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Exchange-Correlation Hole in Polarized Insulators: Implications for the Microscopic
Functional Theory of Dielectrics
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We present a simple and direct proof that the exchange-correlation hole, and therefore the exchange
correlation energy, in a polarized insulator is not determined by the bulk density alone. It is
uniquely characterized by the density and the macroscopic electric polarization of the dielectric
medium. [S0031-9007(97)04962-4]
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In a notable paper in 1964 Hohenberg and Kohn [1]
tablished the basic principle of density functional theo
(DFT): any property of an interacting time-reversal inva
ant many-particle system is uniquely determined as a fu
tional of its ground state densityn0srd. The proof rests
upon the demonstration that a givenn0srd is consistent
with only oneexternal scalar potentialyextsrd (except for
an arbitrary constant), which determines the entire Ham
tonian since kinetic and particle-interaction (Ve2e) terms
are known from the fundamental constantsh̄, me, ande.
Together with the Kohn-Sham (KS) [2] ansatz that the
teracting ground state density can be represented by
interacting fermions in an effective local potential, this h
provided the foundation for much of the current theore
cal calculations in atomic, nuclear, and condensed ma
physics [3].

In the past DFT has often been applied uncritically
condensed matter, assuming implicitly that the proper
of bulk matter in the thermodynamic limit are functiona
only of the density in the bulk. However, the Hohenbe
Kohn (HK) proofs are only for the entire density (includ
ing the surface), and they provide no guarantee that
functionals of the density are well defined in the therm
dynamic limit. In particular, the use of Born–von Ka
man (BvK) boundary conditions may introduce addition
considerations not included in their original analysis. A
though it is well known that the long-range Coulomb term
must be treated carefully and are not absolutely converg
in the thermodynamic limit, it has been implicitly assum
that the key quantity describing many-body effects in
KS approach, the exchange-correlation (x-c) energyExc,
is an intrinsic functional of the bulk density. Recentl
however, Gonze, Ghosez, and Godby (GGG) [4] have
gued that in an insulatorExc must also be a function of th
macroscopic (average) electric polarization in the limit
an infinite system. This has led to much controversy a
proposals concerning the nature of exchange and cor
tion [5–8] and the KS functional [9,10] in insulators.

In this Letter we provide a simple direct demonstrati
that the x-c hole in a polarized insulating crystal is mo
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fied in a mannernot described solely by the density in th
bulk region of the crystal,even though the hole around
an electron in the bulk is localized to the bulk region. W
show that the hole is determined only if the bulk macr
scopic electric polarization is specified in addition to th
bulk density. This can be interpreted as the “polarizatio
of the x-c hole [6,8], providing the physical mechanis
leading to the generalized form of the KS equations r
quired to have an in-principle-exact description of pola
ized extended matter [4,8].

In a dielectric with a macroscopic electric fieldEmac, the
energy can be expressed in terms of the polarization [1
In the case of a macroscopic region of a periodic crys
of volumeV, external effects can be incorporated [6,8] b
terms of the form (̄h ­ me ­ 2e ­ 1 in a.u.)

Eext ­ 2VEmac ? Pmac 1
Z

V
dr yextsrdnsrd , (1)

where the field couples to the macroscopic polarizati
Pmac, and the second term is explicitly restricted to on
the periodic part of the external potentialyextsrd coupled
to the electronic (number) densitynsrd, which is periodic.
The key point for our purposes is thatPmac is not directly
determined by the density inV. Although variations in the
polarization density field are related tonsrd by = ? Psrd ­
1nsrd, its average valuePmac can be found only as a
change from a reference polarizationP0

mac, in terms of
an integrated polarization current that flowsthrough the
volumeV [12]. This result forPmac is a consequence of
the BvK boundary conditions used to describe the extend
system [13]; it is not needed in finite systems and was n
considered in the original analysis of HK who, implicitly
assumed open (vanishing) boundary conditions. Thus,
bulk densitynsrd and changes in polarizationdPmac ­
Pmac 2 P0

mac are independent experimentally measurab
quantities. Furthermore, each is uniquely determined
thebulk ground state wave function, withdPmac given by
its Berry’s geometric phase [13–15].

The case of zero macroscopic field,Emac ­ 0, is of
special interest because it can be considered the stan
© 1998 The American Physical Society 353
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reference state of the insulator: then its total energy is
explicitly dependent uponPmac [8], and the original analy-
sis of HK is sufficient to conclude that all bulk propertie
must befunctionalsonly of the bulk densitynsrd; in par-
ticular, this includes the ground state spontaneous po
ization P0

mac. On the other hand, ifEmac is not zero, the
same reasoning requires that all physical quantities m
be functions ofdPmac as well as functionals of the bulk
density. Therefore, the intrinsic description of a dielect
material in the presence of an electric field requires gen
alization of the HK theorems [8].

In the KS approach,Exc is defined to be the difference
between the internal energy of the interacting many-bo
system and that of a noninteracting system of electron
the same densitynsrd. The generalization for a polarize
system requires that the noninteracting system also
the same zero-field polarizationP0

mac and changedPmac
in the presence of a field. As shown in Ref. [8],Exc is
related to the interactingN-particle wave functionC by a
generalized constrained Levy formulation,

Excfn; Pmacg ­ min
C!nsrd,Pmac

kCj 2
1
2

NX
i­1

=2
i 1 Ve2ejCl

2 Tindfn; Pmacg 2 EH fng , (2)

whereTind is the kinetic energy of independent fermion
andEH is the Coulomb Hartree energy [8]. This may al
be expressed in terms of the Coulomb interaction betw
the electron density at pointr and the density atr 1 u of
the x-c holenxcsr, r 1 ud defined by a coupling constan
integration [3] over all values of the interactionl from
l ­ 0 to its full strengthl ­ 1,

Exc ­
1
2

Z
V

dr nsrd
Z

V
du

1
juj

nxcsr, r 1 ud

­
N
2

Z
V

du
1

juj
knxcsudl , (3)

where knxcsudl is the density-weighted average of th
x-c hole. Equivalently,Exc can be written in terms of
the coupling constant averaged (symmetric) pair cor
lation function gl through the relationnxcsr, r 1 ud ­R1

0 dl fglsr, r 1 ud 2 1gnsr 1 ud.
The energyExcyN can be interpreted as the electrosta

interaction between an electron of charge21 and the
charge distribution2knxcsudl, the total charge of which is
11, as required by a sum rule. ThusExc is determined
by the shapeof knxcsudl. The shape is also restricte
by other considerations; e.g., it is straightforward to sh
that the density-weighted average ofnxcsr, r 1 ud over the
entire volume of any finite systemV must be symmetric in
u, i.e., knxcsudl ­ knxcs2udl. This follows from the fact
that correlations among electrons are symmetric in part
exchanges. In addition, it can be shown that averages o
r in a cell of a periodic region of a material also lead
a symmetricknxcsudl as long as the hole is localized i
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the relative coordinateu, so thatr 1 u is also limited
to the periodic region. This applies to a crystal in a
electric field, where the (metastable) ground state wa
function is invariant to lattice translations even though t
Hamiltonian is not. In this case, however, we note th
other averages of the x-c hole, such as the simple aver
over position,

R
V dr nxcsr, r 1 ud, are not symmetric.

Now let us consider the case of an insulator in an elec
field (or, as we will see, the case of a spontaneou
polarized insulator). In order to establish the desired res
it is sufficient to consider the noninteracting case whe
the exchange (x) hole can be determined exactly. T
is an approach often used in DFT [3] and arguments t
the x energy,Ex, should depend on polarization wer
given in Ref. [7]. It then follows from the fact thatExc
can be expressed as the coupling constant averaged f
for which the noninteracting x hole is one limit, that th
same conclusions must apply to the exact x-c hole. W
consider a one-dimensional (1D) insulating crystal w
potential energyV sxd ­ V0sxd 1 VLsxd, whereV0sxd is
periodic in the crystal lattice constanta, and VLsxd is
an additional long wavelength potential with periodici
L ­ Ma, M ¿ 1. In order to mimic a constant electric
field nearx ­ 0 we have chosenVLsxd ­ Vbf 75

64 sinsx̃d 2
25

384 sins3x̃d 1
3

640 sins5x̃dg, with x̃ ; 2pxyL, which is a
symmetric form that is~ x 1 O sx7d. Figure 1 shows the
potential energyV sxd and the change in density,Dnsxd ­
nsxd 2 nsxdVb­0, in the region aroundx ­ 0. Although
the potential clearly has a linear component, the densit
very nearly periodic. In the middle panel is also show
the change in the periodic density generated by a poten
V fitsxd which has periodicitya chosen to reproduce the
density of the central part of the supercell. Since t
curves are essentially indistinguishable, this illustra
the point made by GGG that the same periodic density
be generated by two potentials differing by more than
constant.

Consider the density-weighted average x hole around
electron in the periodic region aroundx ­ 0 of the super-
cell. We define this hole to bekns1d

x sudl and the change
from the zero applied field hole to beDkns1d

x sudl, which
is readily expressed in terms of the eigenstates of the
percell. We have verified thatDkns1d

x sudl does not de-
pend upon the unit cell chosen for the average in a reg
around the origin where the electric field is effectively co
stant. Also, the lowest order change in the hole must
quadratic in the field strength since the zero-field syst
has a center of inversion symmetry, and we have plot
in Fig. 1 the change per unit fieldsquared. The result is
compared with the corresponding change for the syst
with the same density and potentialV fitsxd, which is de-
fined to beDkns2d

x sudl. It is apparent from the figure tha
Dkns1d

x sudl is more extended thanDkns2d
x sudl. Since the two

holes are different, we have established that the densit
not sufficient to determine the x hole, and using the re
soning given above we conclude thatExc is not determined
solely by the bulk periodic density.
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FIG. 1. Results (in a.u.) for a model of a nonpolar insula
with the lowest band occupied, i.e., 2 electronsycell. The po-
tential energy (see text) is given byV0sxd ­ 2Va coss2pxyad,
Va ­ 1y4, and Vb ­ Vay5, with a ­ 5a0 [a0 ­ h̄2ysmee2d].
We show the central 8 cells in a supercell of lengthL ­ 80a.
(L ­ 40a gives essentially identical results.) Top pane
V sxd; the average slope isEmac ­ 2pVbyL. Middle panel:
Change in electron densityDnsxd ­ nsxd 2 nsxdVb ­0 in the
supercell, and in the fitted system (indistinguishable). Low
panel: Change in the density-weighted average x hole divi
by fEmacg2 for two different potentials which give the same p
riodic density.

It is straightforward to prove that the hole is determin
by the bulk densityand the macroscopic polarization
This follows from the same reasoning as the original H
arguments except that now the external terms in the ene
[Eq. (1)] involve both the bulk nsrd and Pmac. In our
present example, we have calculated the polarization in
two cases to show explicitly that they are different. T
average polarizationPs1d

mac ­ 3.44 3 1023 in cells near
the origin of the supercell can be found from the dens
in the supercellusing dPsxdydx ­ 1nsxd, whereas the
polarizationPs2d

mac ­ 2.11 3 1023 of the system with the
fitted periodic potential can be found from the Berry
phase expressions [14,15]. To our knowledge, this is
first explicit demonstration of the polarization dependen
of exchange, and therefore of the x-c energy.

It is instructive to consider the Clausius-Mossotti lim
of localized, nonoverlapping wave functions in each ce
Then the two different ways of calculatingPmac lead to
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the same answer: the dipole moment per unit length
each isolated unit. The x hole is also localized in o
cell, so that all properties are determined by the density
each cell. In general, however, an insulating crystal is
a sum of isolated units, and there is an explicit depende
uponPmac due to transfer of electrons and delocalizati
of the x hole between cells.

There are other interesting conclusions which follo
from the analysis of the periodic system in the presen
of an electric field, e.g., the independent-particle kine
energyTind is also a function of the polarization [8]. Th
generalized KS functional can be written [8]

Efn; Pmacg ­ Eextfn; Pmacg 1 Tindfn; Pmacg
1 EH fng 1 Excfn; Pmacg , (4)

where the first term is given in Eq. (1). The variation
principle requires thatE be stationary with respect to
both nsrd and Pmac, and in terms of the lattice-periodi
single-particle orbitalsfi,k of the KS approach, the Euler
Lagrange equations become [8]∑

2
1
2

s= 1 ikd2 1 Veffsrd 1 iEeff ? =k

∏
fi,ksrd

­ ´i,ksrdfi,ksrd .
(5)

HereVeffsrd ­ yextsrd 1 dsEH 1 Excdydnsrd is an ordi-
nary local potential andEeff ­ Emac 2

1
V ≠Excy≠Pmac is

an effective electric field. Accordingly, the resulting ge
eralized KS equations are formally the same as the us
density-onlyones except that there is a term involving th
derivative of the periodic orbitals with respect to the wa
vector k (wherek [ f2 p

a ; p

a g in 1D). It must be men-
tioned that this additional term is a nontrivial extensio
the variations withk must be properly incorporated to ge
a gauge-invariant result [8].

The term ≠Excy≠Pmac ­ 2VExc in the generalized
KS equations can be identified with an “x-c electric field
[4,8] in analogy to the actual electric field term. It mu
be emphasized, however, that this is not a true elec
field; it acts only on electrons and not on other charg
it may be longitudinal or transverse and is not related
any density by a Poisson-like equation. Since the chan
are quadratic inEmac and thus also inPmac, it follows
that in the case of a symmetric crystalExc ~ Emac for
small Emac. Thus for zero field the system is describe
by the usualdensity-onlyKS equations, butExc affects
the dielectric properties. We do not attempt to estim
the size of the effect since the present 1D model does
fix the full 3D form of the x hole needed to calculateEx .

If one considers a system with lower symmetry, in ge
eral the ground state polarizationP0

mac is nonzero, and there
is no symmetry reason forExc to vanish. Our calcula-
tions also provide a microscopic basis for such a fie
If we consider a 1D example in which the crystal p
tential is non-mirror-symmetric, the shape of the x ho
changes linearly with the fieldEmac. An example of the
355
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FIG. 2. Same as the lower panel in Fig. 1, but for a pol
insulator with V0sxd ­ 2Vafcoss2pxyad 2

1
4 sins4pxyadg,

Va ­ 1y4, and Vb ­ Vay20, plotted per unit field Emac.
The spontaneous polarization isP0

mac ­ 1.321 3 1022,
while the changes aredPs1d

mac ­ 0.86 3 1023, and dPs2d
mac ­

0.53 3 1023.

change in the hole per unit field is shown in Fig. 2. Sin
Pmac varies linearly withEmac, it follows immediately that
Exc fi 0, even forEmac ­ 0. Note that the sign of the
change is relevant, and the positive direction forEmac in
Fig. 2 is chosen to be in the same direction asP0

mac. The
existence of a spontaneousExc was discussed in a recen
paper by GGG [9], who described the counterintuitive co
sequences if one attempts to incorporate it into the origi
density-only KS formulation. Vanderbilt [10] went on to
find simple examples where straightforward application
the usual KS approach leads to “ultra-nonlocal depende
upon the charge density.” In contrast, we have shown t
the generalized KS framework provides a simple, direct d
scription in terms of the dependence of the x-c hole up
the polarization as well as density.

It is interesting to note that the present theory of p
larized insulators is formally analogous to the well-know
case of spin density functionals, in which a spin-polariz
system is described by KS equations with a spin-depend
effective potential even if there is no such magnetic-fiel
like terms in the original HK system. A general KS formu
lation involving properties other than the density has be
developed by Jansen [16], who showed that such a the
must in general involve operators in the effective Ham
tonian which couple to the desired additional variable(
Jansen’s analysis leads to equations similar to our Eq.
in which the effective field in principle can be defined i
terms of the exact many-body wave functions.

In conclusion, we have provided a simple proof th
in an insulating crystal, the dielectric properties cann
be described solely in terms of the periodic bulk densi
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This leads to a generalized KS approach needed for
materials with nonzero polarization, in which there is a
effective “x-c electric field”Exc that can be represented
as a nonlocal operator. Our central result is that the x
hole itself is modified in a fundamental way in a polarize
medium. This was explicitly demonstrated for the x hole i
a noninteracting system, and it follows from well-known
expressions involving a coupling constant integration [3
that the same conclusions apply to the x-c energyExc in
the interacting system. Our conclusions have no effe
upon work done within approximations such as loca
density and generalized gradient; instead, this work sho
that a complete description of dielectrics is outside th
framework of such approximations.
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