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We present a simple and direct proof that the exchange-correlation hole, and therefore the exchange-
correlation energy, in a polarized insulator is not determined by the bulk density alone. It is
uniquely characterized by the density and the macroscopic electric polarization of the dielectric
medium. [S0031-9007(97)04962-4]

PACS numbers: 71.15.Mb, 71.10.—w, 77.84.-s

In a notable paper in 1964 Hohenberg and Kohn [1] esfied in a mannenot described solely by the density in the
tablished the basic principle of density functional theorybulk region of the crystaleven though the hole around
(DFT): any property of an interacting time-reversal invari- an electron in the bulk is localized to the bulk region. We
ant many-particle system is uniquely determined as a funcshow that the hole is determined only if the bulk macro-
tional of its ground state densityy(r). The proof rests scopic electric polarization is specified in addition to the
upon the demonstration that a giveg(r) is consistent bulk density. This can be interpreted as the “polarization”
with only oneexternal scalar potential.x;(r) (except for of the x-c hole [6,8], providing the physical mechanism
an arbitrary constant), which determines the entire Hamilleading to the generalized form of the KS equations re-
tonian since kinetic and particle-interactiovi,(,) terms  quired to have an in-principle-exact description of polar-
are known from the fundamental constantsn,, ande. ized extended matter [4,8].

Together with the Kohn-Sham (KS) [2] ansatz that the in- In a dielectric with a macroscopic electric fidid,, ., the
teracting ground state density can be represented by noenergy can be expressed in terms of the polarization [11].
interacting fermions in an effective local potential, this hasln the case of a macroscopic region of a periodic crystal
provided the foundation for much of the current theoreti-of volume(}, external effects can be incorporated [6,8] by
cal calculations in atomic, nuclear, and condensed mattéerms of the formg = m, = —e = 1l ina.u.)

physics [3].

In the past DFT has often been applied uncritically to  Eext = —QEnac © Pnac + f dr vex(r)n(r), (1)
condensed matter, assuming implicitly that the properties Q
of bulk matter in the thermodynamic limit are functionals where the field couples to the macroscopic polarization
only of the density in the bulk. However, the Hohenberg-P,,,., and the second term is explicitly restricted to only
Kohn (HK) proofs are only for the entire density (includ- the periodic part of the external potentiak(r) coupled
ing the surface), and they provide no guarantee that the the electronic (number) densiiyr), which is periodic.
functionals of the density are well defined in the thermo-The key point for our purposes is thBt,.. is not directly
dynamic limit. In particular, the use of Born—von Kar- determined by the density 1. Although variations in the
man (BvK) boundary conditions may introduce additionalpolarization density field are related/iér) by V - P(r) =
considerations not included in their original analysis. Al-+n(r), its average valud®,,. can be found only as a
though it is well known that the long-range Coulomb termschange from a reference polarizati®j,,., in terms of
must be treated carefully and are not absolutely convergemin integrated polarization current that flotvsough the
in the thermodynamic limit, it has been implicitly assumedvolume () [12]. This result forP,,. is a consequence of
that the key quantity describing many-body effects in thehe BvK boundary conditions used to describe the extended
KS approach, the exchange-correlation (x-c) endtgy  system [13]; it is not needed in finite systems and was not
is an intrinsic functional of the bulk density. Recently, considered in the original analysis of HK who, implicitly,
however, Gonze, Ghosez, and Godby (GGG) [4] have arassumed open (vanishing) boundary conditions. Thus, the
gued that in an insulatdt,. must also be a function of the bulk densityn(r) and changes in polarizatiofP,,,. =
macroscopic (average) electric polarization in the limit ofP,,. — P2 are independent experimentally measurable
an infinite system. This has led to much controversy andjuantities. Furthermore, each is uniquely determined by
proposals concerning the nature of exchange and correl#he bulk ground state wave function, witdP,,,. given by
tion [5—8] and the KS functional [9,10] in insulators. its Berry’s geometric phase [13—15].

In this Letter we provide a simple direct demonstration The case of zero macroscopic fieB,,,. = 0, is of
that the x-c hole in a polarized insulating crystal is modi-special interest because it can be considered the standard
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reference state of the insulator: then its total energy is nahe relative coordinate:, so thatr + u is also limited
explicitly dependent upoR,,.. [8], and the original analy- to the periodic region. This applies to a crystal in an
sis of HK is sufficient to conclude that all bulk properties electric field, where the (metastable) ground state wave
must befunctionalsonly of the bulk density:(r); in par-  function is invariant to lattice translations even though the
ticular, this includes the ground state spontaneous polatdamiltonian is not. In this case, however, we note that
ization P?_ .. On the other hand, iE,. is not zero, the other averages of the x-c hole, such as the simple average
same reasoning requires that all physical quantities mustver position, [ dr n,.(r,r + u), are not symmetric.
be functions of6P,,. as well as functionals of the bulk Now let us consider the case of an insulator in an electric
density. Therefore, the intrinsic description of a dielectricfield (or, as we will see, the case of a spontaneously
material in the presence of an electric field requires geneipolarized insulator). In order to establish the desired result,
alization of the HK theorems [8]. it is sufficient to consider the noninteracting case where
In the KS approachE,. is defined to be the difference the exchange (x) hole can be determined exactly. This
between the internal energy of the interacting many-bodys an approach often used in DFT [3] and arguments that
system and that of a noninteracting system of electrons ¢he X energy,E,, should depend on polarization were
the same density(r). The generalization for a polarized given in Ref. [7]. It then follows from the fact thaf,.
system requires that the noninteracting system also h&&n be expressed as the coupling constant averaged form,
the same zero-field polarizatid?,. and changeSP ;. for which the noninteracting x hole is one limit, that the
in the presence of a field. As shown in Ref. [&],. is Same conclusions must apply to the exact x-c hole. We
related to the interactiniy-particle wave function? by a consider a one-dimensional (1D) insulating crystal with

generalized constrained Levy formulation, potential energy (x) = Vo(x) + V.(x), where Vy(x) is
periodic in the crystal lattice constaat and V;(x) is

an additional long wavelength potential with periodicity
L = Ma, M > 1. In order to mimic a constant electric
field nearx = 0 we have chosel, (x) = Vb[g sin(x) —
3% sin(3x) + 63—0 sin(5x%)], with ¥ = 27 x/L, which is a
symmetric form thatisc x + O (x”). Figure 1 shows the
potential energy/ (x) and the change in densityn(x) =
en(x) — n(x)y,=o, in the region around = 0. Although
the potential clearly has a linear component, the density is
very nearly periodic. In the middle panel is also shown
the change in the periodic density generated by a potential
V1it(x) which has periodicityz chosen to reproduce the
density of the central part of the supercell. Since the
curves are essentially indistinguishable, this illustrates
the point made by GGG that the same periodic density can
be generated by two potentials differing by more than a
constant.
Consider the density-weighted average x hole around an

electron in the periodic region around= 0 of the super-
where (n,.(u)) is the density-weighted average of the cell. We define this hole to b@i”(u)) and the change
x-c hole. Equivalently,E,. can be written in terms of from the zero applied field hole to b&(n"(x)), which
the coupling constant averaged (Symmetric) pair correis readily expressed in terms of the eigenstates of the su-
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whereTy,q is the kinetic energy of independent fermions
andEy is the Coulomb Hartree energy [8]. This may also
be expressed in terms of the Coulomb interaction betwe
the electron density at poimtand the density at + u of
the x-c holen,.(r,r + u) defined by a coupling constant
integration [3] over all values of the interactionfrom

A = 0 to its full strengtha = 1,
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lation function g* through the relatiom,.(r,r + u) =
[odA[g*(e,r + u) — 1]n(r + u).

percell. We have verified thaA(nfﬁ(u)} does not de-
pend upon the unit cell chosen for the average in a region

The energ\E,./N can be interpreted as the electrostaticaround the origin where the electric field is effectively con-

interaction between an electron of chargd and the

stant. Also, the lowest order change in the hole must be

charge distribution-(n,.(u)), the total charge of which is quadratic in the field strength since the zero-field system
+1, as required by a sum rule. Thiis, is determined has a center of inversion symmetry, and we have plotted
by the shapeof (n,.(u)). The shape is also restricted in Fig. 1 the change per unit fiehuared. The result is

by other considerations; e.g., it is straightforward to showcompared with the corresponding change for the system
that the density-weighted average®f(r,r + u)overthe with the same density and potentidli‘(x), which is de-
entire volume of any finite systef must be symmetricin fined to beA(an(u)}. It is apparent from the figure that
u, i.e., (ny.(0)) = (n,.(—u)). This follows from the fact  A(n'"(x))is more extended that(n® (u)). Since the two
that correlations among electrons are symmetric in particl@oles are different, we have established that the density is
exchanges. In addition, it can be shown that averages ovenot sufficient to determine the x hole, and using the rea-
r in a cell of a periodic region of a material also lead tosoning given above we conclude ttiat is not determined

a symmetric{n,.(u)) as long as the hole is localized in solely by the bulk periodic density.
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the same answer: the dipole moment per unit length of
each isolated unit. The x hole is also localized in one
cell, so that all properties are determined by the density in
each cell. In general, however, an insulating crystal is not
a sum of isolated units, and there is an explicit dependence
uponP,,.. due to transfer of electrons and delocalization
of the x hole between cells.

There are other interesting conclusions which follow

A ) ' Ia ’ from the analysis of the periodic system in the presence
n(:v ] — ] of an electric field, e.g., the independent-particle kinetic
0.002 energyTinq is also a function of the polarization [8]. The

generalized KS functional can be written [8]
0.000
E[n;Pmac] = Eexi[n;Pmac] + Tinaln; Prac]
—0.002 + EH[”] + Exc[n;Pmac], (4)
, : : | where the first term is given in Eq. (1). The variational
Alng) n_ AnD) | principle requires thatr be stationary with respect to
[Emacl”| A(n®) both n(r) and P,.., and in terms of the lattice-periodic
"""" N single-particle orbitalgh; of the KS approach, the Euler-
4r 1 Lagrange equations become [8]
1 . .
° 7”’\7\} N7 [_E(V + ik)® + Vegr(r) + iEegy - Vki|¢i,k(r)
> . ¥ ¥ ‘ = 8i,k(r)¢i,k(r)-
—-0.06 —0.03 0.00 0.03 0.06
5)
z/L

HereVes(r) = vex(r) + 8(Eg + E..)/8n(r) is an ordi-
FIG. 1. Results (in a.u.) for a model of a nonpolar insulatornary local potential an@.;s = Epac — &aExc/apmac is
}’;'Ht‘i;rgn'g‘r’;iszszzr‘% g?ggi?%nl& (f) ez'ec_tr{fﬂsc')- 5(221)? /2)0' an effective electric field. Accordingly, the resulting gen-
V, = 1/4, andV, = V,/5, with a = 5ay [ao 2 ﬁz/(meez)]_’ erallz_ed KS equations are formally. the same as the usual
We show the central 8 cells in a supercell of length- 80a.  density-onlyones except that there is a term involving the
(L = 40a gives essentially identical results.) Top panel: derivative of the periodic orbitals with respect to the wave

T T

V(x); the average slope &y, = 27V,/L. Middle panel: vectork (wherek € [—Z;Z]in 1D). It must be men-

. . . a’ a
(S:uh;grgcgn'”aﬁge?;r‘iﬂed]%?esétﬁ’;gé; gg’a)isan’égéﬁgglg)‘ thL%WGrtioned that this additional term is a nontrivial extension;
panel: C’hange in the density-weighted average x hole divide(TJhe variations withk must be properly incorporated to get

by [Ema. J* for two different potentials which give the same pe- @ gauge-invariant result [8]. _ _
riodic density. The term 9E,./dPn.c = —QE,. in the generalized

KS equations can be identified with an “x-c electric field”
[4,8] in analogy to the actual electric field term. It must
It is straightforward to prove that the hole is determinedbe emphasized, however, that this is not a true electric
by the bulk densityand the macroscopic polarization. field; it acts only on electrons and not on other charges;
This follows from the same reasoning as the original HKit may be longitudinal or transverse and is not related to
arguments except that now the external terms in the energgny density by a Poisson-like equation. Since the changes
[Eq. (1)] involve both the bulk n(r) and P... In our are quadratic inE,,. and thus also irP,,., it follows
present example, we have calculated the polarization in thiaat in the case of a symmetric crys@l,. « E,. for
two cases to show explicitly that they are different. Thesmall E,,.. Thus for zero field the system is described
average poIarizatiorPl(TgC = 3.44 X 1073 in cells near by the usualdensity-onlyKS equations, buE,. affects
the origin of the supercell can be found from the densitythe dielectric properties. We do not attempt to estimate
in the supercellusing dP(x)/dx = +n(x), whereas the the size of the effect since the present 1D model does not
polarizationP?) = 2.11 X 1073 of the system with the fix the full 3D form of the x hole needed to calculdfg.
fitted periodic potential can be found from the Berry’'s If one considers a system with lower symmetry, in gen-
phase expressions [14,15]. To our knowledge, this is theral the ground state polarizati®f,. is nonzero, and there
first explicit demonstration of the polarization dependencds no symmetry reason fdE,. to vanish. Our calcula-
of exchange, and therefore of the x-c energy. tions also provide a microscopic basis for such a field.
It is instructive to consider the Clausius-Mossotti limit If we consider a 1D example in which the crystal po-
of localized, nonoverlapping wave functions in each celltential is non-mirror-symmetric, the shape of the x hole
Then the two different ways of calculatir@,,. lead to  changes linearly with the fielll,,,.. An example of the
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Alng ' ' ' This leads to a generalized KS approach needed for all
materials with nonzero polarization, in which there is an
effective “x-c electric field’E,, that can be represented
as a nonlocal operator. Our central result is that the x-c
hole itself is modified in a fundamental way in a polarized
-0.04 | A medium. This was explicitly demonstrated for the x hole in
U o A ) a noninteracting system, and it follows from well-known
- ’ expressions involving a coupling constant integration [3]
—0-%8; 03 —0.01 0.00 001 003 that the same conclusions apply to the x-c endtgyin
a:/L the interacting system. Our conclusions have no effect
upon work done within approximations such as local
FIG. 2. Same as the lower panel in Fig. 1, but for a polardensity and generalized gradient; instead, this work shows
insulator with V,(x) = —V,[cos2mx/a) — § sindmx/a)], that a complete description of dielectrics is outside the
V., =1/4, and V, = V,/20, plotted per unit fieldE.,. framework of such approximations.
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E,. # 0, even forE,,,. = 0. Note that the sign of the
change is relevant, and the positive direction gy, in
Fig. 2 is chosen to be in the same directiorPds.. The
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