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Inflation without Slow Roll
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We draw attention to the possibility that inflation (i.e., accelerated expansion) might continue after
the end of slow roll, during a period of fast oscillations of the inflaton field This phenomenon
takes place when a mild nonconvexity inequality is satisfied by the poténtia). The presence of
such a period ofp-oscillation-driven inflation can substantially modify reheating scenarios. In some
models the effect of these fast oscillations might be imprinted on the primordial perturbation spectrum
at cosmological scales. [S0031-9007(98)05835-9]

PACS numbers: 98.80.Cq

The inflationary paradigm has become a widely acslow roll necessarily marks the end of inflation. By
cepted element of early Universe cosmology [1,2]. Thiscontrast, we shall see thatonconvexfunctions V(¢)
paradigm offers the attractive possibility of resolving can, as long as a certain inequality is satisfied, entail the
many of the shortcomings of standard hot big bang coseontinuation of inflation after the end of slow roll. Such
mology while providing an explanation for the origin of nonconvex potentials might arise in various ways. Let us
structure in the Universe [3—7]. Although the underlyingmention only two possibilities. First, supergravity and/or
physical ideas of inflation seem well established, whichsuperstring physics may generate very general types of
concrete inflationary scenario is realized in the very earlynonrenormalizable potentials depending on several scalar
Universe is unknown. There exist, at present, many inflafields ¢;, V(¢;) = A* V(¢;/mp). The inflatong would
tionary scenarios, which, despite some common featurethen correspond to a relatively flat direction in the
differ greatly in their details. The crucial ingredient of space of scalar fields. Second, loop contributions to
nearly all known successful inflationary scenarios is a pea classically ¢-independent potential naturally generate
riod of “slow roll” evolution of the inflaton field, during a logarithmic potential for large values ofr in some
which a quasihomogeneous scalar figldchanges very supersymmetric models [11-14¥(¢) ~ Aln(e/u) +
slowly, so that its kinetic energy?/2 during inflation ~ B. When the coefficient is positive (which is the case
remains always much smaller than its potential energyf the models of Refs. [11,12], except when the gauge
V(¢) [8—10]. Such a period ofp domination is well coupling contribution dominates the scalar couplings one),
known to generate an accelerated expansion of the Unsuch a logarithmic potential is not convéX ,, < 0).
verse, thereby providing a natural mechanism for solvingHowever, it is not clear whether such loop-corrected
the causality and homogeneity puzzles of hot big bangotentials can sustain the type of oscillatory inflation
cosmology. The standard inflationary lore assumes thatiscussed below because, when becomes small the
the end of the slow roll evolution marks the end of in-fields whose masses depend en may become light
flation, and that it is followed by a noninflationary period or tachyonic, so that one must consider a multifield
during which the inflatonp oscillates rapidly around the dynamics.
minimum of its potentialV/ (¢). In units wheremp = (47G)~'/2 = 1, a conveniently

The main aim of this work is to draw attention to redundant set of evolution equations for a scalar-driven
the possibility that inflation might continue after the end(flat) Friedmann cosmology read
of slow roll, during a period of fast oscillations af.

Such a period ofp-oscillation-driven inflation presents ¢ +3He +V, =0, (1)

novel physical characteristics which can be crucial for )

the theory of reheating and which may modify some H?> = 3 € (2)

features of the fluctuation spectra expected from inflation.

The possibility of ¢-oscillation-driven inflation has (as ¢ = —3H(e + p) = —3H¢?, 3

far as we know) not been previously noticed. Most .. 1

authors work mainly with the simplest renormalizable 2= —g(e + 3p). 4)
a

tree-level potentials, likeV (o) = tm2p? or V(p) =
%Aga“. For such potentials, and more generally for convexHere, H = a/a is the physical-time expansion rate,
functions V(¢) (with vanishing minimum), the end of V, = 9V/dp, € = %gbz + V(¢) denotes the energy
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density of the scalar field, angp = %(pz — V() its  lowing set of equalities:
pressure. Only two equations among Eqgs. (1)—(4) are

independent. The slow roll regime is the case where y = @ = M = 2<1 — m)

one can neglec'[%gb2 in e and ¢ in Eq. (1). It is € Vi Vin

easy to see that slow roll can take place only when f(l) de(1 — "})1/2

the potential V(¢) satisfies the following conditions: =27 ~ , (8)
g1 = @22V = S(V,/V? <1 and &, = ¢/3H¢ ~ Jode(l —v)~172

tV,,/V — &1 < 1. Then the effective adiabatic index , ~ _ s
of the scalar mattery owron = (€ + p)/e = ¢2/€ = Wh_ere in the last onep = g/gom andV = V_(go)/Vm.
2¢, is much smaller than one. This guarantees thal/SiNd Eas. (8), the conditiory <3 for having a¢-
the right-hand side of Eq. (4) is positive, i.e., that theOscillation-driven inflation can also be written as
expansion is accelerated. (V= @V,)>0, (9)
The slow roll conditions are sufficient, bubt neces- . , ) . .
sary to maintain inflation. We derive below the general Which has a very simple geometrical interpretation. In-
conditions on the potentia¥(¢) under which inflation dee‘j'; the quf‘nt'tW(¢) =V(p) = ¢V(p) is simply
can proceed even during a stage of fast oscillations of thi'€ “intercept” of the tangent to the curve = V(p) at
scalar field. For simplicity, we consider an even potential "€ POINt, i.e., its intersection with the vertical axis
V(¢) = V(—¢), which has its minimum ap = 0. Slow ¢ — 0 (see Fig. 1). The gom_jltlon is the_refore that the
roll is then followed by a stage wheke oscillates sym- ime average, over an oscillation, of the intercelp) =
metrically around 0. For generic potentials (as we shall’ ' Jo dtU[¢(1)] must be positive. In the case where
check below), they oscillations become “adiabatic” soon Yo = V(e = 0) is either strictly zero (as in Fig. 1) or
after the exit from slow roll (i.e., whehp| < 1), in the ~ Very small compared t&,,, this geometrical interpreta-
sense that the expansion rae becomes much smaller tion shows that one needs potenti&ligp) which are suf-
than the frequency of oscillations. In the adiabatic ap- ficiently nonconvex near the maximum amplitugg, to
proximationH < @, one can find approximate solutions cOmpensate the negativé's contributed by the convex
of Egs. (1)—(4) by separating the two time scales charad?@rt ofV(¢) near the bottone = 0. Then inflation con-
terizing the evolution [15] (we have also checked numerilinues as long ag,, is larger than some valug, defining
cally the validity of this approximation). On the fast, the size of the convex core (arougd= 0) of V(¢).
oscillation time scale, one first neglects the Hubble L€t us apply our general considerations to a simple
damping termsc 3H in Egs. (1) and (3), and gets as a cIa;s_of po'gentlals_wnhln _whlqh the condition (9) can be
function of time by inverting the integral obtained by writ- Satisfied, without fine tuning, in many models. Namely,
ing the conservation of energy, = const= V,,, where W€ consider potentials having at most polynomial growth

V,, = V(e,) denotes the maximum current value of theWhen ¢ > ¢.:V(e) ~ ¢, with any (positive) real ex-
potential energy: ponentg. In these models, slow roll takes place when

f—t =+ j AoV — V2 (5) A

The full oscillation period is

T=2r/w =4 [0% de{2[V,, — V(o) V2. (6) 14()) R

On the longer, expansion time scale, the eneegy
is slowly drained out by the Hubble damping terms. U(p)
From Eg. (3) the oscillation-averaged fractional energy
loss reads

(€/€) = =3(H(e + p)/€) = =3Hy, 7

where the angular brackets denote a time average, and
wherey = ((e + p)/e) = {(¢p?/€) is the average adia-
batic index of scalar matter [the averaged equation of state
isp = (y — 1)e]. From Eq. (4), one sees that the con-
dition for inflation to continue during the-oscillation
regime (i.e., the condition for accelerated expansion

. 2 . ... . .
0) is y < 3. This condition can be rewritten in several g5 1 Intercept(¢) of the tangent to the curvé = V()

ways in terms of the potentiaf(¢). Indeed, neglecting at the pointe. Inflation continues after slow roll if the time
the expansion of the Universe, one easily derives the folaverage ofU(¢(¢)) over onege oscillation is positive.

Y
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¢ > 1 and terminates aroungd ~ 1. When¢ < 1 0one is power-law small, and a quasiexponential inflation takes
can use the adiabatic oscillation approximation becausplace duringe oscillations.

the “adiabaticity parameter” is seen, using equations given The qualitative explanation of why, despite the fast
above, to be genericallf /w ~ ¢. To be more concrete oscillations of the scalar field, we can still have an

let us take, for instance, the class of models, accelerated expansion of the Universe is simple. When
5 1/2) the potentialV(¢) satisfies the condition (9), the scalar
_Al(e T field spends a dominant fraction of each period of
V(p) =+ 1 1, (10 I st .
q c oscillation on the upper parts of the potential, where

the kinetic energy@?/2 is small compared toV(e).

containing one dimensionless real parametee> 0, ) N .
and two dimensionful parameters: an overall SCaleTherefore, the main contribution to the averaged effective

A ~ (mas$*, and the scalg. (which could be the weak equation of state comes frob(e). .
scale) determining the size of the convex corevdts). The classical estimate Eq. (13) severely constrains the

In the limit ¢ — 0, this gives a logarithmic potential total number ofe-folds spent during anyp-oscillation-

Vip) = %Aln(l + ¢2/¢2) similar to the ones naturally driven inflation. In the case of a logarithmic poten-

arising in the supersymmetric models mentioned abovet"'jII (¢ = 0), and the extreme case of a weak-scale core

If ¢ < 1 (in Planck units), then, after the end of slow ¢~ 300 GeV, one getsV = 12. This is sizable, but
roll, one can have many oscillations with, > ¢.. At stllll small compared to the to_tal ne_eded duration of in-
. ; flation, Ny, > 65. Moreover, if we impose some other
¢ > ¢, the potentialV(¢) can be well approximated I
by the power law potentiaV(¢) = Ag~(¢/@.)7, of a reasonable restrictions on the model then the number
logarithmic oneV (¢) = AIn(¢/¢.) wheng — 0. qf aIIovx_/ed e-folds can become even smaller. In par-
For such power law potentials one easily obtains fromtlcular, |f_one requires that the ot_)servable cosmological
Egs. (8) the average adiabatic index perturbatlons_were produ_ced during the slow roll stage
' of the evolution of the fieldp and that the mass of
_ 2q (11) ¢ near the core is smaller than the Planck mass, then
g+2° N =52 + q)/(2 — g). However, even in such a case,
as well as the adiabatic evolution laws for the variousthe9"',OSC”I"j‘tion'driven inflafcion can S.‘ti” Iea_d to some in-
relevant physical quantities, teresting consequences which we briefly discuss below.

Up to this point we have discussed the evolution of

a o 2B = (a+2/Ga) (12a) a classical homogeneous background:), neglecting

_ ) —64/(q+2) the backreaction of the quantum fluctuations of the

€ =Vipw) =1t " xa ’ (12b) inflaton field. However, these fluctuations can be strongly
o %t M o q 0/t (12c) amplified because of the fast oscillations pfand can

o o ) have a dramatic backreaction effect on the evolution of the

Vpol@m) o 2270/4 a q82-0)/C%0 —(12d)  phackground. Let us consider the fluctuations of the gauge-

We note that: (i) inflation continues during the-  invariant variablev = a[8¢¢” + (¢/H)®] [16] which
oscillation-driven expansion ify < 2/3, ie., ¢ < I; describes the coupled scalar-matter gravity fluctuations.
(i) the logarithmic caseV = Aln(¢/¢.), interestingly Th? _mode ofv V\_"th comoving Sp{ﬂ'a" morznentur;k
leads to quasiexponential inflation. (Whep — 0  satisfies the equation (in conformal time! = 9°v/an?)
Egs. (11) and (12) get modified becaugeis not zero

but only logarithmically small, y = [In(gom/gosc)]*l, v+ [ = Us(m)v =0, (14)

leading, e.g., toe = €y — 3AIn(a/ay), ¢m < a>, and .

a(t) < exd—1A(tena — 1)2); (iii) the total number ofe- Up=2"/z = a’(—Vep — 4V ¢/H

folds N of this new type of inflation is determined [from - 7¢2 + 2H? + 2¢*/H?), (15)

Eq. (12c)] by the hierarchy betweep,iiia1 ~ mp (end . . ]

of slow roll) andesinal ~ @, [convex core ofV (¢)]: Wherez_ =a¢/H. Thg effective potential f_or scalar

Yo Iy fluctuationsUy(n) exhibits novel features during the
N =1 c |n<_P>. (13) oscillations associated with a nonconvex potenkiap).
Pe

_ _Indeed, the dominant term in Eq. (15) is proportional to
Let us also mention that the above statements can (Witthe squared “effective” mass of the scalar ﬁehi =

some changes) be extended to the case of negative powars = which is mostly negativeand oscillates with an
—2 < ¢ < 0in Eq. (10). This corresponds to a potential jncreasing frequency and an increasing amplitude [see
V(¢) which climbs up to a constant whele| > ¢.  Eq. (12d)]. The resulting, mostiyositive,oscillations of
and defines a trough foie| < ¢.. In this case, slow the effective potential/o(n) = —a? V., are much more
roll ends whenlo| < ouowron ~ oc 7?7 <« 1. The efficient at amplifying the fluctuations of than even
field ¢ oscillates rapidly (on the Hubble time scale) whenthe broadly resonant Mathieu-equation-type ones recently

0 K o <K @slowoll- Equation (11) does not apply;  discussed [17]. We shall leave to future work a discussion
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of the effects of such a new type of superbroad resonance We thank Andrei Linde and Antonio Riotto for useful
and only note here that the associated fast exponentidiscussions.
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