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We draw attention to the possibility that inflation (i.e., accelerated expansion) might continue a
the end of slow roll, during a period of fast oscillations of the inflaton fieldw. This phenomenon
takes place when a mild nonconvexity inequality is satisfied by the potentialV swd. The presence of
such a period ofw-oscillation-driven inflation can substantially modify reheating scenarios. In som
models the effect of these fast oscillations might be imprinted on the primordial perturbation spec
at cosmological scales. [S0031-9007(98)05835-9]
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The inflationary paradigm has become a widely ac
cepted element of early Universe cosmology [1,2]. Thi
paradigm offers the attractive possibility of resolving
many of the shortcomings of standard hot big bang cos
mology while providing an explanation for the origin of
structure in the Universe [3–7]. Although the underlying
physical ideas of inflation seem well established, which
concrete inflationary scenario is realized in the very earl
Universe is unknown. There exist, at present, many infla
tionary scenarios, which, despite some common feature
differ greatly in their details. The crucial ingredient of
nearly all known successful inflationary scenarios is a pe
riod of “slow roll” evolution of the inflaton field, during
which a quasihomogeneous scalar fieldw changes very
slowly, so that its kinetic energyÙw2y2 during inflation
remains always much smaller than its potential energ
V swd [8–10]. Such a period ofw domination is well
known to generate an accelerated expansion of the Un
verse, thereby providing a natural mechanism for solvin
the causality and homogeneity puzzles of hot big ban
cosmology. The standard inflationary lore assumes th
the end of the slow roll evolution marks the end of in-
flation, and that it is followed by a noninflationary period
during which the inflatonw oscillates rapidly around the
minimum of its potentialV swd.

The main aim of this work is to draw attention to
the possibility that inflation might continue after the end
of slow roll, during a period of fast oscillations ofw.
Such a period ofw-oscillation-driven inflation presents
novel physical characteristics which can be crucial fo
the theory of reheating and which may modify some
features of the fluctuation spectra expected from inflation
The possibility of w-oscillation-driven inflation has (as
far as we know) not been previously noticed. Mos
authors work mainly with the simplest renormalizable
tree-level potentials, likeV swd  1

2 m2w2 or V swd 
1
4 lw4. For such potentials, and more generally for conve
functions V swd (with vanishing minimum), the end of
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slow roll necessarily marks the end of inflation. B
contrast, we shall see thatnonconvexfunctions V swd
can, as long as a certain inequality is satisfied, entail t
continuation of inflation after the end of slow roll. Suc
nonconvex potentials might arise in various ways. Let
mention only two possibilities. First, supergravity and/o
superstring physics may generate very general types
nonrenormalizable potentials depending on several sca
fieldsfi, V sfid  L4V sfiy emPd. The inflatonw would
then correspond to a relatively flat direction in th
space of scalar fields. Second, loop contributions
a classicallyw-independent potential naturally generat
a logarithmic potential for large values ofw in some
supersymmetric models [11–14]:V swd , A lnswymd 1

B. When the coefficientA is positive (which is the case
of the models of Refs. [11,12], except when the gau
coupling contribution dominates the scalar couplings on
such a logarithmic potential is not convexsV,ww , 0d.
However, it is not clear whether such loop-correcte
potentials can sustain the type of oscillatory inflatio
discussed below because, whenw becomes small the
fields whose masses depend onw may become light
or tachyonic, so that one must consider a multifie
dynamics.

In units whereemP  s4pGd21y2  1, a conveniently
redundant set of evolution equations for a scalar-driv
(flat) Friedmann cosmology read

ẅ 1 3H Ùw 1 V,w  0 , (1)

H2 
2
3

e , (2)

Ùe  23Hse 1 pd  23H Ùw2 , (3)

ä
a

 2
1
3

se 1 3pd . (4)

Here, H ; Ùaya is the physical-time expansion rate
V,w ; ≠Vy≠w, e ; 1

2 Ùw2 1 V swd denotes the energy
© 1998 The American Physical Society
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density of the scalar field, andp ; 1
2 Ùw2 2 V swd its

pressure. Only two equations among Eqs. (1)–(4) a
independent. The slow roll regime is the case whe
one can neglect12 Ùw2 in e and ẅ in Eq. (1). It is
easy to see that slow roll can take place only whe
the potential V swd satisfies the following conditions:
´1 ; Ùw2y2V . 1

12 sV,wyV d2 ø 1 and ´2 ; ẅy3H Ùw .
1
6 V,wwyV 2 ´1 ø 1. Then the effective adiabatic index
of the scalar matter,gslow-roll ; se 1 pdye  Ùw2ye .
2´1 is much smaller than one. This guarantees th
the right-hand side of Eq. (4) is positive, i.e., that th
expansion is accelerated.

The slow roll conditions are sufficient, butnot neces-
sary to maintain inflation. We derive below the genera
conditions on the potentialV swd under which inflation
can proceed even during a stage of fast oscillations of
scalar field. For simplicity, we consider an even potentia
V swd  V s2wd, which has its minimum atw  0. Slow
roll is then followed by a stage wherew oscillates sym-
metrically around 0. For generic potentials (as we sh
check below), thew oscillations become “adiabatic” soon
after the exit from slow roll (i.e., whenjwj & 1), in the
sense that the expansion rateH becomes much smaller
than the frequency of oscillationsv. In the adiabatic ap-
proximationH ø v, one can find approximate solution
of Eqs. (1)–(4) by separating the two time scales chara
terizing the evolution [15] (we have also checked nume
cally the validity of this approximation). On the fast
oscillation time scale, one first neglects the Hubb
damping terms~ 3H in Eqs. (1) and (3), and getsw as a
function of time by inverting the integral obtained by writ
ing the conservation of energy,e . const Vm, where
Vm ; V swmd denotes the maximum current value of th
potential energy:

t 2 t0  6
Z

dwh2fVm 2 V swdgj21y2. (5)

The full oscillation period is

T ; 2pyv  4
Z wm

0
dwh2fVm 2 V swdgj21y2. (6)

On the longer, expansion time scale, the energye

is slowly drained out by the Hubble damping terms
From Eq. (3) the oscillation-averaged fractional energ
loss reads

k Ùeyel  23kHse 1 pdyel . 23Hg , (7)

where the angular brackets denote a time average,
where g ; kse 1 pdyel ; k Ùw2yel is the average adia-
batic index of scalar matter [the averaged equation of st
is p  sg 2 1d e]. From Eq. (4), one sees that the con
dition for inflation to continue during thew-oscillation
regime (i.e., the condition for accelerated expansionä .

0) is g ,
2
3 . This condition can be rewritten in severa

ways in terms of the potentialV swd. Indeed, neglecting
the expansion of the Universe, one easily derives the f
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lowing set of equalities:

g 
k Ùw2l

e


kw V,wl
Vm

 2

µ
1 2

kV l
Vm

∂

 2

R1
0 d bws1 2 bV d1y2R1

0 d bws1 2 bV d21y2
, (8)

where in the last onebw ; wywm and bV ; V swdyVm.
Using Eqs. (8), the conditiong ,

2
3 for having a w-

oscillation-driven inflation can also be written as

kV 2 wV,wl . 0 , (9)

which has a very simple geometrical interpretation. In
deed, the quantityUswd ; V swd 2 wV,wswd is simply
the “intercept” of the tangent to the curveV  V swd at
the point w, i.e., its intersection with the vertical axis
w  0 (see Fig. 1). The condition is therefore that the
time average, over an oscillation, of the interceptkUl 
T21

RT
0 dtUfwstdg must be positive. In the case where

V0  V sw  0d is either strictly zero (as in Fig. 1) or
very small compared toVm, this geometrical interpreta-
tion shows that one needs potentialsV swd which are suf-
ficiently nonconvex near the maximum amplitudewm to
compensate the negativeU ’s contributed by the convex
part ofV swd near the bottomw  0. Then inflation con-
tinues as long aswm is larger than some valuewc defining
the size of the convex core (aroundw  0) of V swd.

Let us apply our general considerations to a simp
class of potentials within which the condition (9) can be
satisfied, without fine tuning, in many models. Namely
we consider potentials having at most polynomial growt
when w ¿ wc:V swd , wq, with any (positive) real ex-
ponentq. In these models, slow roll takes place when

FIG. 1. InterceptUswd of the tangent to the curveV  V swd
at the pointw. Inflation continues after slow roll if the time
average ofUssswstdddd over onew oscillation is positive.
3441
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w ¿ 1 and terminates aroundw , 1. Whenw ø 1 one
can use the adiabatic oscillation approximation becau
the “adiabaticity parameter” is seen, using equations giv
above, to be genericallyHyv , w. To be more concrete
let us take, for instance, the class of models,

V swd 
A
q

∑µ
w2

w2
c

1 1

∂s1y2dq
2 1

∏
, (10)

containing one dimensionless real parameterq . 0,
and two dimensionful parameters: an overall sca
A , smassd4, and the scalewc (which could be the weak
scale) determining the size of the convex core ofV swd.
In the limit q ! 0, this gives a logarithmic potential
V swd  1

2 A lns1 1 w2yw2
c d similar to the ones naturally

arising in the supersymmetric models mentioned abov
If wc ø 1 (in Planck units), then, after the end of slow
roll, one can have many oscillations withwm ¿ wc. At
w ¿ wc the potentialV swd can be well approximated
by the power law potentialV swd . Aq21swywcdq, or a
logarithmic oneV swd . A lnswywcd whenq ! 0.

For such power law potentials one easily obtains fro
Eqs. (8) the average adiabatic index,

g 
2q

q 1 2
, (11)

as well as the adiabatic evolution laws for the variou
relevant physical quantities,

a ~ t2ys3gd  tsq12dys3qd , (12a)

e  V swmd ~ t22 ~ a26qysq12d , (12b)

wm ~ t22yq ~ a26ysq12d , (12c)

V,wwswmd ~ t2s22qdyq ~ a6s22qdys21qd . (12d)

We note that: (i) inflation continues during thew-
oscillation-driven expansion ifg , 2y3, i.e., q , 1;
(ii) the logarithmic case,V . A lnswywcd, interestingly
leads to quasiexponential inflation. (Whenq ! 0
Eqs. (11) and (12) get modified becauseg is not zero
but only logarithmically small, g  flnswmywcdg21,
leading, e.g., toe  e0 2 3A lnsaya0d, wm ~ a23, and
astd ~ expf2 1

2 Astend 2 td2g); (iii) the total number ofe-
folds N of this new type of inflation is determined [from
Eq. (12c)] by the hierarchy betweenwinitial , emP (end
of slow roll) andwfinal , wc [convex core ofV swd]:

N .
q 1 2

6
ln

µ emP

wc

∂
. (13)

Let us also mention that the above statements can (w
some changes) be extended to the case of negative pow
22 , q , 0 in Eq. (10). This corresponds to a potentia
V swd which climbs up to a constant whenjwj ¿ wc

and defines a trough forjwj , wc. In this case, slow
roll ends whenjwj , wslow-roll , w

2qys22qd
c ø 1. The

field w oscillates rapidly (on the Hubble time scale) whe
wc ø wm ø wslow-roll. Equation (11) does not apply;g
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is power-law small, and a quasiexponential inflation tak
place duringw oscillations.

The qualitative explanation of why, despite the fa
oscillations of the scalar field, we can still have a
accelerated expansion of the Universe is simple. Wh
the potentialV swd satisfies the condition (9), the scala
field spends a dominant fraction of each period
oscillation on the upper parts of the potential, whe
the kinetic energy Ùw2y2 is small compared toV swd.
Therefore, the main contribution to the averaged effecti
equation of state comes fromV swd.

The classical estimate Eq. (13) severely constrains
total number ofe-folds spent during anyw-oscillation-
driven inflation. In the case of a logarithmic poten
tial sq . 0d, and the extreme case of a weak-scale co
wc , 300 GeV, one getsN . 12. This is sizable, but
still small compared to the total needed duration of in
flation, Ntot . 65. Moreover, if we impose some othe
reasonable restrictions on the model then the numb
of allowed e-folds can become even smaller. In pa
ticular, if one requires that the observable cosmologic
perturbations were produced during the slow roll sta
of the evolution of the fieldw and that the mass of
w near the core is smaller than the Planck mass, th
N & 5s2 1 qdys2 2 qd. However, even in such a case
thew-oscillation-driven inflation can still lead to some in
teresting consequences which we briefly discuss below

Up to this point we have discussed the evolution
a classical homogeneous backgroundwstd, neglecting
the backreaction of the quantum fluctuations of th
inflaton field. However, these fluctuations can be strong
amplified because of the fast oscillations ofw and can
have a dramatic backreaction effect on the evolution of t
background. Let us consider the fluctuations of the gaug
invariant variabley  a fdwsgid 1 s ÙwyHdFg [16] which
describes the coupled scalar-matter gravity fluctuatio
The mode of y with comoving spatial momentumk
satisfies the equation (in conformal time:y00 ; ≠2yy≠h2)

y00 1 fk2 2 U0shdgy  0 , (14)

U0  z00yz  a2s 2V,ww 2 4V,w ÙwyH

2 7 Ùw2 1 2H2 1 2 Ùw4yH2d , (15)

where z ; a ÙwyH. The effective potential for scalar
fluctuationsU0shd exhibits novel features during thew
oscillations associated with a nonconvex potentialV swd.
Indeed, the dominant term in Eq. (15) is proportional
the squared “effective” mass of the scalar fieldm2

w ;
V,ww which is mostly negativeand oscillates with an
increasing frequency and an increasing amplitude [s
Eq. (12d)]. The resulting, mostlypositive,oscillations of
the effective potentialU0shd . 2a2 V,ww are much more
efficient at amplifying the fluctuations ofy than even
the broadly resonant Mathieu-equation-type ones recen
discussed [17]. We shall leave to future work a discussi
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of the effects of such a new type of superbroad resonan
and only note here that the associated fast exponen
growth of scalar fluctuations will quickly modify the
classical, adiabatic evolution presented above, and c
bring interesting new features in reheating theory. On
of the simplest examples of such new features is t
possibility, due to theincreaseof the oscillation frequency
v , f2V,wwswmdg1y2 as wm sinks down, to generate
more and more massive particles coupled tow, thereby
alleviating the usual obstacles [18] to producing th
superheavy grand-unified-theory (GUT) bosons needed
GUT baryogenesis scenarios.

This very effective parametric amplification of cosmo
logical perturbations puts also specific imprints on the pr
mordial perturbation spectrum. However, if the present
discussed mechanism terminates inflation, then, beca
of the above mentioned limits on the duration of th
fast-oscillation inflationary stage, it can only influence th
fluctuation spectra on small length scales. Neverthele
it is easy to imagine how (with some amount of fine tun
ing) one can translate the effect of our mechanism on co
mologically relevant length scales. It suffices to consid
hybrid-type inflationary models where a first bout of (slow
roll, plus oscillation-driven) inflation linked to the evolu-
tion of w is followed by a secondary bout of inflation
driven by another scalar field. With adequate tuning
the duration of the secondary inflation the effects of th
w-oscillation-driven inflation might be imprinted on cos
mological scales.
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