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This paper examines the consequences of the interaction between temporal period doubling and
spatial pattern formation. We propose a simple discrete time, spatially continuous system, where the
discrete time dynamics incorporates period doubling and the spatial operator imposes patterning at a
preferred length scale. We find that this model displays a variety of bifurcations between different
spatiotemporal states, and these bifurcations are generic in that they do not depend on the details of the
model. The results from our simple model bear remarkable similarities with recent experiments on a
vertically vibrated granular layer. [S0031-9007(98)05842-6]

PACS numbers: 05.45.+b, 46.10.+z, 47.54.+r, 81.05.Rm

In this paper we examine the consequences of thbas been to model the dynamics of the vibrated granular
interaction between temporal period doubling and spatidlayer using heuristic or hydrodynamics-type equations [8].
pattern formation. Our study was motivated originally Because of the current lack of physical understanding
by experiments [1-3] in which the authors observed theof dynamics of granular media [5], and the possibility that
formation of a variety of two-dimensional patterns in athere exist no local equations describing granular flow
vertically vibrated thin granular layer [4]. These patterns[6], it seems that one reasonable approach to study this
are the analog of Faraday waves in vibrated fluids. In thgghenomenon is to formulate a simple model incorporating
experiments in [1-3], the granular layer is on a horizontalwhat one expects are the essential qualitative features of
plate with an upper free surface and the plate is verticallfhe phenomena observed. To the extent that the model
vibrated. Varying the amplitude and the frequenty is free of physics specific to the experiment, we can re-
of the sinusoidal vibration leads to transitions betweergard the experimentally observed features reproduced by
the various patterned states. For example, in Ref. [1the model as universal. This approach would enable one
holding f, fixed and increasing the oscillation amplitude, to identify the key features that lead to the observed ex-
the following sequence of states was observed: a uniforrperimental behavior, and it will explain why models with
flat state oscillating afy; a stripe pattern oscillating at different assumptions on the underlying physics can yield
fo/2 (i.e., the period of the pattern oscillation is doubleresults in qualitative agreement with the experiments.
the vibrational period); a hexagonal pattern, alsg@®; In [1], the authors argue that the various patterns
two flat domains separated by a “kink” with each domainthey observe are produced by the interaction between
oscillating at f,/2 but with each in one of the two a temporal period doubling sequence and an instability
possible temporaf,/2 phases of oscillation; competing that produces standing waves on the surface of the
square and stripe patterns Af/4 (i.e., a further period layer. These are the two essential features we choose to
doubling has occurred)f,/4 hexagonal patterns; and, incorporate into our model, viz. temporal period doubling
at higher driving, patterns disordered in space and timeand patterning at a preferred spatial scale. Our model is
[See Figs. 1(a)-1(f) of Ref. [1].] In Refs. [2] and [3], as follows. We consider a scalar fiefgl(x) at discrete
additional phenomena are reported, the most interestinigteger valued timeg which we think of as representing
of which is the presence of localized, solitary structureghe height of the granular layer at positispnwherex is a
oscillating atf,/2, which the authors catiscillons continuous two-dimensional spatial variable. To advance

As the authors remark in [3], these experiments provides,(x) forward one time period, we first apply a one-
a challenge to theory. Unlike in a fluid flow, where the dimensional map/ to &, at each point in space,
equations of hydrodynamics provide an adequate descrip- ,
tion of the pattern formation, there exist no corresponding &,(x) = M(én(x),1), (1)

equations describing the flow of granular materials [5,6]wherer is a parameter of the chosen map function. We
The only direct, first-principle, approach to studying thegha)| pe particularly interested in varyimghrough period
dynamics of granular materials with many interacting Pargoublings of the maps. Next, we augment this nonlinear
ticles has been molecular-dynamics-type numerical simugjscrete time dynamics with a linear spatial operafbr

lations. Such molecular dynamics simulations of sphereghich couples the dynamics of nearkyocations,
on avibrating plate reproduce the experimentally observed

phenomena [7]. Another useful approach to this problem Ei1(x) = L£(x)]. 2
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The map in Eq. (4) is similar to the logistic map but it
has the advantage that orbits cannot run away to infinity.
All of the period doublings in this map are supercritical.
The form of the growth rate/(k) = log| £ (k)| in Eq. (5)

is a simple choice for an even function that is zero at
k = 0, has a peak at = ko, and is negative for large
k. The presence of the factaf(k) allows f to change
sign with k, and its form in Eq. (6) is a simple (rather
arbitrary) choice for a function that is even in and
changes sign as we change The factor¢ introduces

a second length scale in our model [9] and the model
has two dimensionless parametersand k./ko, which,

we numerically find, roughly play roles analogous to the
dimensionless acceleratidhand the frequency, of the
drive in the experiment. In order to kegjtky) > 0, we

will take k. > ko. As will become clear from the theory,
the important bifurcation phenomena are independent of
the specific choices in (4)—(6).

We emphasize that we view Egs. (1)—(6) as a min-
imalist model and that several obvious generalizations
immediately suggest themselves [e.g., compfex (3),

a two-dimensional (or higher) map replacing the one-
— ~ dimensional map (1), etc.]. Our point is that even this
FIG. 1. Extended patterns obtained numerically in our modelSimple representation is rich enough to display many of
(@) Period-2 stripes ar = 1.9, (k./ko)> = 5. (b) Period-2 the experimentally observed effects and that certain of
squares at = 1.9, (k./ko)> = 1.5. (c) Period-2 hexagons at these effects can be regarded as physics independent and

r = 2.05, (k. /ko)*> = 2.6. (d) Period-2 flat state with a kink at ; ; ; ; ; _
r =24, (k./ko)*> = 5 (the kink is the border region between glr;rl]\éeirrs]'?elr?crtsystems in which patterning and period dou

the high ¢ and the low¢ areas). (e) Period-4 stripes at= : .
2.7, (k. /ko)*> = 5.0. (f) Disorder atr = 3.2, (k./k¢)*> = 5. Figures 1(a)-1(f) show numerical results from our

model asr and k. are changed. These pictures are
Letting £,(k) denote the spatial Fourier transform of qualitatively similar to those in Ref. [1]. We regard as

£,(x) and settingZ (k) = f(k), we have particularly significant the fact that, in our model, as we
" ’ increaser, the bifurcation sequence is a period-1 flat state
E.01(k) = f(k)E;(k), (3)  bifurcating to give a period-2 pattern which then becomes

a period-2 flat state and, eventually, a period-4 pattern.

If we imagine that the patterns on the surface of therpq with an increase of the parameter, the period-2 and
vibrated layer are a superposition of standing waves, thgering-4 patterns are separated by a period-2 flat state
quantity logl f(k)| is the growth rate for the amplitude This pasic sequence, also observed in the experiment,

of the standing wave with wave vectdk between g niversal in that it does not depend on the details of
two coII|S|ons_ with the plaf[e. Assuming isotropy, We {ne model. In particular, it is present even with(k)
henceforth writef as a function ofk = |k|. We assume removed, i.e.f (k) = exgy(k)].

that f(k) is real and we incorporate spatial patterning at

1 X The separation of the patterned period-2 and patterned
a preferred scalé, = by taking| f(k)| to have a peak at

) @t period-4 states by a period-2 homogeneous state can be
k= ko, | f(ko)l > 1, after which| f(k)| decreases with nqerstood as a result of the following elementary stabil-
increasingk, becoming small| / (k)| < 1] at largek. ity analysis. For a given value of, let the mapM (&, r)

For most of the numerical results in this paper, we Usg,4ye 3 stable periog-periodic orbité,, &, ..., £,. Then,

the map M(&,,r) = ép+1 = &1 The stability index of the peri-
_ (e 12 odic orbit is given byA,(r) = N(&1)N(&,)---N(&,) with
M(g,r) = rexd—(¢ = 1°/2], () N(&) = oM (&, r)/ag.pThe orbit bleing étable imlr)JIies that
and we choosg (k) = ¢ (k) exdy(k)], where [A,(r)] < 1.
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We now consider the stability of the sequence ofexpansion to obtain finite amplitude stripe, square, and
spatially homogeneous statés(x) = &; to small per- hexagon solutions in the nonlinear regime away from the
turbations, so that,(x) = &, + §&én(x). Equation (1) onset. With this approach, we can determine the patterns
yields 8&,.,(x) = N(£,)8&n(x).  Equation (2) yields selected away from onset, and we will report these results
8&,.1(k) = N(&)f(k)6&,(k). After p iterations, we in a future publication [10].
have BEHI,(k) = A () [f(k)]P8&,(k). The instability Figure 3(a) shows the approximate locations in the two
of a k = ko pattern results for|A,(r)[ f(ko)]?| > 1.  parameter spade, (k./ko)] of the various spatiotemporal
Therefore, the periogr- spatially homogeneous behaviors numerically exhibited by our model. The phases
states are stable to spatially varying perturbations iin the figure correspond to states that evolve from starting
[A,(r)[ f(ko)JP| < 1, are unstable to a periga-spatially  at a small initial perturbation about a homogeneous state.
varying state ifA,(r)[ f(ko)]? > 1, and are unstable to a (If, on the other hand, we follow large amplitude states
period2p pattern ifA,(r)[ f(ko)]? < —1. by slow parameter change, then we find that some of the

Figure 2(a) is a bifurcation diagram for a generic maptransitions that are nonhysteretic in the experiment show
M(&,r) that undergoes period doubling and Fig. 2(b)substantial hysteresis in the model.) We note that, if we
is the stability index for attracting periodic orbits (or crudely identify » with the experimental dimensionless
fixed points). Atr = r,, the period-1 orbit of the map acceleratiod” andk./ky with the experimental frequency
is superstable so that;(r,) = 0. As we increaser, fy, then there is striking qualitative agreement between

at r = r., Ai(r.) = —1 and the mapM undergoes a the phase diagram obtained numerically from our model,
period doubling. On further increasing the period-2 Fig. 3(a), and the experimental phase diagram, Fig. 3(b).
orbit becomes superstable at= r, so thatA,(r.) = 0. The bifurcations for the map in (4) are all supercriti-

Becausef (ko) > 1, it is clear that there exists g with  cal. The mapM(£,r) = —(ré + £3)exp(—£2?/2) has a
ro < rp <r. such thatA,(r,)f (ko) = —1. Therefore,
the period-1 homogeneous state becomes unstable to a

period-2 pattern at- = r,. Also, there exists arny 30 ;
with r. < ry < r, such thatA(ry)f%(ko) = 1. At this (@ Disorder ooo00
point, the period-2 homogeneous state becomes stable. T TEEOOO00es
On further increasing, there exists a parameter value 9 5
with r; > r, such that\,(r,)f?(ko) = —1. At this value .5 |
of r, the period-2 homogeneous state becomes unstable to ,
a period—4 pattern. Period 2 Flat State
The elementary stability considerations above give us
the values of the parameterat which there are bifur- \ Period 2 Hoxagons -
cations between flat states and patterned states. These %[  peiodo _ ©
considerations are strictly valid only close to the onset of Squares j Sonoa?
the pattern formation. We have used a truncated modal o % o
Porod 1 Fatstate gl Pered?
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FIG. 2. (a) Schematic bifurcation diagram near a periodFIG. 3. (a) Phase diagram showing the various stable patterns
doubling. (b) The stability index(r) for the stable periodic seen in numerical simulations with the model Egs. (1)—(6). (b)
(fixed) points. Experimental phase diagram from Refs. [1,3].
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subcritical period doubling from period 1. With this map discrete time provides the simplest possible description of
used in place of Eqg. (4), we see period-2 localized state'emporal period doubling, while our choice of continuous
in the regime where the period-1 flat state is stable. Thesgpace allows spatial patterns unconstrained by an imposed
structures are similar to the oscillons seen in the experigrid [14]. Further results from this model will be reported
ments [2,3]. Figure 4(a) shows two oscillons in oppositein Ref. [10].
temporal phases and Fig. 4(b) shows a bound state of sev-We thank Greg Huber, Heinrich Jaeger, Paul Umban-
eral close oscillons. (We note that Tsimring and Aran-howar, and Harry Swinney for useful discussions. The
son [8] also obtain oscillons, and their model also has avork of S.C.V. was supported by NSF DMR 9415604
subcritical period doubling. It thus appears that subcriti-and that of E. O. was supported by the Office of Naval
cality may be the key to the oscillon phenomenon.) TheResearch (Physics).
oscillons that we find numerically in our model are sta-
ble in the parameter range of the hysteretic transition from
the period-1 flat state to the period-2 squares, as in the
experiments. [1] F. Melo, P.B. Umbanhowar, and H.L. Swinney, Phys.
We now offer some further comments on the meaning _ Rev. Lett.75, 3838 (1995). _
of universality for our model: First, we note that by sepa- [2] I(DL()BﬁdgrrSggghggg?r(’lgéel\)ﬂelo’ and H.L. Swinney, Nature
rating the temporal dynamics [Eqg. (1)] and the spatial cou- . , -
pling [EqQ. (2)], our model has a special structure that is [3] P.B. Umbanhowar, F. Melo, and H.L. Swinney, "Peri-

. . . - - odic, Aperiodic and Transient Patterns in Vibrated Granu-
not, in general, present in physical situations. However, lar Layers” (to be published).

the individual qualitative spatiotemporal bifurcations We 14 For other experiments exhibiting phenomena in vertically
find are generic in that they persist [10] under changes that ~ viprated granular layers, see the following: T. Metcalf,
“mix” the temporal and spatial dynamics. This genericity J.B. Knight, and H.M. Jaeger, Physica (Amsterdam)
implies that these bifurcations may be physically observ-  236A, 202 (1997); F. Melo, P.B. Umbanhowar, and H.L.
able in systems other than vibrated granular layers [10].  Swinney, Phys. Rev. Lett72, 172 (1994); H.K. Pak
As a second point, we note that a designation of a phe- and R.P. Behringer, Phys. Rev. Le®tl, 1832 (1993);
nomenon as “generic” or “universal” does not imply that ~ C. Larouche, S. Douady, and S. Fauve, J. Phys. (France)
it always occurs [e.qg., for a smooth mafp(x, r) a single gg ggg (éggi))? M. Faraday, Philos. Trans. R. Soc. London
period doubling does not necessarily guarantee the occur- ’ X .

rence of a full period doubling cascade]. For example, in [5] Eh';/ls ggegggss(.ll'\;ég)agel, and R.P. Befringer, Rev. Mod.
the case of_ Faraday waves on a vertically _V|brated fluid [6] L.P. Kadanoff, “Built Upon Sand: Theoretical Ideas
layer, a period doubled homogeneous state is ruled out by * |hspired by the Flow of Granular materials” (to be
incompressibility. Thus, for such a system the bifurcation published).

at r = rq cannot occur. (Similarly, different choices of [7] C. Bizonet al., Phys. Rev. Lett80, 57 (1998).

M and £ in (1) and (2) may produce phase diagrams that [8] L.S. Tsimring and I. S. Aranson, Phys. Rev. L&, 213
differ somewhat from Fig. 3.) (1997); T. Shinbrot, Nature (Londor889 574 (1997);

In conclusion, we remark that the spirit of our model is E. Cerda, F. Melo, and S. Rica, Phys. Rev. L&,
similar to that of other generic models of spatiotemporal ~ 4570 (1997); D. Rothman (to be published); J. Eggers and
dynamics [11], and may be regarded as lying between _ H- Riecke (private communication).
continuous time/continuous space models (e.g., the Swift[% R- Lifshitz and D.M. Petrich, Phys. Rev. Le9, 1261
Hohenberg and the complex Ginzburg-Landau equations) (1997). The authors modify the Swift-Hohenberg equation

. . by introducing a second length scale, and this leads to
and coupled map lattice models [12,13]. Our choice of patterns besides stripes.

[10] S.C. Venkataramani and E. Ott (to be published). Among
other things, in this longer paper, we discuss specific
) candidate systems besides vibrated granular layers, where
the generic bifurcation phenomena found in our model
may be present.
[11] M.C. Cross and P.C. Hohenberg, Rev. Mod. PH5.
854 (1993).
[12] See, e.g., K. Kaneko, Cha@s 279 (1992). This issue of
Chaos focuses on the subject of coupled map lattices.
[13] Another in-between case is provided by coupled ordinary
differential equations on a spatial lattice, e.g., D.K.
Umberger, C. Grebogi, E. Ott, and B. Afreyan, Phys. Rev.

FIG. 4. Localized states obtained using the map with sub- A 39, 4835 (1989).

critical bifurcations. (a) Two oscillons out of phage =  [14] In numerical solutions of (1) and (2) a spatial grid is used,
0.65, (k./ko)> = 1.7]. (b) A bound state with coordination but the spacing between the grid points is small compared
number 3[r = 0.55, (k./ko)*> = 1.7]. to the characteristic scalg .
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