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Lattice Chiral Fermions Through Gauge Fixing

Wolfgang Bock
Institute of Physics, Humboldt University Berlin, Invalidenstrasse 110, 10115 Berlin, Germany

Maarten F. L. Golterman
Department of Physics, Washington University, St. Louis, Missouri 63130

Yigal Shamir

School of Physics and Astronomy, Beverly and Raymond Sackler Faculty of Exact Sciences, Tel-Aviv University,
Ramat Aviv 69978, Israel
(Received 30 September 1997

We study a concrete lattice regularization of a U(1) chiral gauge theory. We use Wilson fermions,
and include a Lorentz gauge-fixing term and a gauge-boson mass counterterm. For a reduced version
of the model, in which the gauge fields are constrained to the trivial orbit, we show that there are no
species doublers, and that the fermion spectrum contains only the desired states in the continuum limit,
namely, charged left-handed fermions and neutral right-handed fermions. [S0031-9007(98)05887-6]
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While vectorlike theories like QCD can be formulated mensions using a different (“interpolation”) approach, see
on the lattice in a manifestly gauge-invariant way, this isRef. [7].)
not the case for chiral gauge theories. The reason for this The model—The U(1) lattice model we will consider
is the anomaly, which forces the lattice regularization of as defined by the path integral
chiral gauge theory to break chiral invariance, so that the _
contribution to the anomaly for each fermion species is 7 = fDU Dy Dy e‘S(U;‘W), (1)
recovered for smooth gauge fields [1]. For generic lattice
gauge fields, though, the breaking is more severe, and it , _
turns out that the coupling of the lattice gauge degrees of = Z{ﬁg(x) T L) + Lop () + Lo ) ()
freedom to the fermions destroys their chiral nature. |

This “problem of rough gauge fields” has been the L, =— Z{l — ReUg,.}, 3
central obstruction to the construction of lattice chiral 8 uv
gauge theories to date [2]. It is therefore natural to try _ ro—
to control the effects of the gauge degrees of freedom by Le = piUPL + dPrYy — S 9Dy, (4)
fixing the gauge. It has been proposed to extend the usual
perturbative definition of chiral gauge theories, based _ 5 ) _ 1
on gauge fixing and Becchi-Rouet-Stora-Tyutin (BRST) Loy =& Z[D (U)]y — B (U)y, k= 262"
invariance, to the lattice [3]. On the lattice, the fermion Y
action breaks BRST invariance explicitly. The hope is (5)
then that a gauge-invariant continuum limit (CL) can be 1‘
defined by suitable adjustment of the coefficients of a Lo = _KZ{U,U«X + U, (6)
finite set of counterterms.

The lattice gauge-fixing action must have a unique ab- p (U) = 1 Z(V L+ V) V.o o=ImU...
solute minimum when the compact lattice link variables 4 g TR - -
are set toU,, = I, in order to be able to use weak- (7)
coupling perturbation theory. Such lattice discretizations
were given first for a nonlinear gauge [4] and later for theUnx = €xpliagA,.) is the lattice link variable (we take
Lorentz gauge [5]. It was argued that (in both cases) &he lattice spacing = 1), Uy, is the plaguette variable,
continuous phase transition will occur between two dif-g iS the gauge coupling; is the Wilson parameteg is
ferent phases with broken symmetry. The gauge symmehe gauge-fixing parameter, alt] g = 2(1 F ys). 04
try, however, should be restored the transition, and it andD,(U) designate the free and covariant antihermitian
is here that the fermion spectrum is expected to be chinearest-neighbor lattice derivatives, dadand(U), re-
ral. For a U(1) theory (where ghosts are not needed)pectively, the free and covariant nearest-neighbor lattice
the existence of this phase transition was demonstratddaplacians. We have added a Wilson term to the naive
in Ref. [6]. In this Letter, we address the fermion spec-fermion Lagrangian to remove the 15 unwanted species
trum of the U(1) case. (For recent work in two di- doublers situated at the corners of the four-dimensional
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Brillouin zone. Equation (5) is the Lorentz gauge-fixing model obtained by setting,,, = 1 in Eq. (8). In the re-
term introduced in Ref. [5]. We have included a gauge-duced modelx = «.(k) is a continuous phase transition
boson mass counterterm, which is the only counterterntine separating derromagnetic(FM) phase atx > «.,
of dimension two, and ignored all dimension four coun-and a so-callederromagnetic directionalFMD) phase
terterms which we believe to be less important [5]. Itat k < «. [4], where rotational symmetry is broken by
will become clear that a fermion-mass counterterm is not vector condensat¢y ) # 0; cf. Eq. (7). This critical
needed. line exists in the intervak > ktp > 0 and ends at a tri-
We now derive an equivalent form of the path integral.critical point located ak = krp. TO one-loop order we
Using the invariance of the measure, we first performfind «. = 0.02993 + O(1/k) [6]. The U1)L ® U(1)r
a gauge rotationy, — ¢l ., Upr — qb;fUquHﬂ. symmetry is broken to its diagonal subgroup in the FM
The Wilson term, gauge-fixing term, and mass counterterrand FMD phases, but is restored on the FM-FMD phase
are not gauge invariant and therefore pick up factorg of transition line because of infra-red effects associated with

After integrating overp (using [ d¢, = 1) we find a1/(p?*)? propagator for thep-field fluctuations [6] (we
showed this by numerically computing the order param-
7 = j DUDd)DZDz//e_S(U;d’J”), (8) eter(¢) very close to the phase transition, finding very
good agreement with one-loop perturbation theory, in

_ o _ which (¢) ~ |k — k|7 % for large &). This sym-
whereS(U: ¢ ¢, ) is again given by Eq. (2) now with  metry restoration is an essential prerequisite for the con-
_ P struction of a chiral gauge theory witlnbrokengauge
Ly = y{PPL + JPR}Y — E{lM)DPRlﬂ + h.c}, symmetry in the CL. We note that the FM-FMD phase
transition line is in a different universality class from
(9) the usual Higgs transition line, and is not continuously
connected to the symmetric phase that exists at small
Lop = k[¢jZ[D2(U)]Xy¢y - BXU;¢);, (10) & andk. For a full account of the phase diagram, see
y Ref. [6].
We now introduce the fermion operatotf = g,
Low=~kD b Umdbirp +he). (L1 yd = gty us = o, andys = dur. The fields with
K the superscripts ¢ (charged) and n (neutral) transform
B.(U; ¢) is given by Eq. (7) withU,., — ¢JUMx¢x+,z- nontrivially under U1l), and Ul)g, respectively, both

The plaquette termf, and the fermion kinetic term ©Of Which are unbroken onhat k = «.(k). We have
remain unchanged since they are gauge invariant. Th%alculated the neutral and charged fermion propagators to

longitudinal gauge degrees of freedom are now asso?ne'lOOp order in perturbation theory iy [9]. The

ciated with the group-valued fiel¢p which couples to ermion propagators can be written in the form

the fermions through the Wilson term. Equation (8)

n,c . -1 , )
is invariant under the )" & U(1)E°™ symmetry Stieop(P) = [S7 (p) + 2™(p)]™, (12)

lpL - ng¢va ¢R - gR¢Rx1 U,u,x - ngU,u,ngx+[u
b — ngqugf;. The model is also invariant under a
shift symmetrygr — g + €r, Which implies that the i
fermion is massless, and that its right-handed (RH) par§
decouples in the CL [8].

The model without the gauge-fixing terrd & 0) is the

whereS~!(p) = X {iy,sinp, + 2rsir 5} is the in-
verse tree-level (free fermion) propagator, aBt(p)

the one-loop self-energy. A detailed discussion of
1.¢(p) can be found in Ref. [9]. Here we list the crucial
properties of the self-energy. (B™°(0) = 0, implying
that no fermion-mass counterterm is needed (consistent

Smit-Swift model. Its failure to produce a chiral theory _ . . -
. . , : with shift symmetry [8]). (ii) The doublers decouple be-
was demonstrated inrducedversion [2], in whichUu: o660 thye Wilsoyn[tg)rm(in) Eq. (12)2"¢(p) is regular

is set equal to one in Eqg. (8), taklng only the dynamlcsat the 15 corners of the Brillouin zone and small compared
of the gauge degrees of freedogh into account. At

large r, a phase exists with unbroker(L), ® U(1)z and to tree level. (iii) The RH [LH (left-handed)] component

without doublers. The spectrum in this phase, howeverOf 2*(p) [X"(p)] is a nonanalytic function op in the

contains only aneutral[under U1). ] Dirac fermiony" = grl;d aFtoSrnLr;sI;?ance, fo“(p) we find in the limit« \, «.
Yyr + ¢y, which will not couple to the gauge fields. ’

Fermion spectrum—In this Letter we will address the . . by 5
following important question: What does the fermion 3(p) = —i(32m k)" pPrlog(p”), (13)
spectrum look like when we include the gauge-fixing
term? To obtain massless photons in the CL, the coeffiup to contact terms. Hence, nonanalytic terms exist
cient k of the gauge-boson mass counterterm in Eq. (6)n the RH (but not in the LH) charged channel, and
has to be tuned to a critical value,(k). Henceforth Skiry = (¥R.¥,) does not have an isolated pole. In
we will consider again the reduced version of the fullfact, Sg.ry = <¢X¢{{XJ§V¢;> factorizes a§i{XRy<¢x¢)T>
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for large |x — y|. SﬂxLy factorizes in a similar manner, directions for the fermion fields, and periodic boundary
indicating the absence af- and ¢ '-y{ bound states conditions in all directions for the scalar field.

(in contrast with the Smit-Swift model). Perturbation To demonstrate that the species doublers decouple,
theory thus gives strong evidence that the spectrurwve show in Fig. 1 the modulus of the charged fermion
contains only LH charged and RH neutral fermions atpropagator components (8kgr(p) and (b) SiL(p) as

K = k.(K). a function of p, for p = (0,0,0, ps) (crosses) angp =

It is important to check that this result remains valid be-(7, 0,0, p4) (triangles). We chose = 0.05 which is in
yond one-loop. To this end, for two momentum choicesthe FM phase, very close to the FM-FMD phase transition
p = (0,0,0, ps) andp = (7,0,0, ps), which allow us to [6]. The graphs show that there is no other pole in the
probe the small momentum region as well as the edg®rillouin zone besides the one at the origin, and thus
of the Brillouin zone, we have computed the neutral andhat the species doublers decouple. At first glance, Fig. 1
charged fermion propagato$é<(p) = —i[S{1(p)PL +  suggests that both propagators have a pole at 0.
SrRR(p)PrIvs + SLR(p), in the quenched approximation. We will argue below that this is true only for the LH
All numerical computations were carried out/at= 0.2  case. The dotted and solid lines represent tree-level and
andr =1 on a6’ X 24 lattice. The scalar field con- one-loop results, obtained by evaluating the perturbative
figurations were generated with a five-hit Metropolis al-formula in Eq. (12) on the same lattice, at the same
gorithm and 4000 configurations were skipped betweemoint in the phase diagram. The numerical data agree
fermionic measurements. We inverted the fermion matrixvell with the one-loop curve. The tree-level result agrees
on 50 scalar field configurations. We used antiperiodiovell with the numerical data only in Fig. 1(b), indicating
(periodic) boundary conditions in the temporal (spatial)that St ; indeed behaves like a free propagator at small
momenta. Similar graphs were obtained for the neutral
propagators.

] To figure out which of the four propagators has a
(a) | pole at p = 0 we have plotted in Fig. 2 the ratios
- - Skr(p)/Srr(p) and Si(p)/ScL(p), and in Fig. 3 the
8 . ratios Sgr(p)/Srr(p) and StL(p)/Sio(p) for p =

i 1 (0,0,0, py) as a function ofps. The ratios marked in
| ] Figs. 2 and 3 by crosses, triangles, and squares were
sl charged R - obtained atk = 0.05, 0.3, and 1, which all fall in the

- 1 FM phase [6]. Fomps — 0, the ratios should approach a
63 24 ' line parallel to the abscissa, if the corresponding fermion

l propagator has a pole. Figures 2(b) and 3(a) indeed
have a tangent with vanishing slope at = 0 for all
values of x, and henceS;; and Sgr have a pole at
p = 0. The wave-function renormalization can be read
off from the intercept atp, = 0. It is equal to one
L L L o for ¢ (because of shift symmetry [8]) and smaller than
8 ~——————————7——— one for ¢y . The ratios in Figs. 2(a) and 3(b) exhibit a

r 1 very different behavior. The cut in Eq. (13) manifests
(b) 1 itself in the dip at small momenta, which becomes deeper
] for k \\ k.. Dotted and solid lines denote again tree-
level and one-loop results, and show that the data for the
propagator ratios are in good agreement with the one-loop
curves.

This agreement between perturbation theory and data
in the FM phase (with the small difference likely due
to higher orders) makes us confident that perturbation
theory can be used to extrapolate to the CL at the
FM-FMD transition, with the conclusion that the spec-
trum contains LH charged and RH neutral massless
fermions.

] In summary, we have shown that the spectrum of the
L e reduced model consists, in the CL, of free LH charged

|Sgel

4; charged |, ]

IS¢,

-2 0 z and RH neutral fermions, decoupled from the unphysical

Py ¢ sector. A key element is our use of a gauge-fixed lattice

FIG. 1. The modulus of the charged fermion propagatortheory which exhibits the continuous phase transition
components (a¥rr and (b)Si. as a function ofp,. described in the discussion of the fermion spectrum. It
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