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Effectiveness of NonperturbativeO(a) Improvement in Lattice QCD
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The ALPHA Collaboration has determined tiga) improved Wilson quark action for lattice spac-
ingsa = 0.1 fm, in the quenched approximation. We extend this result to coarser latticeq).17 fm,
and calculate the hadron spectrum on them. The large range of lattice spacings obtained by combining
our results with earlier ones on finer lattices allows us to present a convincing demonstration of the
efficiency of nonperturbativ®(a) improvement. We find that scaling violations of the hadron masses
studied drop from 30%—40% for the unimproved Wilson action on the coarsest lattice to only 2%—3%.
[S0031-9007(98)05874-8]

PACS numbers: 12.38.Gc

To measure standard model parameters, like Cabibbo- 1 1
Kobayashi-Maskawa (CKM) matrix elements and quarka) [Z(WVM Y aly) - g 4@ ZU-MVF#V:|¢(X)'
masses, and to find signatures of new physics, accurate ~ “ mr 1
knowledge of weak matrix elements between hadronic (1)

states is required. Lattice QCD is the only systematicallyjere V,, and A, are the standard covariant first, respec-
improvable method of obtaining this information. The tjvely, second order lattice derivatives. The new F
high cost of lattice QCD simulations has lead to a renewegsrm involves thes matriceso,, = _%[7’# y,] and a
appreciation of the fact that progress in th|s_f|eld dependgiscretization of the field strength,,,. Inspired by the

to a large extent on the successful use of “improvementioym of its most popular discretization, this term is also
ideas (see the proceedings of the last few lattice fielgnq\wn as the “clover” term, and the coefficieatas the
theory conferences, e.g., [1] for the last one). The reasoggyer coefficient. To eliminat®(a) errors,w has to be

is the foI!owmg: To avoid doublers, th.e W|I§on-type determined as a function of the gauge coupling

quark actions most commonly used in simulations must A great step forward was recently taken by the
break chiral symmetry at some level. On the quantumy) pHA Collaboration [5], which used the chiral Ward
level, at least, this violation will generically occur at identity as an improvement condition to determine the
leading order in the lattice spacing(a). These errors nonperturbative value ob. This was accomplished in
the_refore decrease qnly slowly with thg lattice spacing anghe context of the Schrédinger functional [6], where one
their absolute value is Iarge, as experience has shown. -ﬁﬁhposes fixed boundary conditions on the gauge and
perform accurate and reliable continuum extrapolationgermion fields in the time direction, and can then work
would require the use of very fine lattices, for which 4 zero, or at least small, quark masses. The ALPHA
simulations are very expensive. _ _ Collaboration determined improvement coefficients for
A much better a_lpproag:h [2] is to correct the.dlscrgtlza-lattice spacings of about = 0.1 fm (more precisely,
tion errors of a lattice action by adding hlgher-dlmensmnalﬁ =6/g2 = 6.0 in standard notation).

(irrelevant) operators to the action which reproduce the ef- gince one needs a minimum of three or four reasonably
fects of the UV modes omitted on the lattice. Trying 10 separated lattice spacings to perform accurate and reliable
do so perturbatively did initially not appear to be a sig-continuum  extrapolations, this goal will not easily be
nificant improvement. It was then realized [3] that largeaccomplished, even in the “quenched” approximation
perturbative corrections arise due to lattice-specific “tad-(Where quark loops are ignored, and to which the above
pole” graphs, and can be corrected by a mean-field typgagylts refer), if only lattices of spacirigl fm and less are
method. Nevertheless, as a resummation of certain grapignsidered. We will explicitly see this below. We have
in perturbation theory, this approach can basically only reyherefore attempted to extend the results of the ALPHA
duce quark errors fron®(a) to orderg?a or g*a. This  ¢gllaboration to coarser lattices.

is only a logarithmic suppression comparedQ¢a) and Chiral symmetry restoration aP(a).—Consider QCD
W20U|d still require the inclusion of at leagta (say) and it (at least) two flavors of mass-degenerate quarks. The
a” terms in an honest continuum extrapolation of the disigeq [5] for determining the clover coefficient is that chiral
cretization errors. This leads to large errors and potentlallgymmetry will hold only if its Ward identity is satisfied as
unstable fits. alocal operator equation In Euclidean space this means

~ To eliminate theD(a) errors of spectral quantities there 4t the PCAC relation between the isovector axial current
is only one term that has to be added to the Wilson QCDynq the pseudoscalar density,

action [4]. The gauge action retains the standard plaquette
form, and the quark action (density) becomes (9,A%(x) O) = 2m(P"(x) O), 2)

3448 0031-900798/80(16)/3448(4)$15.00 © 1998 The American Physical Society



VOLUME 80, NUMBER 16 PHYSICAL REVIEW LETTERS 20 ARIL 1998

should hold for all operator®, boundary conditionsy of the lattice. We will not elaborate on these and other
(as long asx is not in the support ofD), and also for choices one makes in the calculationsgfthe details have
volumes that are not necessarily large in physical unitsbeen discussed in the literature [5,7] and the specifics of
More precisely, it should holavith the same masa up  the simulations described here can be found in [8].
to a® errors. This will only be the case for the correct We have to mention, however, one important point. The
value of the clover coefficient. above simulations at different trial values @fshould be
Several issues have to be addressed before this idea cparformed at a fixed value of the quark mass [defined by,
be implemented in practice. First of all, even though heresay,m = mg, (zo) for suitablez,], preferably zero. Itturns
we can ignore the multiplicative renormalization A)L out that in the quenched approximation this is not pos-

andP?, there is an additive correction 1;6; ato(a), sible on coarse lattices: Despite the nonperiodic bound-
o 1 ary conditions one finds in practice that for rouglty=
PP (x) « 1,//(x)753 Tbc,//(x), 6.0 one occasionally hits configurations, known as “ex-

ceptional configurations,” with an accidental (near-) zero

b — 1, b mode, leading to a (near-)divergence of the quark propa-
Au) = )Y uys 27 )+ aca 0, P70 (3) gator. (With periodic boundary conditions configurations
The determination ofv is therefore tied in with that of with near-zero modes at small quark mass exisaforfi-
the axial current improvement coefficienf. Since, in  nite 8 in the quenched approximation; however, their fre-
principle, (2) provides infinitely many conditions, this is quency rapidly decreases at weak coupling.) They can be
not a fundamental difficulty. How to solve it in practice avoided by using a larger quark mass, but the question is to
is discussed in [5,7]. what extent this affects the value®of Fortunately, itturns

Note thatw andc, have anO(a) ambiguity; differ-  out that the mass dependenceupis extremely weak, so
ent improvement conditions will give somewhat differentthat one can reliably determine at larger masses. This is
values forw andca. Instead of assigning a systematic illustrated in Figs. 1 and 2 for coarse lattices (cf. also [8]).
error tow andc4 one should choose a specific, “reason- For use of the nonperturbatively improved action in
able” improvement condition—the difference in observ-later simulations it is advisable to present the results for
ables from this versus some other choice is guaranteed 0 in terms of a smooth function of the gauge coupling.
extrapolate away like(4?) in the continuum limit. Combining the results of the ALPHA Collaboration [9]

For various reasons it is preferable to impose the PCAQvith our measurements f@ = 5.7, 5.85, 6.0, and6.2, we
relation at zero quark mass. Because of zero modes thisid that they can be represented by
not possible with periodic boundary conditions; the quark 5 1 —0.6084 g2 — 0.2015 g* + 0.03075 g°
propagator would diverge. Another reason to abandon @(g”) = 1 — 08743 2
periodic boundary conditions is that to be sensitive to ' &
the value ofw it would be highly advantageous to have (4)

a background field present; it couples directly to thefor 8 =6/g>=5.7. This curve incorporates the one-loop
clover term. perturbative result [10]. It never deviates by more than

The Schrédinger functional provides a natural setting
to implement these goals. By choosing suitable boundary .
conditions at the “top” o = T') and “bottom” , = 0) i -
of the lattice world, one induces a chromoelectric classical 59
background field, and, at least at weak coupling, the quark
operator has no zero modes at vanishing quark mass (the
lowest eigenvalue being of ord&fT).

We must now choose a specific improvement condition 2.1
for . The idea is that by averaging Eq. (2) over spatial
volume, each choice o defines an estimate:o (xo)
of the current quark mass. Requiring tluifference
Am(xp) = mp,(x0) — mo,(x¢) for two specific O; and
0, to vanish for suitablex, provides a nonperturbative
condition to fixw. In practice, one calculates all required
correlation functions in a Monte Carlo simulation for 1.9
several trial values ofw and finds the zero crossing
of Am(xy) (more precisely, one should equate it to its IR T R
small, ordera?® tree-level value). This determines the 0.00 0.05 0.10 0.15
nonperturbativew, with some statistical error, for the am

chosen value Of the gauge cou.pling. . FIG. 1. The nonperturbative clover coefficient as function of
A natural choice of0; and O, is provided byboundary  quark mass and volume f@ = 5.7. We also show our choice
fields [5] associated to the lower and upper boundarie®f them = 0 value.
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FIG. 2. Asin Fig. 1 forB = 5.85.

1.0% from the curve presented in [5] f@ = 6.0. This

mass ratio ofnp/my = 0.7, corresponding roughly to the
strange quark. This also avoids problems with exceptional
configurations, which afflict simulations at smaller masses
on our coarsest lattice. We regard them as an essentially
technical problem of Wilson-type quarks in the quenched
approximation (it does not occur for full QCD or staggered
fermions), orthogonal to the issue of improvement.
Masses were obtained through two-exponential fits of
correlators from one under- and one over-smeared source.
We used 400 configurations, statistically enhanced through
the use of sources constructed by superimposing different
origins with randon¥?; phases [13]. Our results are given
in Table I. We also show data from other groups on finer
lattices, which we interpolated tap/my = 0.7. Since
we cannot do correlated fits of their data, we multiplied
the naive error from interpolating fits with a factor of 1.5.
This gives values close to the actually measured errors for
neighboring mass values. We hope that in the future it will
become customary to quote hadron masses interpolated
to mp/my = 0.7 and perhaps a few other benchmark
values (like 0.6 and 0.5). The results in [14,15] were
obtained using the parametrization @ffrom [5], instead

is illustrated in Fig. 3, where we used the parametrizationys Eq. (4). We estimate that this changes the masses by
of the string tension from [11] to present the clover|ggs than 0.4%, which is negligible compared to the current

coefficient as a function of lattice spacing.

statistical errors. The string tensions were taken from our

Hadron spectrum=—To check how small scaling vio- jnterpolation formula [11], which is based on recent precise
lations of spectral quantities are after nonperturbative immeasurements by us and others. We assign [11] these

provement of the action, we have calculated the hadrogyring tensions a 1% (or smaller) error, that can be added

spectrum using Eq. (4) fo8 =5.7 and5.85. For a scal-

at the end. We find that excellent fits tocanst + a2

ing check it is not necessary to consider light hadrons. To\nsatzare possible, yieldingny //o = 2.351(20) and
avoid the uncertainties of the chiral extrapolation we WiIImN/\/; = 3.466(36).

instead consider hadrons at a pseudoscalar to vector mesonye have also considered joint fits with data for the

| T T ) T T T

X ALPHA

O This work
2.0 —

Vo = 465 MeV

standard quenched Wilson QCD actian & 0). Results
from different groups for seven couplings in the range
B =5.7-6.3 have been conveniently collected in [14]
(errors are treated similarly as above). In a joint fit we
demand that thé\nsatzefor the improved and standard
Wilson data intercept at the same point in the continuum
limit. The results are shown in Table Il and Fig. 4. The
joint fits agree perfectly with fits using only the improved
action data. For the Wilson data it is necessary to have
O(a) and O(a?) terms in theAnsatzto get a reasonable
Q in fits whereB = 5.7 is included. Fitting the Wilson
data alone yields fits that have either ba@sk or large
errors; they are also not very stable under leaving out

TABLE I. Simulation parameters, string tensions [11], and re-
sults for the vector meson and “nucleon” (octet) masses at
mp/my = 0.7 for the nonperturbatively improved action.

a(fm)

0.2

B a/o my/Jo  my/Jo

Volume Neonfes

57 0.3917  16° x32 400  2.427(10) 3.532(17)
5.85 0.2863  16° X 32 400  2.392(16) 3.515(28)

FIG. 3. The measured nonperturbative clover coefficient an$.0* 0.2196 (16,24)3 X 32 200-1000 2.380(17) 3.488(34)

its parametrization fo3 = 5.7 (solid line). The dashed line 6.2 0.1610 243 X 48 300
denotes the curve from [5]. The tree-level tadpole estimat®.2° 0.1610 243 X 48 104
from the plaquette is also shownl). (Using the mean link in

2.319(53) 3.315(93)
2.425(91) 3.55(10)

Landau gauge gives an estimate closer to the nonperturbativiRef. [14].

determination, cf. [12].)
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TABLE Il

Fit parameters and confidence lev@l for joint

small (or large)B points. This illustrates how difficult

and separate fits of the improved and Wilson hadron mask js to perform reliable continuum extrapolations with the
data (atmp/my =0.7) to Anséatzeof the form my/\/o =

Vo + ViaJo + Voa’c (for the vector meson; similarly for

the nucleon).

Improved Wilson
Bmin Vo Vi Vs Vi V, 0
5.7 2.356(20) 0O 0.46(16)—2.2(2) 1.1(5) 0.29
5.7 2.332(17) 0 0.64(14)—-1.82(8) O 0.09
5.85 2.357(34) 0 0.43(52)-2.02) 0 0.26
57 2.351(20) O 0.50(16) 0.74
5.85 2.343(40) 0 0.63(60) 0.55
5.7 2.59(13) —-3.9(10) 4.1(17) 0.27
5.7  2.286(32) —1.6(1) 0 0.05
5.85 2.392(65) -2.1(3) 0 0.12
N() N1 Nz Nl N2

5.7 3.478(35) 0 0.35(28)—-3.1(3) 2.2(6) 0.38
57 3.393(26) 0 0.98(22) —2.1(1) 0 0.01
5.85 3.472(57) 0 0.46(87)—2.6(3) 0 0.56
5.7 3.466(36) 0O 0.44(28) 0.52
585 3.425(69) 0 1.1(10) 0.41
5.7 3.97(22) —6.7(16) 8.2(27) 0.87
5.7  3.312(38) —1.8(1) 0 0.07
5.85  3.58(10) —3.1(5) 0 0.65

X Wilson

1 | | 1 |

O Improved

| | L | [ | | | | L

0.00

0.05
a“o

Wilson action. Figure 4 also demonstrates that continuum
extrapolations using only lattices with = 6.0 (a’c <
0.05 or abouta = 0.1 fm) would be quite expensive.

In conclusion, Fig. 4 is impressive proof for the effec-
tiveness of nonperturbative(a) improvement: The scal-
ing violations at3 = 5.7 are reduced from 41% to 3% for
the vector meson mass, and from 33% to 2% for the “nu-
cleon” mass. Even more important, the scaling in Fig. 4
indicates that)(a) errors really have been eliminated from
the improved action to high precision. We should re-
mark that without the accurate string tension measurements
from [11] it would have been impossible to reach this
conclusion.

An analysis of the above data and some toy examples
shows that it is a factor of 100 or so cheaper to achieve a
1% (say) error in the hadron masses using the improved
instead of the standard Wilson action. Since there is
no fundamental difference in the improvement program
between quenched and full QCD, we expect very large
improvements also in more realistic situations like full
QCD with lighter quark masses.
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