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Nonperturbative Approach to Effective Chiral Lagrangians and Meson Interactions
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We develop a coupled channel unitary approach describing the behavior at higher energies of system
whose low-energy dynamics is given by effectiveOsp2d and Osp4d chiral Lagrangians. Our free
parameters are those of theOsp4d Lagrangian. When applied to the meson-meson interaction, it yields
a remarkable agreement with data up to

p
s . 1.2 GeV, dynamically generating thes, f0, a0, r, and

Kp resonances. Further applications are also proposed. [S0031-9007(98)05895-5]
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The effective chiral Lagrangian formalism has becom
a widespread tool to address the problem of the interact
of Goldstone bosons [1,2]. The most significant examp
is chiral perturbation theorysxPTd [1], which successfully
describes the low-energy behavior of the meson-mes
interaction. To lowest order,Osp2d, the parameters of
the chiral Lagrangian are basically masses and dec
constants. TheOsp4d contains several free parameters
for instance, inxPT, 12 chiral parameters are needed
describe the meson-meson interaction. In the case of
standard model strongly interacting symmetry breakin
sector (SISBS), one needs 13 parameters. The limitatio
of the perturbative chiral approach are obvious, since o
cannot attempt to obtain resonances, and it is constraine
low energies. Therefore, nonperturbative schemes beco
necessary. This is the case when describing the mes
meson interaction up to about 1.2 GeV, where one fin
the s, f0s980d, a0s980d in the scalar sector and the
rs770d, Kps892d, fs1020d in the vector channels. The
same happens if one tries to study the expected resona
spectrum of the SISBS at the CERN Large Hadron Co
lider (LHC).

An attempt to extend the ideas of chiral symmetr
to the nonperturbative regime, constructing a unitaryt
matrix, was done in Ref. [3] using the inverse amplitud
method (IAM) [4]. This approach proved efficient in
reproducing low-energy data and produced poles in t
amplitudes associated with ther and Kp in the vector
channel as well as thes in the scalar channel. It has
also been applied to study the SISBS resonances t
could appear at the LHC [5]. Since only elastic unitarit
was imposed in the IAM, multichannel problems coul
not be addressed. As a consequence, neither thef0 and
a0 resonances nor the inelasticities could be obtaine
A similar problem with coupled channels could als
appear in the SISBS, if the top quark couples strong
to longitudinal gauge bosons.
0031-9007y98y80(16)y3452(4)$15.00
e
ion
le

on

ay
;

to
the
g
ns
ne
d to
me
on-
ds

nce
l-

y

e

he

hat
y
d

d.
o
ly

The treatment of coupled channels has proved to be cr
cial in order to reproduce the basic features of thef0 and
a0 resonances [6]. Another nonperturbative method, u
ing coupled channel Lippmann-Schwinger (LS) equation
was done in Ref. [7], using theOsp2d xPT amplitudes,
T2. A similar work in theK-N system was carried out in
Ref. [8].

The LS equations used in [7] read, in matrix form,

T  T2 1 T2GT , (1)

whereT2 andT are2 3 2 matrices. The channels of the
mesonic scalar sector in that work arepp , KK̄ for isospin
I  0 as well asKK̄ , ph for I  1. In Eq. (1)T2GT is
given by

sT2GT dil  i
Z d4q

s2pd4

T2ijsk, p; qd
q2 2 m2

1j 1 ie

3
Tjlsq; k0, p0d

sP 2 qd2 2 m2
2j 1 ie

, (2)

with k, p the four momentum of the initial mesons and
P  p 1 k. An important point realized in Ref. [7] is
that, if T2sk, p; qd is separated in an on-shell part plus a
residual term, then the latter, when used in the loops o
Eq. (2), does not have to be calculated, since it leads on
to coupling and mass renormalization. This allows th
on-shell factorization ofT2 and T from Eq. (2) reducing
the LS equations to pure algebraic relations:

T  T2 1 T2 ? G ? T . (3)

Thus, we obtain

T  f1 2 T2 ? Gg21 ? T2 , (4)

whereG is a diagonal matrix given by

Gii  i
Z d4q

s2pd4

1

q2 2 m2
1i 1 ie

3
1

sP 2 qd2 2 m2
2i 1 ie

. (5)
© 1998 The American Physical Society
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A cutoff, qmax, in the integral overj $qj in Eq. (5)
was adopted as a regularization method, andqmax was
adjusted to the data. With a value ofqmax  0.9 GeV,
a remarkable agreement was obtained forJ  0, in the
I  0, 1 channels. However, a simple extrapolation of th
model to theJ  1 channel fails to reproduce ther and
Kp resonances, which, however, are nicely reproduced
the scheme of Ref. [3].

It seems clear that there is important dynamics in t
Osp4d chiral Lagrangian, particularly related to vecto
mesons, which cannot be generated by the LS resu
mation. In fact, the resonance saturation hypothesis
assumes that theOsp4d terms are generated through th
exchange of resonances.

We propose here a simple and rather general unita
scheme in coupled channels which combines elements
the works in Refs. [3] and [7] that can now be obtaine
as particular cases. When applied to the meson-me
interaction, this method describes simultaneously all of t
channels and reproduces the resonances below 1.2 Ge

With N coupled channels and for a givensI , Jd,
unitarity imposes (recall thatT  TT )

Im T  TsT p, (6)

wheres is anN-diagonal matrix accounting for the phas
space in each channel. With the normalization of [10] th
we adopt in the following:s  Im G of Eq. (5). Thus,
Eq. (6) can be cast as

Im G  2Im T 21, (7)

which is more conveniently rewritten as

T  fReT 21 2 i Im Gg21

 T2 ? fT2 ? ReT 21 ? T2 2 iT2 ? Im G ? T2g21 ? T2 .
(8)

The next step is to realize that, althoughT is certainly a
poorly convergent function in the chiral expansion (abov
500 MeV for mesons), and particularly close to pole
the function T2 ? T21 ? T2 may converge much faster.
The results we obtain seem to support this conjectu
(Intuitively one can imagine a function such asT ,
tansxd, T2 , x, andT2 ? T 21 ? T2 , x2 cotsxd expanded
aroundx  0. This expansion ofT for values ofx around
py2, where T has a pole, is very poorly convergent
whereasT2 ? T 21 ? T2 converges very fast.)

ExpandingT within the chiral formalism up toOsp4d,
we have

T . T2 1 T4 1 . . . ;

T 21  T21
2 s1 2 T4T21

2 1 . . .d , (9)

whereT4 is the pureOsp4d xPT amplitude. Therefore,

T2 ? ReT21 ? T2 . T2 2 ReT4 1 . . . . (10)

The above derivation is formal, sinceT2 and T may not
be invertible. Indeed, that happens for thesI , Jd  s1, 1d
channel. That is the reason why we writeT as in Eq. (8).
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In that way, we need only the expansion ofT2 ? ReT21 ?

T2, which can be obtained by continuity and, as it can
seen in Eq. (10), is well behaved. Finally, from Eqs. (
and (10), we arrive at

T  T2 ? fT2 2 T4g21 ? T2 . (11)

This, by itself, is an interesting result since, atOsp4d, it is
the coupled channel generalization of the IAM [3]. Apa
from that, this method has other advantages. Indeed
it is well known [11], the IAM with a single channel has
problems around the Adler zeros in the scalar sector. F
instance, Eq. (11) with just one channel yields a doub
zero. The problem is actually more serious since t
expansion ofT 21 in Eqs. (9) and (10) is meaningless
if T2  0 or T2 , T4. However, the expansion ofT21

in Eq. (9) holds as a matrix relation, even if one of th
matrix elements ofT2 vanishes or is smaller than the
corresponding one ofT4. Furthermore, the Adler zeros
appear as single zeros with the coupled channel metho

Nevertheless, Eq. (11) requires the complete evaluat
of the wholeT4 matrix, including loops, which is rather
involved. Indeed, at present, there are onlyOsp4d
calculations of meson-meson scattering forpp and pK
[1,12]. However, inspired in the LS equations, we wi
obtain a good approximation to Eq. (11), without th
completeOsp4d calculation.

Let us then first reinterpret the LS equations discuss
above using Eqs. (8) and (10): It is enough to ta
G as in Eq. (5), with an appropriate cutoff such th
ReT4 . T2 ? ReG ? T2, and we recover Eq. (4). Note
that, in this way, we are accounting for thes-channel
one-loop diagram responsible for the unitarity logarithm
In addition, the freedom in the cutoff allows one t
reproduce the relevant counterterm contribution in t
meson scalar sector, as shown in [7].

However, such approximations cannot hold in a
meson-meson channels, since otherOsp4d counterterms
become essential. Therefore, in the present paper, we
also considering the polynomial coming from theOsp4d
tree level contributions that we denote byT P

4 , and we
write

ReT4 . TP
4 1 T2 ? ReG ? T2 . (12)

The coefficients ofTP
4 are combinations of theOsp4d

chiral parameters (which are usually denotedLi within
xPT andaI or ai in the SISBS).

Note thatTP
4 is not just a vehicle for free parameters

It also ensures that we are considering the most gen
Osp4d polynomial structure compatible with chiral sym
metry and its breaking. Once we have this chiral stru
ture, the cutoff regularization can now be substituted
any other scheme.

In Eq. (12) one is explicitly neglecting the crossed
channel loop contributions. Although these loops d
not yield an imaginary part in thes channel, they do
contribute to the real part. However, in thes channel
3453
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TABLE I. We list the values of thêLi parameters (in units of1023) obtained from the fit of
our method to meson-meson scattering data.

qmax  1.0 GeV L̂1 L̂2 L̂3 L̂4 L̂5 L̂7 2L̂6 1 L̂8

Our fit 0.5 1.0 23.2 20.6 1.7 0.2 0.8
]

FIG. 1. We display the results of our method for the phase shifts ofpp scattering in thesI , Jd  s0, 0d, s1, 1d, ands2, 0d channels,
where thes, f0, andr resonances appear, together with those ofpp ! KK̄, as well as the phase shifts ofpK scattering in the
s3y2, 0d, s1y2, 0d, ands1y2, 1d channels, where we can see the appearance of theKp resonance. The results also include thep2h
mass distribution for thea0 resonance in thesI , Jd  s1, 0d channel fromK2p ! Ss1385dp2h. For reference to the data, see [3
and [7], and references therein.
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these contributions have a smooth dependence on
energy and can be effectively reabsorbed in theLi

coefficients.
Concerning tadpoles, in the equal mass limit, their finit

contributions can be absorbed in the chiral paramete
When considering different masses, it is possible to ad
and subtract a finite tadpolelike term with an “average
mass. The added part is absorbed in the chiral paramet
The part not absorbed is thus of the order of the differen
between physical masses and the average mass, wh
value is such that these contributions are minimized.

Then, using Eqs. (11) and (12) we can write our fina
formula:

T . T2 ? fT2 2 TP
4 2 T2 ? G ? T2g21 ? T2 . (13)

Our purpose now is to illustrate how well the metho
that we have developed works in practice. To that aim
we will use it in a fit to meson-meson data, and we wi
denote the resulting parameters byL̂i (see Table I). The
reasons for changing their name are that, first, as we ha
already commented, part of the effect of crossed-chann
terms and tadpoles will be reabsorbed inL̂i and, second,
that we have chosen a cutoff regularization.

In Fig. 1 we show the results of our approach, repre
sented by phase shifts of thepp ! pp , pp ! KK̄,
andKp ! Kp reactions plus a mass distribution for the
a0 resonance in thesI , Jd  s1, 0d channel. The curves
have been obtained with the fitted parameters given
Table I. The figure shows that thef0, a0, r, andKp reso-
nances are very well reproduced, and the phase sh
agree remarkably well with data from threshold up t
about

p
s . 1.2 GeV, where the influence of multimeson

channels should start to be more relevant. Thes meson,
around 500 MeV and with a large width, as found in [3
and [7] is also reproduced here.

In summary, we have proposed a unitary scheme
coupled channels that allows us to extend the applicabil
range of the chiral Lagrangian formalism. We hav
shown how it can be implemented toOsp4d using
the coefficients of the second order Lagrangian as fr
parameters. When applied to meson-meson interactio
the scheme is remarkably successful and reproduces
different resonances and data up to about 1.2 GeV.

Further applications that we can suggest aregg !

MM [13], form factors, decay of particles with a pair
of mesons in the final state, meson-nucleon interaction
etc. Within the SISBS it can also be very usefu
to study the coupling of longitudinal gauge bosons t
transversal gauge bosons or top quarks. It also see
likely that, with a proper generalization, it could also b
the
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applied to nonrelativistic solid-state systems, as high-Tc

superconductors whose effective Lagrangian formulatio
is also raising a great interest [14]. The potential o
the method to extend the usefulness and advantag
of the effective chiral Lagrangian formalism to regions
otherwise inaccessible is certainly enormous.
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