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Effectiveness of NonperturbativeOsssaddd Improvement in Lattice QCD

R. G. Edwards, U. M. Heller, and T. R. Klassen
SCRI, Florida State University, Tallahassee, Florida 32306-4130
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The ALPHA Collaboration has determined theOsad improved Wilson quark action for lattice spac-
ingsa # 0.1 fm, in the quenched approximation. We extend this result to coarser lattices,a # 0.17 fm,
and calculate the hadron spectrum on them. The large range of lattice spacings obtained by com
our results with earlier ones on finer lattices allows us to present a convincing demonstration o
efficiency of nonperturbativeOsad improvement. We find that scaling violations of the hadron mass
studied drop from 30%–40% for the unimproved Wilson action on the coarsest lattice to only 2%–
[S0031-9007(98)05874-8]
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To measure standard model parameters, like Cabib
Kobayashi-Maskawa (CKM) matrix elements and qua
masses, and to find signatures of new physics, accur
knowledge of weak matrix elements between hadron
states is required. Lattice QCD is the only systematica
improvable method of obtaining this information. Th
high cost of lattice QCD simulations has lead to a renew
appreciation of the fact that progress in this field depen
to a large extent on the successful use of “improvemen
ideas (see the proceedings of the last few lattice fie
theory conferences, e.g., [1] for the last one). The reas
is the following: To avoid doublers, the Wilson-type
quark actions most commonly used in simulations mu
break chiral symmetry at some level. On the quantu
level, at least, this violation will generically occur a
leading order in the lattice spacing,Osad. These errors
therefore decrease only slowly with the lattice spacing a
their absolute value is large, as experience has shown.
perform accurate and reliable continuum extrapolatio
would require the use of very fine lattices, for whic
simulations are very expensive.

A much better approach [2] is to correct the discretiz
tion errors of a lattice action by adding higher-dimension
(irrelevant) operators to the action which reproduce the
fects of the UV modes omitted on the lattice. Trying t
do so perturbatively did initially not appear to be a sig
nificant improvement. It was then realized [3] that larg
perturbative corrections arise due to lattice-specific “ta
pole” graphs, and can be corrected by a mean-field ty
method. Nevertheless, as a resummation of certain gra
in perturbation theory, this approach can basically only r
duce quark errors fromOsad to orderg2a or g4a. This
is only a logarithmic suppression compared toOsad and
would still require the inclusion of at leastg4a (say) and
a2 terms in an honest continuum extrapolation of the di
cretization errors. This leads to large errors and potentia
unstable fits.

To eliminate theOsad errors of spectral quantities there
is only one term that has to be added to the Wilson QC
action [4]. The gauge action retains the standard plaque
form, and the quark action (density) becomes
0031-9007y98y80(16)y3448(4)$15.00
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Here =m andDm are the standard covariant first, respec
tively, second order lattice derivatives. The news ? F
term involves thes matricessmn ­ 2

i
2 fgm, gng and a

discretization of the field strengthFmn. Inspired by the
form of its most popular discretization, this term is als
known as the “clover” term, and the coefficientv as the
clover coefficient. To eliminateOsad errors,v has to be
determined as a function of the gauge couplingg.

A great step forward was recently taken by th
ALPHA Collaboration [5], which used the chiral Ward
identity as an improvement condition to determine th
nonperturbative value ofv. This was accomplished in
the context of the Schrödinger functional [6], where on
imposes fixed boundary conditions on the gauge a
fermion fields in the time direction, and can then wor
at zero, or at least small, quark masses. The ALPH
Collaboration determined improvement coefficients fo
lattice spacings of abouta # 0.1 fm (more precisely,
b ; 6yg2 $ 6.0 in standard notation).

Since one needs a minimum of three or four reasonab
separated lattice spacings to perform accurate and relia
continuum extrapolations, this goal will not easily be
accomplished, even in the “quenched” approximatio
(where quark loops are ignored, and to which the abo
results refer), if only lattices of spacing0.1 fm and less are
considered. We will explicitly see this below. We have
therefore attempted to extend the results of the ALPH
Collaboration to coarser lattices.

Chiral symmetry restoration atOsad.—Consider QCD
with (at least) two flavors of mass-degenerate quarks. T
idea [5] for determining the clover coefficient is that chira
symmetry will hold only if its Ward identity is satisfied as
a local operator equation. In Euclidean space this means
that the PCAC relation between the isovector axial curre
and the pseudoscalar density,

k≠mAb
msxd O l ­ 2m kPbsxd O l , (2)
© 1998 The American Physical Society
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should hold for all operatorsO , boundary conditions,x
(as long asx is not in the support ofO ), and also for
volumes that are not necessarily large in physical uni
More precisely, it should holdwith the same massm up
to a2 errors. This will only be the case for the correc
value of the clover coefficient.

Several issues have to be addressed before this idea
be implemented in practice. First of all, even though he
we can ignore the multiplicative renormalization ofAb

m

andPb , there is an additive correction toAb
m at Osad,

Pbsxd ~ csxdg5
1
2

tbcsxd ,

Ab
msxd ~ csxdgmg5

1
2

tbcsxd 1 a cA ≠mPbsxd . (3)

The determination ofv is therefore tied in with that of
the axial current improvement coefficientcA. Since, in
principle, (2) provides infinitely many conditions, this is
not a fundamental difficulty. How to solve it in practice
is discussed in [5,7].

Note thatv and cA have anOsad ambiguity; differ-
ent improvement conditions will give somewhat differen
values forv and cA. Instead of assigning a systemati
error tov andcA one should choose a specific, “reason
able” improvement condition—the difference in observ
ables from this versus some other choice is guaranteed
extrapolate away likeOsa2d in the continuum limit.

For various reasons it is preferable to impose the PCA
relation at zero quark mass. Because of zero modes thi
not possible with periodic boundary conditions; the qua
propagator would diverge. Another reason to aband
periodic boundary conditions is that to be sensitive
the value ofv it would be highly advantageous to have
a background field present; it couples directly to th
clover term.

The Schrödinger functional provides a natural settin
to implement these goals. By choosing suitable bounda
conditions at the “top” (x0 ­ T ) and “bottom” (x0 ­ 0)
of the lattice world, one induces a chromoelectric classic
background field, and, at least at weak coupling, the qua
operator has no zero modes at vanishing quark mass (
lowest eigenvalue being of order1yT ).

We must now choose a specific improvement conditio
for v. The idea is that by averaging Eq. (2) over spati
volume, each choice ofO defines an estimatemO sx0d
of the current quark mass. Requiring thedifference
Dmsx0d ; mO1 sx0d 2 mO2sx0d for two specific O1 and
O2 to vanish for suitablex0, provides a nonperturbative
condition to fixv. In practice, one calculates all required
correlation functions in a Monte Carlo simulation fo
several trial values ofv and finds the zero crossing
of Dmsx0d (more precisely, one should equate it to it
small, ordera2 tree-level value). This determines the
nonperturbativev, with some statistical error, for the
chosen value of the gauge coupling.

A natural choice ofO1 andO2 is provided byboundary
fields [5] associated to the lower and upper boundarie
ts.
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of the lattice. We will not elaborate on these and othe
choices one makes in the calculation ofv; the details have
been discussed in the literature [5,7] and the specifics
the simulations described here can be found in [8].

We have to mention, however, one important point. Th
above simulations at different trial values ofv should be
performed at a fixed value of the quark mass [defined b
say,m ; mO1 sz0d for suitablez0], preferably zero. It turns
out that in the quenched approximation this is not po
sible on coarse lattices: Despite the nonperiodic boun
ary conditions one finds in practice that for roughlyb #

6.0 one occasionally hits configurations, known as “ex
ceptional configurations,” with an accidental (near-) zer
mode, leading to a (near-)divergence of the quark prop
gator. (With periodic boundary conditions configuration
with near-zero modes at small quark mass exist foranyfi-
nite b in the quenched approximation; however, their fre
quency rapidly decreases at weak coupling.) They can
avoided by using a larger quark mass, but the question is
what extent this affects the value ofv. Fortunately, it turns
out that the mass dependence ofv is extremely weak, so
that one can reliably determinev at larger masses. This is
illustrated in Figs. 1 and 2 for coarse lattices (cf. also [8]

For use of the nonperturbatively improved action i
later simulations it is advisable to present the results f
v in terms of a smooth function of the gauge coupling
Combining the results of the ALPHA Collaboration [9]
with our measurements forb ­ 5.7, 5.85, 6.0, and6.2, we
find that they can be represented by

vsg2d ­
1 2 0.6084 g2 2 0.2015 g4 1 0.03075 g6

1 2 0.8743 g2

(4)

for b ; 6yg2 $ 5.7. This curve incorporates the one-loop
perturbative result [10]. It never deviates by more tha

FIG. 1. The nonperturbative clover coefficient as function o
quark mass and volume forb ­ 5.7. We also show our choice
of the m ­ 0 value.
3449



VOLUME 80, NUMBER 16 P H Y S I C A L R E V I E W L E T T E R S 20 APRIL 1998

al
s
lly
d
d

of
ce.
gh
nt

r

d
.
for
ill
ted
k
e

by
nt
ur
e
se

ed

e

e
]
e

m

ve

ut

-
at
FIG. 2. As in Fig. 1 forb ­ 5.85.

1.0% from the curve presented in [5] forb $ 6.0. This
is illustrated in Fig. 3, where we used the parametrizati
of the string tension from [11] to present the clove
coefficient as a function of lattice spacing.

Hadron spectrum.—To check how small scaling vio-
lations of spectral quantities are after nonperturbative im
provement of the action, we have calculated the hadr
spectrum using Eq. (4) forb ­ 5.7 and5.85. For a scal-
ing check it is not necessary to consider light hadrons.
avoid the uncertainties of the chiral extrapolation we w
instead consider hadrons at a pseudoscalar to vector me

FIG. 3. The measured nonperturbative clover coefficient a
its parametrization forb $ 5.7 (solid line). The dashed line
denotes the curve from [5]. The tree-level tadpole estima
from the plaquette is also shown (h). (Using the mean link in
Landau gauge gives an estimate closer to the nonperturba
determination, cf. [12].)
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mass ratio ofmPymV ­ 0.7, corresponding roughly to the
strange quark. This also avoids problems with exception
configurations, which afflict simulations at smaller masse
on our coarsest lattice. We regard them as an essentia
technical problem of Wilson-type quarks in the quenche
approximation (it does not occur for full QCD or staggere
fermions), orthogonal to the issue of improvement.

Masses were obtained through two-exponential fits
correlators from one under- and one over-smeared sour
We used 400 configurations, statistically enhanced throu
the use of sources constructed by superimposing differe
origins with randomZ3 phases [13]. Our results are given
in Table I. We also show data from other groups on fine
lattices, which we interpolated tomPymV ­ 0.7. Since
we cannot do correlated fits of their data, we multiplie
the naive error from interpolating fits with a factor of 1.5
This gives values close to the actually measured errors
neighboring mass values. We hope that in the future it w
become customary to quote hadron masses interpola
to mPymV ­ 0.7 and perhaps a few other benchmar
values (like 0.6 and 0.5). The results in [14,15] wer
obtained using the parametrization ofv from [5], instead
of Eq. (4). We estimate that this changes the masses
less than 0.4%, which is negligible compared to the curre
statistical errors. The string tensions were taken from o
interpolation formula [11], which is based on recent precis
measurements by us and others. We assign [11] the
string tensions a 1% (or smaller) error, that can be add
at the end. We find that excellent fits to aconst 1 a2

Ansatzare possible, yieldingmV y
p

s ­ 2.351s20d and
mN y

p
s ­ 3.466s36d.

We have also considered joint fits with data for th
standard quenched Wilson QCD action (v ­ 0). Results
from different groups for seven couplings in the rang
b ­ 5.7 6.3 have been conveniently collected in [14
(errors are treated similarly as above). In a joint fit w
demand that theAnsätzefor the improved and standard
Wilson data intercept at the same point in the continuu
limit. The results are shown in Table II and Fig. 4. The
joint fits agree perfectly with fits using only the improved
action data. For the Wilson data it is necessary to ha
Osad and Osa2d terms in theAnsatzto get a reasonable
Q in fits whereb ­ 5.7 is included. Fitting the Wilson
data alone yields fits that have either badQ’s or large
errors; they are also not very stable under leaving o

TABLE I. Simulation parameters, string tensions [11], and re
sults for the vector meson and “nucleon” (octet) masses
mPymV ­ 0.7 for the nonperturbatively improved action.

b a
p

s Volume Nconfgs mV y
p

s mN y
p

s

5.7 0.3917 163 3 32 400 2.427(10) 3.532(17)
5.85 0.2863 163 3 32 400 2.392(16) 3.515(28)
6.0a 0.2196 s16, 24d3 3 32 200–1000 2.380(17) 3.488(34)
6.2a 0.1610 243 3 48 300 2.319(53) 3.315(93)
6.2b 0.1610 243 3 48 104 2.425(91) 3.55(10)

aRef. [14].
bRef. [15].
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TABLE II. Fit parameters and confidence levelQ for joint
and separate fits of the improved and Wilson hadron ma
data (at mPymV ­ 0.7) to Ansätzeof the form mV y

p
s ­

V0 1 V1 a
p

s 1 V2 a2s (for the vector meson; similarly for
the nucleon).

Improved Wilson
bmin V0 V1 V2 V1 V2 Q

5.7 2.356(20) 0 0.46(16) 22.2s2d 1.1(5) 0.29

5.7 2.332(17) 0 0.64(14) 21.82s8d 0 0.09

5.85 2.357(34) 0 0.43(52)22.0s2d 0 0.26

5.7 2.351(20) 0 0.50(16) 0.74

5.85 2.343(40) 0 0.63(60) 0.55

5.7 2.59(13) 23.9s10d 4.1(17) 0.27

5.7 2.286(32) 21.6s1d 0 0.05

5.85 2.392(65) 22.1s3d 0 0.12

N0 N1 N2 N1 N2

5.7 3.478(35) 0 0.35(28) 23.1s3d 2.2(6) 0.38

5.7 3.393(26) 0 0.98(22) 22.1s1d 0 0.01

5.85 3.472(57) 0 0.46(87)22.6s3d 0 0.56

5.7 3.466(36) 0 0.44(28) 0.52

5.85 3.425(69) 0 1.1(10) 0.41

5.7 3.97(22) 26.7s16d 8.2(27) 0.87

5.7 3.312(38) 21.8s1d 0 0.07

5.85 3.58(10) 23.1s5d 0 0.65

FIG. 4. The hadron spectrum from Wilson and improve
actions atmPymV ­ 0.7. Also shown are joint fits of both
data sets (the first vector meson, respectively, nucleon fit fro
Table II).
ss

d

m

small (or large)b points. This illustrates how difficult
it is to perform reliable continuum extrapolations with the
Wilson action. Figure 4 also demonstrates that continuu
extrapolations using only lattices withb $ 6.0 (a2s ,

0.05 or abouta # 0.1 fm) would be quite expensive.
In conclusion, Fig. 4 is impressive proof for the effec

tiveness of nonperturbativeOsad improvement: The scal-
ing violations atb ­ 5.7 are reduced from 41% to 3% for
the vector meson mass, and from 33% to 2% for the “n
cleon” mass. Even more important, the scaling in Fig.
indicates thatOsad errors really have been eliminated from
the improved action to high precision. We should re
mark that without the accurate string tension measureme
from [11] it would have been impossible to reach thi
conclusion.

An analysis of the above data and some toy exampl
shows that it is a factor of 100 or so cheaper to achieve
1% (say) error in the hadron masses using the improv
instead of the standard Wilson action. Since there
no fundamental difference in the improvement progra
between quenched and full QCD, we expect very larg
improvements also in more realistic situations like ful
QCD with lighter quark masses.

This work is supported by DOE Grants No. DE-FG05
85ER25000 and No. DE-FG05-96ER40979. The comp
tations in this work were performed on the workstatio
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