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This paper examines the consequences of the interaction between temporal period doubling
spatial pattern formation. We propose a simple discrete time, spatially continuous system, where
discrete time dynamics incorporates period doubling and the spatial operator imposes patterning
preferred length scale. We find that this model displays a variety of bifurcations between differ
spatiotemporal states, and these bifurcations are generic in that they do not depend on the details
model. The results from our simple model bear remarkable similarities with recent experiments o
vertically vibrated granular layer. [S0031-9007(98)05842-6]
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In this paper we examine the consequences of t
interaction between temporal period doubling and spat
pattern formation. Our study was motivated originally
by experiments [1–3] in which the authors observed th
formation of a variety of two-dimensional patterns in a
vertically vibrated thin granular layer [4]. These pattern
are the analog of Faraday waves in vibrated fluids. In th
experiments in [1–3], the granular layer is on a horizont
plate with an upper free surface and the plate is vertica
vibrated. Varying the amplitude and the frequencyf0

of the sinusoidal vibration leads to transitions betwee
the various patterned states. For example, in Ref. [1
holding f0 fixed and increasing the oscillation amplitude
the following sequence of states was observed: a unifo
flat state oscillating atf0; a stripe pattern oscillating at
f0y2 (i.e., the period of the pattern oscillation is double
the vibrational period); a hexagonal pattern, also atf0y2;
two flat domains separated by a “kink” with each domai
oscillating at f0y2 but with each in one of the two
possible temporalf0y2 phases of oscillation; competing
square and stripe patterns atf0y4 (i.e., a further period
doubling has occurred);f0y4 hexagonal patterns; and,
at higher driving, patterns disordered in space and tim
[See Figs. 1(a)–1(f) of Ref. [1].] In Refs. [2] and [3],
additional phenomena are reported, the most interesti
of which is the presence of localized, solitary structure
oscillating atf0y2, which the authors calloscillons.

As the authors remark in [3], these experiments provid
a challenge to theory. Unlike in a fluid flow, where the
equations of hydrodynamics provide an adequate descr
tion of the pattern formation, there exist no correspondin
equations describing the flow of granular materials [5,6
The only direct, first-principle, approach to studying th
dynamics of granular materials with many interacting pa
ticles has been molecular-dynamics-type numerical sim
lations. Such molecular dynamics simulations of spher
on a vibrating plate reproduce the experimentally observ
phenomena [7]. Another useful approach to this proble
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has been to model the dynamics of the vibrated granu
layer using heuristic or hydrodynamics-type equations [

Because of the current lack of physical understandi
of dynamics of granular media [5], and the possibility th
there exist no local equations describing granular flo
[6], it seems that one reasonable approach to study
phenomenon is to formulate a simple model incorporati
what one expects are the essential qualitative features
the phenomena observed. To the extent that the mo
is free of physics specific to the experiment, we can r
gard the experimentally observed features reproduced
the model as universal. This approach would enable o
to identify the key features that lead to the observed e
perimental behavior, and it will explain why models wit
different assumptions on the underlying physics can yie
results in qualitative agreement with the experiments.

In [1], the authors argue that the various patter
they observe are produced by the interaction betwe
a temporal period doubling sequence and an instabi
that produces standing waves on the surface of
layer. These are the two essential features we choos
incorporate into our model, viz. temporal period doublin
and patterning at a preferred spatial scale. Our mode
as follows. We consider a scalar fieldjnsxd at discrete
integer valued timesn which we think of as representing
the height of the granular layer at positionx, wherex is a
continuous two-dimensional spatial variable. To advan
jnsxd forward one time period, we first apply a one
dimensional mapM to jn at each point in space,

j0
nsxd ­ Msssjnsxd, rddd , (1)

wherer is a parameter of the chosen map function. W
shall be particularly interested in varyingr through period
doublings of the mapM. Next, we augment this nonlinea
discrete time dynamics with a linear spatial operatorL

which couples the dynamics of nearbyx locations,

jn11sxd ­ L fj0
nsxdg . (2)
© 1998 The American Physical Society 3495
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FIG. 1. Extended patterns obtained numerically in our mode
(a) Period-2 stripes atr ­ 1.9, skcyk0d2 ­ 5. (b) Period-2
squares atr ­ 1.9, skcyk0d2 ­ 1.5. (c) Period-2 hexagons at
r ­ 2.05, skcyk0d2 ­ 2.6. (d) Period-2 flat state with a kink at
r ­ 2.4, skcyk0d2 ­ 5 (the kink is the border region between
the highj and the lowj areas). (e) Period-4 stripes atr ­
2.7, skcyk0d2 ­ 5.0. (f) Disorder atr ­ 3.2, skcyk0d2 ­ 5.

Letting jnskd denote the spatial Fourier transform o
jnsxd and settingL skd ­ fskd, we have

jn11skd ­ fskdj0

nskd . (3)

If we imagine that the patterns on the surface of th
vibrated layer are a superposition of standing waves, t
quantity logj fskdj is the growth rate for the amplitude
of the standing wave with wave vectork between
two collisions with the plate. Assuming isotropy, we
henceforth writef as a function ofk ­ jkj. We assume
that fskd is real and we incorporate spatial patterning a
a preferred scalek21

0 by taking j fskdj to have a peak at
k ­ k0, j fsk0dj . 1, after which j fskdj decreases with
increasingk, becoming smallfj fskdj ø 1g at largek.

For most of the numerical results in this paper, we us
the map

Msj, rd ­ r expf2sj 2 1d2y2g , (4)

and we choosefskd ­ fskd expfgskdg, where
3496
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fskd ­ sgnsk2
c 2 k2d . (6)

The map in Eq. (4) is similar to the logistic map but i
has the advantage that orbits cannot run away to infini
All of the period doublings in this map are supercritica
The form of the growth rategskd ­ log j fskdj in Eq. (5)
is a simple choice for an even function that is zero
k ­ 0, has a peak atk ­ k0, and is negative for large
k. The presence of the factorfskd allows f to change
sign with k, and its form in Eq. (6) is a simple (rathe
arbitrary) choice for a function that is even ink and
changes sign as we changek. The factorf introduces
a second length scale in our model [9] and the mod
has two dimensionless parameters,r and kcyk0, which,
we numerically find, roughly play roles analogous to th
dimensionless accelerationG and the frequencyf0 of the
drive in the experiment. In order to keepfsk0d . 0, we
will take kc . k0. As will become clear from the theory,
the important bifurcation phenomena are independent
the specific choices in (4)–(6).

We emphasize that we view Eqs. (1)–(6) as a mi
imalist model and that several obvious generalizatio
immediately suggest themselves [e.g., complexf in (3),
a two-dimensional (or higher) map replacing the on
dimensional map (1), etc.]. Our point is that even th
simple representation is rich enough to display many
the experimentally observed effects and that certain
these effects can be regarded as physics independent
universal for systems in which patterning and period do
bling interact.

Figures 1(a)–1(f) show numerical results from ou
model as r and kc are changed. These pictures ar
qualitatively similar to those in Ref. [1]. We regard a
particularly significant the fact that, in our model, as w
increaser, the bifurcation sequence is a period-1 flat sta
bifurcating to give a period-2 pattern which then becom
a period-2 flat state and, eventually, a period-4 patte
Thus,with an increase of the parameter, the period-2 an
period-4 patterns are separated by a period-2 flat stat.
This basic sequence, also observed in the experime
is universal in that it does not depend on the details
the model. In particular, it is present even withfskd
removed, i.e.,fskd ­ expfgskdg.

The separation of the patterned period-2 and pattern
period-4 states by a period-2 homogeneous state can
understood as a result of the following elementary stab
ity analysis. For a given value ofr , let the mapMsj, rd
have a stable period-p periodic orbitj1, j2, . . . , jp. Then,
Msjp , rd ­ jp11 ­ j1. The stability index of the peri-
odic orbit is given bylpsrd ­ Nsj1dNsj2d · · · Nsjpd with
Nsjd ­ ≠Msj, rdy≠j. The orbit being stable implies tha
jlpsrdj , 1.
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We now consider the stability of the sequence
spatially homogeneous statesjisxd ­ ji to small per-
turbations, so thatjnsxd ­ jn 1 djnsxd. Equation (1)
yields dj

0
n11sxd ­ Nsjnddjnsxd. Equation (2) yields

djn11skd ­ Nsjndfskddjnskd. After p iterations, we
have djn1pskd ­ lpsrd ffskdgpdjnskd. The instability
of a k ­ k0 pattern results forjlpsrd f fsk0dgp j . 1.
Therefore, the period-p spatially homogeneous
states are stable to spatially varying perturbations
jlpsrd f fsk0dgp j , 1, are unstable to a period-p spatially
varying state iflpsrd f fsk0dgp . 1, and are unstable to a
period-2p pattern iflpsrd f fsk0dgp , 21.

Figure 2(a) is a bifurcation diagram for a generic ma
Msj, rd that undergoes period doubling and Fig. 2(b
is the stability index for attracting periodic orbits (o
fixed points). Atr ­ ra, the period-1 orbit of the map
is superstable so thatl1srad ­ 0. As we increaser,
at r ­ rc, l1srcd ­ 21 and the mapM undergoes a
period doubling. On further increasingr, the period-2
orbit becomes superstable atr ­ re so thatl2sred ­ 0.
Becausefsk0d . 1, it is clear that there exists arb with
ra , rb , rc such thatl1srbdfsk0d ­ 21. Therefore,
the period-1 homogeneous state becomes unstable
period-2 pattern atr ­ rb . Also, there exists anrd

with rc , rd , re such thatl2srddf2sk0d ­ 1. At this
point, the period-2 homogeneous state becomes sta
On further increasingr, there exists a parameter valuerf

with rf . re such thatl2sredf2sk0d ­ 21. At this value
of r , the period-2 homogeneous state becomes unstabl
a period-4 pattern.

The elementary stability considerations above give
the values of the parameterr at which there are bifur-
cations between flat states and patterned states. Th
considerations are strictly valid only close to the onset
the pattern formation. We have used a truncated mo

FIG. 2. (a) Schematic bifurcation diagram near a perio
doubling. (b) The stability indexlsrd for the stable periodic
(fixed) points.
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expansion to obtain finite amplitude stripe, square, an
hexagon solutions in the nonlinear regime away from th
onset. With this approach, we can determine the patter
selected away from onset, and we will report these resul
in a future publication [10].

Figure 3(a) shows the approximate locations in the tw
parameter spacefr, skcyk0dg of the various spatiotemporal
behaviors numerically exhibited by our model. The phase
in the figure correspond to states that evolve from startin
at a small initial perturbation about a homogeneous stat
(If, on the other hand, we follow large amplitude states
by slow parameter change, then we find that some of th
transitions that are nonhysteretic in the experiment sho
substantial hysteresis in the model.) We note that, if w
crudely identify r with the experimental dimensionless
accelerationG andkcyk0 with the experimental frequency
f0, then there is striking qualitative agreement betwee
the phase diagram obtained numerically from our mode
Fig. 3(a), and the experimental phase diagram, Fig. 3(b)

The bifurcations for the map in (4) are all supercriti-
cal. The mapMsj, rd ­ 2srj 1 j3d exps2j2y2d has a

FIG. 3. (a) Phase diagram showing the various stable patter
seen in numerical simulations with the model Eqs. (1)–(6). (b
Experimental phase diagram from Refs. [1,3].
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subcritical period doubling from period 1. With this map
used in place of Eq. (4), we see period-2 localized state
in the regime where the period-1 flat state is stable. Thes
structures are similar to the oscillons seen in the exper
ments [2,3]. Figure 4(a) shows two oscillons in opposite
temporal phases and Fig. 4(b) shows a bound state of se
eral close oscillons. (We note that Tsimring and Aran
son [8] also obtain oscillons, and their model also has
subcritical period doubling. It thus appears that subcriti
cality may be the key to the oscillon phenomenon.) Th
oscillons that we find numerically in our model are sta-
ble in the parameter range of the hysteretic transition from
the period-1 flat state to the period-2 squares, as in th
experiments.

We now offer some further comments on the meanin
of universality for our model: First, we note that by sepa
rating the temporal dynamics [Eq. (1)] and the spatial cou
pling [Eq. (2)], our model has a special structure that i
not, in general, present in physical situations. Howeve
the individual qualitative spatiotemporal bifurcations we
find are generic in that they persist [10] under changes th
“mix” the temporal and spatial dynamics. This genericity
implies that these bifurcations may be physically observ
able in systems other than vibrated granular layers [10
As a second point, we note that a designation of a phe
nomenon as “generic” or “universal” does not imply that
it always occurs [e.g., for a smooth mapMsx, rd a single
period doubling does not necessarily guarantee the occu
rence of a full period doubling cascade]. For example, i
the case of Faraday waves on a vertically vibrated flui
layer, a period doubled homogeneous state is ruled out b
incompressibility. Thus, for such a system the bifurcation
at r ­ rd cannot occur. (Similarly, different choices of
M andL in (1) and (2) may produce phase diagrams tha
differ somewhat from Fig. 3.)

In conclusion, we remark that the spirit of our model is
similar to that of other generic models of spatiotempora
dynamics [11], and may be regarded as lying betwee
continuous time/continuous space models (e.g., the Swif
Hohenberg and the complex Ginzburg-Landau equation
and coupled map lattice models [12,13]. Our choice o

FIG. 4. Localized states obtained using the map with sub
critical bifurcations. (a) Two oscillons out of phasefr ­
0.65, skcyk0d2 ­ 1.7g. (b) A bound state with coordination
number 3fr ­ 0.55, skcyk0d2 ­ 1.7g.
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discrete time provides the simplest possible description
temporal period doubling, while our choice of continuous
space allows spatial patterns unconstrained by an impos
grid [14]. Further results from this model will be reported
in Ref. [10].
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