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We study a concrete lattice regularization of a U(1) chiral gauge theory. We use Wilson fermions,
and include a Lorentz gauge-fixing term and a gauge-boson mass counterterm. For a reduced versi
of the model, in which the gauge fields are constrained to the trivial orbit, we show that there are no
species doublers, and that the fermion spectrum contains only the desired states in the continuum lim
namely, charged left-handed fermions and neutral right-handed fermions. [S0031-9007(98)05887-6]
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While vectorlike theories like QCD can be formulate
on the lattice in a manifestly gauge-invariant way, this
not the case for chiral gauge theories. The reason for t
is the anomaly, which forces the lattice regularization o
chiral gauge theory to break chiral invariance, so that t
contribution to the anomaly for each fermion species
recovered for smooth gauge fields [1]. For generic latti
gauge fields, though, the breaking is more severe, an
turns out that the coupling of the lattice gauge degrees
freedom to the fermions destroys their chiral nature.

This “problem of rough gauge fields” has been th
central obstruction to the construction of lattice chir
gauge theories to date [2]. It is therefore natural to t
to control the effects of the gauge degrees of freedom
fixing the gauge. It has been proposed to extend the us
perturbative definition of chiral gauge theories, bas
on gauge fixing and Becchi-Rouet-Stora-Tyutin (BRS
invariance, to the lattice [3]. On the lattice, the fermio
action breaks BRST invariance explicitly. The hope
then that a gauge-invariant continuum limit (CL) can b
defined by suitable adjustment of the coefficients of
finite set of counterterms.

The lattice gauge-fixing action must have a unique a
solute minimum when the compact lattice link variable
are set toUmx ­ I, in order to be able to use weak
coupling perturbation theory. Such lattice discretizatio
were given first for a nonlinear gauge [4] and later for th
Lorentz gauge [5]. It was argued that (in both cases
continuous phase transition will occur between two d
ferent phases with broken symmetry. The gauge symm
try, however, should be restoredat the transition, and it
is here that the fermion spectrum is expected to be c
ral. For a U(1) theory (where ghosts are not neede
the existence of this phase transition was demonstra
in Ref. [6]. In this Letter, we address the fermion spe
trum of the U(1) case. (For recent work in two di
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mensions using a different (“interpolation”) approach, se
Ref. [7].)

The model.—The U(1) lattice model we will consider
is defined by the path integral

Z ­
Z

DU Dc Dc e2SsU;c,cd, (1)

S ­
X

x
hLgsxd 1 Lfsxd 1 Lg.f.sxd 1 Lc.t.sxdj , (2)

Lg ­
1
g2

X
mn

h1 2 ReUmnxj , (3)

Lf ­ chDysUdPL 1 ≠yPRjc 2
r
2

chc , (4)

Lg.f. ­ k̃

(X
y

fh2sUdgxy 2 B2
xsUd

)
, k̃ ­

1
2jg2

,

(5)

Lc.t. ­ 2k
X
m

hUmx 1 Uy
mxj , (6)

BxsUd ­ 1
4

X
m

sVmx2m̂ 1 Vmxd2, Vmx ­ Im Umx .

(7)

Umx ­ expsiagAmxd is the lattice link variable (we take
the lattice spacinga ­ 1), Umnx is the plaquette variable,
g is the gauge coupling,r is the Wilson parameter,j is
the gauge-fixing parameter, andPL,R ­

1
2 s1 7 g5d. ≠m

andDmsUd designate the free and covariant antihermitia
nearest-neighbor lattice derivatives, andh andhsUd, re-
spectively, the free and covariant nearest-neighbor latti
Laplacians. We have added a Wilson term to the naiv
fermion Lagrangian to remove the 15 unwanted speci
doublers situated at the corners of the four-dimension
© 1998 The American Physical Society



VOLUME 80, NUMBER 16 P H Y S I C A L R E V I E W L E T T E R S 20 APRIL 1998

n

M
se
ith

-
y
in

n-

e

ly
all
e

rm

s to

of
l

ent
-

ed
t

ist
d
n

Brillouin zone. Equation (5) is the Lorentz gauge-fixing
term introduced in Ref. [5]. We have included a gaug
boson mass counterterm, which is the only counterte
of dimension two, and ignored all dimension four coun
terterms which we believe to be less important [5].
will become clear that a fermion-mass counterterm is n
needed.

We now derive an equivalent form of the path integra
Using the invariance of the measure, we first perfor
a gauge rotation,cLx ! fy

x cLx, Umx ! fy
x Umxfx1m̂.

The Wilson term, gauge-fixing term, and mass counterte
are not gauge invariant and therefore pick up factors off.
After integrating overf (using

R
dfx ­ 1) we find

Z ­
Z

DU Df Dc Dc e2SsU;f;c ,cd, (8)

whereSsU; f; c, cd is again given by Eq. (2) now with

Lf ­ chDyPL 1 ≠yPRjc 2
r
2

hcfhPRc 1 h.c.j ,

(9)

Lg.f. ­ k̃

(
fy

x

X
y

fh2sUdgxyfy 2 B2
xsU; fd

)
, (10)

Lc.t. ­ 2k
X
m

hfy
x Umxfx1m̂ 1 h.c.j . (11)

BxsU; fd is given by Eq. (7) withUmx ! fy
x Umxfx1m̂.

The plaquette termLg and the fermion kinetic term
remain unchanged since they are gauge invariant. T
longitudinal gauge degrees of freedom are now ass
ciated with the group-valued fieldf which couples to
the fermions through the Wilson term. Equation (8
is invariant under the Us1dlocal

L ≠ Us1dglobal
R symmetry

cL ! gLxcLx , cR ! gRcRx, Umx ! gLxUmxg
y
Lx1m̂,

fx ! gLxfxg
y
R. The model is also invariant under a

shift symmetrycR ! cR 1 eR, which implies that the
fermion is massless, and that its right-handed (RH) pa
decouples in the CL [8].

The model without the gauge-fixing term (k̃ ­ 0) is the
Smit-Swift model. Its failure to produce a chiral theory
was demonstrated in areducedversion [2], in whichUmx

is set equal to one in Eq. (8), taking only the dynamic
of the gauge degrees of freedomf into account. At
larger, a phase exists with unbroken Us1dL ≠ Us1dR and
without doublers. The spectrum in this phase, howeve
contains only aneutral[under Us1dL] Dirac fermioncn ­
cR 1 fycL, which will not couple to the gauge fields.

Fermion spectrum.—In this Letter we will address the
following important question: What does the fermion
spectrum look like when we include the gauge-fixin
term? To obtain massless photons in the CL, the coe
cient k of the gauge-boson mass counterterm in Eq. (
has to be tuned to a critical valuekcsk̃d. Henceforth
we will consider again the reduced version of the fu
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model obtained by settingUxm ­ 1 in Eq. (8). In the re-
duced model,k ­ kcsk̃d is a continuous phase transitio
line separating aferromagnetic(FM) phase atk . kc,
and a so-calledferromagnetic directional(FMD) phase
at k , kc [4], where rotational symmetry is broken by
a vector condensate,kVmxl fi 0; cf. Eq. (7). This critical
line exists in the interval̃k . k̃TP . 0 and ends at a tri-
critical point located at̃k ­ k̃TP . To one-loop order we
find kc ­ 0.029 93 1 Os1yk̃d [6]. The Us1dL ≠ Us1dR
symmetry is broken to its diagonal subgroup in the F
and FMD phases, but is restored on the FM-FMD pha
transition line because of infra-red effects associated w
a 1ysp2d2 propagator for thef-field fluctuations [6] (we
showed this by numerically computing the order param
eter kfl very close to the phase transition, finding ver
good agreement with one-loop perturbation theory,
which kfl , jk 2 kcj1ys64p2k̃d for large k̃). This sym-
metry restoration is an essential prerequisite for the co
struction of a chiral gauge theory withunbrokengauge
symmetry in the CL. We note that the FM-FMD phas
transition line is in a different universality class from
the usual Higgs transition line, and is not continuous
connected to the symmetric phase that exists at sm
k̃ and k. For a full account of the phase diagram, se
Ref. [6].

We now introduce the fermion operatorscn
R ­ cR,

c
n
L ­ fycL, c

c
R ­ cL, andc

c
R ­ fcR. The fields with

the superscripts c (charged) and n (neutral) transfo
nontrivially under Us1dL and Us1dR, respectively, both
of which are unbroken onlyat k ­ kcsk̃d. We have
calculated the neutral and charged fermion propagator
one-loop order in perturbation theory in1yk̃ [9]. The
fermion propagators can be written in the form

S
n,c
1-loopspd ­ fS21spd 1 Sn,cspdg21, (12)

whereS21s pd ­
P

mhigm sinpm 1 2r sin2 pm

2 j is the in-
verse tree-level (free fermion) propagator, andSn,cspd
is the one-loop self-energy. A detailed discussion
Sn,cspd can be found in Ref. [9]. Here we list the crucia
properties of the self-energy. (i)Sn,cs0d ­ 0, implying
that no fermion-mass counterterm is needed (consist
with shift symmetry [8]). (ii) The doublers decouple be
cause of the Wilson term in Eq. (12).Sn,cspd is regular
at the 15 corners of the Brillouin zone and small compar
to tree level. (iii) The RH [LH (left-handed)] componen
of Scspd [Snspd] is a nonanalytic function ofp in the
CL. For instance, forScspd we find in the limitk & kc

and at smallp,

Scspd ø 2is32p2k̃d21pyPR logsp2d , (13)

up to contact terms. Hence, nonanalytic terms ex
in the RH (but not in the LH) charged channel, an
Sc

RxRy ­ kcc
Rxc

c
Ryl does not have an isolated pole. I

fact, Sc
RxRy ­ kfxc

n
Rxc

n
Ryfy

y l factorizes asSn
RxRykfxfy

y l
3445
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for large jx 2 yj. Sn
LxLy factorizes in a similar manner,

indicating the absence off-cn
R and fy-cc

L bound states
(in contrast with the Smit-Swift model). Perturbatio
theory thus gives strong evidence that the spectru
contains only LH charged and RH neutral fermions
k ­ kcsk̃d.

It is important to check that this result remains valid be
yond one-loop. To this end, for two momentum choice
p ­ s0, 0, 0, p4d andp ­ sp , 0, 0, p4d, which allow us to
probe the small momentum region as well as the ed
of the Brillouin zone, we have computed the neutral an
charged fermion propagatorsSn,cspd ­ 2ifSn,c

LLspdPL 1

S
n,c
RRspdPRgg4 1 S

n,c
LRspd, in the quenched approximation

All numerical computations were carried out atk̃ ­ 0.2
and r ­ 1 on a 63 3 24 lattice. The scalar field con-
figurations were generated with a five-hit Metropolis a
gorithm and 4000 configurations were skipped betwe
fermionic measurements. We inverted the fermion mat
on 50 scalar field configurations. We used antiperiod
(periodic) boundary conditions in the temporal (spatia

FIG. 1. The modulus of the charged fermion propagat
components (a)Sc

RR and (b)Sc
LL as a function ofp4.
3446
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directions for the fermion fields, and periodic bounda
conditions in all directions for the scalar field.

To demonstrate that the species doublers decou
we show in Fig. 1 the modulus of the charged fermio
propagator components (a)Sc

RRspd and (b) Sc
LLspd as

a function ofp4 for p ­ s0, 0, 0, p4d (crosses) andp ­
sp , 0, 0, p4d (triangles). We chosek ­ 0.05 which is in
the FM phase, very close to the FM-FMD phase transiti
[6]. The graphs show that there is no other pole in t
Brillouin zone besides the one at the origin, and th
that the species doublers decouple. At first glance, Fig
suggests that both propagators have a pole atp ­ 0.
We will argue below that this is true only for the LH
case. The dotted and solid lines represent tree-level
one-loop results, obtained by evaluating the perturbat
formula in Eq. (12) on the same lattice, at the sam
point in the phase diagram. The numerical data ag
well with the one-loop curve. The tree-level result agre
well with the numerical data only in Fig. 1(b), indicatin
that Sc

LL indeed behaves like a free propagator at sm
momenta. Similar graphs were obtained for the neut
propagators.

To figure out which of the four propagators has
pole at p ­ 0 we have plotted in Fig. 2 the ratios
Sc

RRspdySRRspd and Sc
LLspdySLLspd, and in Fig. 3 the

ratios Sn
RRspdySRRspd and Sn

LLspdySLLspd for p ­
s0, 0, 0, p4d as a function ofp4. The ratios marked in
Figs. 2 and 3 by crosses, triangles, and squares w
obtained atk ­ 0.05, 0.3, and 1, which all fall in the
FM phase [6]. Forp4 ! 0, the ratios should approach
line parallel to the abscissa, if the corresponding fermi
propagator has a pole. Figures 2(b) and 3(a) inde
have a tangent with vanishing slope atp4 ­ 0 for all
values of k, and henceSc

LL and Sn
RR have a pole at

p ­ 0. The wave-function renormalization can be rea
off from the intercept atp4 ­ 0. It is equal to one
for c

n
R (because of shift symmetry [8]) and smaller tha

one for c
c
L. The ratios in Figs. 2(a) and 3(b) exhibit

very different behavior. The cut in Eq. (13) manifes
itself in the dip at small momenta, which becomes dee
for k & kc. Dotted and solid lines denote again tre
level and one-loop results, and show that the data for
propagator ratios are in good agreement with the one-lo
curves.

This agreement between perturbation theory and d
in the FM phase (with the small difference likely du
to higher orders) makes us confident that perturbat
theory can be used to extrapolate to the CL at t
FM-FMD transition, with the conclusion that the spe
trum contains LH charged and RH neutral massle
fermions.

In summary, we have shown that the spectrum of t
reduced model consists, in the CL, of free LH charg
and RH neutral fermions, decoupled from the unphysi
f sector. A key element is our use of a gauge-fixed latt
theory which exhibits the continuous phase transiti
described in the discussion of the fermion spectrum.
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FIG. 2. The ratios (a)Sc
RRySRR and (b)Sc

LLySLL as a function
of p4.

should be interesting to study the dependence of the
results on the choice of gauge fixing.

Our conclusions hold for any choice of fermion specie
consistent with the fact that the anomaly vanishes
the absence of a transversal gauge field. Only the L
charged fermions couple to the gauge field when it
turned on again. In that case, the unphysical states w
decouple in the CL only if we choose an anomaly-fre
spectrum.

There are at least three important directions for futu
research: (i) study of the U(1) case with full dynamica
gauge fields. This requires the fermion representation
be anomaly-free. Although it is technically difficult, we
expect no problems of principle. (ii) The extension o
the gauge-fixing approach to the non-Abelian case is n
trivial, simply because it is not known whether the BRS
formulation of gauge theories can be defined consisten
beyond perturbation theory. (iii) A more technical issu
concerns the problem of fermion number violation [10
on which work is in progress.
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FIG. 3. The ratios (a)Sn
RRySRR and (b)Sn

LLySLL as a function
of p4.
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