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Sinai’s model of diffusion in one dimension with random local bias is studied by a real space
renormalization group which yields asymptotically exact long time results. The distribution of the
position of a particle and the probability of it not returning to the origin are obtained, as well as the
two-time distribution which exhibits “aging” with lnty ln t0 scaling and a singularity atxstd ­ xst0d.
The effects of a small uniform force are also studied. Extension to motion of many domain
walls yields nonequilibrium time dependent correlations for the 1D random field Ising model with
Glauber dynamics and “persistence” exponents of 1D reaction-diffusion models with random forces.
[S0031-9007(98)05800-1]
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The development of order in systems with a broken sy
metry is of interest in many contexts. “Coarsening” o
domain structures evolving towards equilibrium has be
studied extensively [1]. But little is known analytically
about domain growth in the presence of quenched disor
[2,3]. Nevertheless, phenomenological descriptions of t
nonequilibrium dynamics of various random magnetic sy
tems have been developed in terms of “droplets” separa
by domain walls [3]. Because of the very slow dynamic
associated with activation over large free energy barrie
even the apparent equilibrium properties of these syste
are dominated by the nonequilibrium dynamics, as also
curs in infinite-range models [3,4]. Even in one dimensio
some random systems exhibit ultraslow growth and ag
phenomena. Exact results in 1D could thus be used as t
ing grounds for more complexD . 1 cases which have
resisted analytic attack.

In this Letter we study the diffusion of a particle in
1D random potential which itself has the statistics of a 1
random walk [5]. Extensions to many interacting particle
allow us to study, via domain walls, the Glauber dynam
ics of 1D Ising models, in particular random field ferro
magnets and spin glasses in a magnetic field. This le
also to the consideration of more general diffusion-reacti
processes in such energy landscapes. Various analytic
sults are known for the single particle model (Sinai mode
[5–11] but these primarily concern single time quantitie
Here we use a real space renormalization group (RSR
method related to that used to study disordered quant
spin chains [12–14]. This allows us to compute a ho
of quantities such as first passage (persistence) expone
single time correlations, and even two time correlatio
that are probed in aging experiments. Despite its appro
mate character, the RSRG yields results that are asymp
cally exact at long times.

The model is defined as follows: Particles diffuse on
1D lattice in a potentialUi , with i the site index. A “force”
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variablefi ; Ui 2 Ui11 is defined on each bondsi, i 1

1d with thesefi independent random variables. Since on
can group together neighboring bonds with the same sig
of the force, we study with no loss of generality, a “zigzag”
potential (see Fig. 1) with thefi alternatively positive
and negative but with a distribution of “bond” lengthsli .
Our model is thus defined byfi ­ s21di11Fi, where the
positiveFi ­ jUi 2 Ui11j, which are effectively energy
barriers, are the natural variables. The pairs of bond var
ablesF, l are chosen independently from bond to bond
from a distributionPsF, ld. In the presence of a direc-
tionality bias one needs two distinct distributionsPsF, ld
for “descending bonds” andRsF, ld for “ascending bonds.”

We are interested in long times when the behavior wi
be dominated by large barriers and it is on these that w
must focus. Our RG procedure is conceptually simple: i
a given energy landscape it consists of iterative decimatio
of the bond with thesmallest barrier,sayF2 ­ U3 2 U2,
as illustrated in Fig. 1. At time scales much longer tha

FIG. 1. (a) Energy landscape in Sinai model (b) decimatio
method: the bond with the smallest barrierFmin ­ F2 is
eliminated resulting in three bonds being grouped into one.
© 1998 The American Physical Society 3539
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expsF2yTd, local equilibrium will be established between
sites 2 and 3 and the rate for the walker to get fro
4 to 1 will be essentially the same as it would be
sites 2 and 3 did not exist but 1 and 4 were inste
connected by a bond with barrierF0 ­ F1 2 F2 1 F3

and lengthl0 ­ l1 1 l2 1 l3. We thus carry out exactly
this replacement which preserves the zigzag structu
and the larger scale extrema of the potential. WithG

defined to be the smallest remaining barrier at a giv
stage of the RG, we eliminate the barriers in the ran
G , F , G 1 dG. The new variables areindependent
from bond to bond. Introducingz ; F 2 G . 0 one
finds the following RG flow equations for the probabilitie
Psz , l, Gd andRsz , l, Gd:
s≠G 2 ≠z dP ­ Rs0, ?d pl P pz l P 1 sPG

0 2 RG
0 dP ,

s≠G 2 ≠z dR ­ Ps0, ?d pl R pz l R 1 sRG
0 2 PG

0 dR .
(1)

Herepz denotes a convolution with respect toz only and
pz ,l with respect to bothz and l and we definePG

0 ;R`

0 dl Psz ­ 0, l, Gd and similarly forRG
0 . The dynamics

implied by this RG is rather simple. Making the obviou
identification of G ­ T lnstyt0d from Arrhenius dynam-
ics, we see that at very long time the renormalized lan
scape consists entirely of deep valleys separated by h
barriers. A good approximation to the long time dynamic
is thus to place the walkerat the bottomof the renormal-
ized valley at scaleT ln t in which it was initially, since,
with high probability, it will be near to that point [5]. Upon
proper rescaling of space and time this becomes exact aG

tends tò as was proven in Ref. [5] for the unbiased cas
It remains valid in the weakly biased case in the limit th
the bias parameter that controls the long time properties,m,
defined implicitly for the original model with unit length
bonds bykexps2mfiyT dl ­ 1, is very small (see [8,9]).

The RG equations (1) are identical to those derived f
the random transverse field Ising chain (RTFIC) in [13
with the identification of lnhk ­ F2k and lnJk ­ F2k11

in the RTFIC with the ascending and descending barrie
respectively [15]. Thus duality in the RTFIC correspond
to reversing the average force. Criticality then corr
sponds to the zero drift case, while the Griffiths phase
the RTFIC [13] corresponds to the biased phase with ze
velocity [8,9]. The deviation from criticality paramete
[13] d ; skln hl 2 kln Jldyfvarsln hd 1 varsln Jdg is analo-
gous at smalld to my2.

We consider first the long time dynamics of a single pa
ticle, starting with the symmetric, zero bias, case that h
the same distribution for all the bonds; i.e.,R ­ P. For
largeG, the distribution flows to one of a family of scaling
3540
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solutions of the RG equations (1). The rescaled pro
bility P̃sh, ld ­ sG3ysdPshG, lG2ys, Gd in terms of the
rescaled variablesh ; z yG, l ; lsyG2, when Laplace
transformed inl to s, is found to be [13]P̃sh, sd ­
f
p

sy sinhs
p

s dg expf2h
p

s coths
p

s dg. The average bond
length isl ­

1
2s G2 and we recover the scalingx , ln2 t

[5]. The large scale variance of the potentialksUi 2

Ujd2l ø 2sjli2jj, with li2j the distance fromi to j is con-
served by the RG, fixings.

The fact that the renormalized barrier distribution b
comes infinitely broad is the source of the exactness of
long time results. At late stages of the RG, the chan
that two neighboring bonds haveF’s that are within order
T of each other tends to zero for largeG. Thus substan-
tial errors that are introduced by assigning a particle to o
of two almost-equal-depth neighboring valleys rather th
splitting its distribution between the two valleys will occu
rarely at long scales. Furthermore, any such error is wip
out by a later decimation which eliminates the two valle
in favor of a deeper valley. Since in a deep renormaliz
valley, the particle tends to be very close to the botto
on the scale oflsGd, the rigorous results [5,7] imply tha
we can obtain the scaled distribution of the position o
particle at timet that started at the origin at time zero
directly from Psl, G ­ T ln td. We henceforth setT ­ 1
and measure distances in units such thats ­ 1. The dy-
namics “within” a bond and errors in early stages of t
RG will only change the microscopic cutoff timet0.

The renormalized dynamics corresponds to moving
particle from its starting point (distributed uniformly o
a bond) to the lower-potential end of the bond. T
distribution of its position at timet averaged over the
ensemble of random potentials is thusProbsx, t j 0, 0d ­
1
2

R`

jxj dl Psl, GdylsGd. With G ­ ln t, it takes the scaling

form Probsx, t j 0, 0d ­
1

ln2 t qs x
ln2 t d where

qsXd ­
4
p

X̀
n­0

s21dn

2n 1 1
e2 1

4
p2jXj s2n11d2

. (2)

With s reinserted, this coincides with Kesten’s rigoro
result [7] for a Brownian potential, as it should [5].

But we can now generalize to the biased case wit
small average potential drop per unit length2d . 0. The
RG flows Eq. (1) now involve the two distributionsR and
P. The asymptotic behavior of these flows was found
[13]; it obtains in the scaling limit thatG is large, while
l ­ lyG2 and g ; Gd are both fixed but arbitrary. In
terms of the Laplace transform fromjXj ; jxjyG2 to s,
we obtain for the generalization of Eq. (2),
qsX, gd ­

µ
g

sinhg

∂2∑
usXdLT21 1

s

µ
1 2

ke2g

k coshk 2 g sinhk

∂
1 us2XdLT21 1

s

µ
1 2

keg

k coshk 1 g sinhk

∂∏
,

(3)
in

with k ;

p
s 1 g2 and the two terms arising from de-

scending and ascending renormalized bonds, respectiv
In the limit of smallg, the behavior reduces to the sym
ely.
-

metric case Eq. (2). But for largeg, i.e., lnt ¿ 1yd, the
distribution is heavily concentrated to the right of the orig
Probsx, t j 0, 0d ø usxd expsss2xyxstddddyxstd with the mean
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displacementxstd ø t2dys4d2d, consistent with the small
m limit of the known “Levy front” Lmssstysm2xd1ymddd [6,9],
although the exponentm of the anomalous diffusionx ,
tm is correct only to leading order ind, due to corrections
to scaling neglected in our RG. We find that the mod
renormalizes onto a directed model with traps (ascend
bonds) of “release time” distributionrstd , t2s11md [9].

Our method also enables us to compute two time quan
ties, e.g.,Bsx, t, x0, t0d ; Probsxtjx0t0j00d which contains
information about the dynamics after the system h
“aged” from t ­ 0 to t0, but the full calculation and result
[16] are too complicated to reproduce here. In the regim
G ­ ln t andG0 ­ ln t0 large witha ; ln ty ln t0 a fixed
number, we obtain a scaling formB ø Bsa, x̃, x̃0d in the
rescaled variables̃x ­ xyG2 and x̃0 ­ x0yG2. Our two
time correlations thus exhibit a lnt0y ln t aging regime,
as found numerically in [11] and argued in [3] for spin
glasses in higher dimensions. Interestingly, the resca
distribution has a delta function component atx̃ ­ x̃0, of
weightfsad, suggested in [11], that we have obtained an
lytically [16]. It arises from bonds not decimated betwee
t0 andt, i.e., from particles staying within the same valley
The mean square additional displacement betweent0 and
t can be obtained from our general results. For lar
a ­ ln ty ln t0, kjxstd 2 xst0dj2l ø 61

180 sln td4 independent
of the motion up to timet0. But when lnt and lnt0 are
not too separated, i.e.,a ø 1, the mean square additiona
displacement is onlyøsln t0d4 272

315 sln ty ln t0 2 1d. In this
regime of times the particle is typically trapped in a dee
well, but there is a probability of ordersG 2 G0dyG0 that
one of the barriers of the well at timet0 is less thanG. If
so, the walker will jump to the bottom of a deeper valle
a distance of orderlsG0d , G02 ø G2 away yielding the
above result. Note, however, that there is a subtle lim
implicit here: fixed a . 1 as lnt ! ` implies that no
matter how closea is to one,t ¿ t0. The physics when
t andt0 are much closer together is quite different, in pa
ticular, whenst 2 t0dyt0 ­ Os1d or less. With probability
that approaches one ast0 ! `, in this regime there will be
no jumps to a new (deeper) valley betweent0 andt and the
additional displacement will typically be small. But its
mean square will be dominated by rare configurations
absent in the scaling limit—in which the valley at time
t has two almost degenerate minima. Jumping betwe
such minima within a valley persists even fort ! ` with
t 2 t0 fixed and in this limit the statistics of the resulting
infinitely deep valley potential becomes that of a rando
walk restricted to haveUi 2 Uvalley-min . 0 [5,11,16].

We now turn to problems involving many walkers. Th
Glauber dynamics of the 1D (classical) random field Isin
model corresponds totwo typesof domain wallsA and
B which seeoppositerandom potentials with the forces
fi being simply twice the corresponding random fields o
the dual lattice sites. When the random fields are mu
smaller than the exchangeJ, the long time behavior for
T ø J will be universal. We focus on the evolution start
ing from random initial conditions—e.g., after a quenc
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from a high temperature. At low temperatures, anA wall
quickly falls to the bottom of a valley only to move to the
bottom of a neighboring lower valley when lnt reaches the
barrier height of the intervening bond. Likewise,B walls
move from top to top of “mountains.” When anA and
a B meet, they annihilate preserving the alternatingABAB
sequence. Analytic treatment is difficult because decim
tion generates correlations among theA and B positions.
Performing the RSRG numerically on a large sample [16
we find that the system evolves to a state with oneA at
each minimum and oneB at each maximum of the renor-
malized landscape. We thus make the ansatz that this
the correct form of the asymptotic states. The RG anal
sis is then again simple [14], and the results asymptotical
exact if the ansatz is correct. The equal time spin corr
lations can be obtained from the difference between th
probabilities that an even or an odd number of extrema
the renormalized potential—i.e., domain walls—exist be
tween a given pair of points. For a symmetric distribution
of random fields, we obtain

kS0stdSLstdl ø
X̀

n­2`

48 1 32s2n 1 1d2p2X
s2n 1 1d4p4

e2s2n11d2p2X

with X ­
L
G2 , distances normalized as earlier andG ­

T ln t. At sufficiently long timesG . GJ ­ 4J, we can
no longer ignore creation of pairs of walls. But, at this
point, the energy cannot be lowered further byanyprocess.
Thus if the renormalization is stopped atGJ , in the small
field, the lowT scaling limit the configuration of the walls
corresponds, up to negligible thermal fluctuations, to th
equilibrium state. The above equation should then giv
the mean equilibrium spin correlation function with length
measured in units of the Imry-Ma length above which th
random fields dominate the exchange.

Since 1D Ising spin glasses in a field are equivalent via
gauge transformation to random field ferromagnets, we c
also obtain results for such a system. If a large magne
field is quickly reduced to beøJ but nonzero, the domain
wall dynamics will be like that for the ferromagnet with
domain walls initially at every extremum of the potential
The decay of the magnetization for log times up toGJ is
given by the difference between the probabilities that a sp
has flipped an even or an odd number of times. We obta
kSistdl , lstd2l with l ­ 1

2 . Note that this value ofl
saturates the lower bound ofdy2 in contrast to the pure
1D Ising case which saturates the upper bound ofl ­ d
[3]. For the symmetric random-field Ising model (RFIM)
one similarly finds thatkSistdSist0dl , flst0dylstdg

1
2 .

We next study “persistence” properties. One must no
carefully distinguish between theeffective dynamics(i.e.,
the walker jumping between valley bottoms) and thereal
dynamics. The probabilityNstd that asingle walkerhas
nevercrossed its starting pointxs0d ­ x0 between0 and
t can be found by placing an absorbing boundary a
x0 and using methods similar to the calculation of th
end point magnetization in the RTFIC [13]. We find
3541
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Nstd , lstd2u1 at large times withu1 ­ 1
2 (cf. u1 ­ 1 in

the pure case). A related quantity,Mstd, is the fraction
of starting points,x0, for which the thermally averaged
position kxstd j xs0d ­ x0l never crossesx0 up to time
t. While in a single “run” in a given environment the
walker typically crosses its starting point many times whil
trapped in a valley, averaging over many runs in the sam
environment yields akxstdl which crossesx0 exactly once
each time the bond on whichx0 lies is decimated since
this causes its valley bottom to crossx0. At long times,
the probabilityMstd thus reflects the effective dynamics
in particular, the probability that the bond on whichx0
lies has never been decimated before timet yielding
Mstd , lstd2u1 with u1 ­ s3 2

p
5 dy4. Indeed, in the

biased case,Mstd is like the spontaneous magnetizatio
in the RTFIC, i.e.,Mstd , jdjb for small d with b ­
s3 2

p
5 dy2 [13].

More generally, in the effective dynamics, the probabi
ity of exactly n crossings of the origin up to timet scales
as lnsln td in the unbiased case. The rescaled variab
g ­ ny lnsln td has a multifractal distribution Probsgd ,
lstd2u1sgd:

u1sgd ­
g
2

lnf2gss gdg 1
3
4

2
ss gd

2
(4)

with ss gd ­ g 1

q
g2 1

5
4 . Since u1s 1

3 d ­ 0, g ­ 1
3

with probability 1 at large times. For a given walker,
Jstd ; 1

t

Rt
0 xstd dt will typically behave like kxstdl.

We conjecture that the probability ofn ­ g lnsln td sign
changes ofJ up to time t decays with the same
exponentu1sgd for g # 1

3 . For largerg, the behavior is
dominated by rare valleys with almost degenerate minim
on opposite sides of the origin which yield extra sig
changes inJstd.

The persistence properties of the RFIM can similar
be analyzed. The probabilityPstd , lstd2u that a given
spin at x ­ 0 has never flipped up to timet is equal to
the probability that neither the nearest domain wall on on
side nor the nearest (opposite type) domain wall on t
other side has crossedx ­ 0. Assuming the nature of
the asymptotic state is as described earlier, we findu ­
2u1 ­ 1 (cf. u ­ 3

4 in the pure case [17]). In contrast, the
decay of the probability that an initialdomainsurvives up
to timet is Sstd , lstd2c with c ­ s3 2

p
5 dy4 ­ 0.191

(cf. c ­ 0.252 in the pure case [18]).
Finally, one can study a broad class of reaction diffu

sion (RD) where all particles diffuse in thesameunbiased
energy landscape and react or annihilate upon meeting,
example, identical particlesA which react asA 1 A ! A
with probability 1 2 r or annihilateA 1 A ! [ with
probabilityr. The fraction of the valleys with no particle
in them tends top[, the stationary probability for the reac-
tion process upon merging two valleys. Generalizing th
absorbing boundary method we obtain that, very genera
the probability thatx ­ 0 has not been crossed byanypar-
ticle up tot decays with the exponentu ­ 1 2 p[, in our
example,usrd ­ 1ys1 1 rd. The corresponding exponen
3542
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usrd associated with the thermally averaged particle traje
tories is the solution of the hypergeometric equation [16

uUsss 2 rys1 1 rd, 2u, 1ddd ­ Usss 2 rys1 1 rd, 2u 1 1, 1ddd .

Remarkably, thisusrd is very close numerically to half
the exact pure system result [17]12 upuresrd ­ 2

1
8 1

2
p2 farccoss r21

p
2 sr11d dg

2.
To conclude, we have applied a RSRG method to 1

random walks in the presence of static random forces a
obtained asymptotically exact results for coarsening d
namics, diffusion reaction models, and aging phenome
surprisingly by simpler means than for the correspondi
pure models. Extensions and details are given in [16].
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