of\
¢t — t' fixed and in this limit the statistics of the resulting Saturates the lower bound df/2 in contrast to the pure
infinitely deep valley potential becomes that of a randomlD Ising case which saturates the upper bound ef 4
walk restricted to havé/; — Uyyiiey-min > 0 [5,11,186]. [3]. For the symmetric random-field lsmg_merl (RFIM)
We now turn to problems involving many walkers. The one similarly finds tha{sS;(¢)S;(¢")) ~ [1())/1(z)].
Glauber dynamics of the 1D (classical) random field Ising We next study “persistence” properties. One must now
model corresponds ttwo typesof domain wallsA and  carefully distinguish between ttreffective dynamicé.e.,
B which seeoppositerandom potentials with the forces the walker jumping between valley bottoms) and tbal
fi being simply twice the corresponding random fields ondynamics. The probabilityv(¢) that asingle walkerhas
the dual lattice sites. When the random fields are muchevercrossed its starting point(0) = x, between0 and
smaller than the exchangk the long time behavior for ¢ can be found by placing an absorbing boundary at
T < J will be universal. We focus on the evolution start- x, and using methods similar to the calculation of the
ing from random initial conditions—e.g., after a quenchend point magnetization in the RTFIC [13]. We find

oe}

48 + 32(2n + 1)?7?X P
@2n + 1474
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N(r) ~ I(r)~" at large times with§, = 1 (cf. ; = 1 in
the pure case). A related quantit (), is the fraction
of starting points,x,, for which thethermally averaged
position (x(r) | x(0) = x¢) never crosses, up to time
t. While in a single “run” in a given environment the
walker typically crosses its starting point many times while
trapped in a valley, averaging over many runs in the sam
environment yields &x(z)) which crosses, exactly once
each time the bond on whichy lies is decimated since
this causes its valley bottom to cragg At long times,
the probabilityM (¢) thus reflects the effective dynamics,
in particular, the probability that the bond on whigh
lies hasnever been decimated before time yielding
M(t) ~ I(r)"% with 6, = (3 — v/5)/4. Indeed, in the
biased caseM (r) is like the spontaneous magnetization
in the RTFIC, i.e.,M(r) ~ |8]# for small § with 8 =
(3 —+/5)/2[13].

More generally, in the effective dynamics, the probabil-
ity of exactly n crossings of the origin up to timescales

as Inln¢) in the unbiased case. The rescaled variable

g = n/In(Int) has a multifractal distribution Pr¢p) ~
1(t)~ %)

0,(g) = % In[2gs(g)] + — — s(e)

4 2 @

with s(g) = g + /g% + %. Since 51(%) =0, g= %
with probability 1 at large times. For a given walker,
E(r) =1 [Lx(r)dr will typically behave like (x(r)).
We conjecture that the probability @af = g In(In¢) sign
changes of E up to time ¢t decays with the same
exponentd (g) for g = % For largerg, the behavior is

dominated by rare valleys with almost degenerate minima

on opposite sides of the origin which yield extra sign
changes irE(1).

The persistence properties of the RFIM can similarly
be analyzed. The probabilit (r) ~ (r)~? that a given
spinat x = 0 has never flipped up to timeis equal to

the probability that neither the nearest domain wall on one

0(r) associated with the thermally averaged patrticle trajec-
tories is the solution of the hypergeometric equation [16]:

OU(— r/(1 + r),20,1) =U(—r/(1 +r),20 + 1,1).

Remarkably, thisd(r) is very close numerically to half
tege exact pure system result [17‘jepure(r) = —% +
= [arccos$ ﬁ’(ril))]%

To conclude, we have applied a RSRG method to 1D
random walks in the presence of static random forces and
obtained asymptotically exact results for coarsening dy-
namics, diffusion reaction models, and aging phenomena;
surprisingly by simpler means than for the corresponding
pure models. Extensions and details are given in [16].
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