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Cosmic Censorship: As Strong As Ever
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Spacetimes which have been considered counterexamples to strong cosmic censorship are revisited.
We demonstrate the classical instability of the Cauchy horizon inside charged black holes embedded
in de Sitter spacetime for all values of the physical parameters. The relevant modes that maintain the
instability, in the regime which was previously considered stable, originate as outgoing modes near the
black-hole event horizon. This same mechanism is also relevant for the instability of Cauchy horizons
in other proposed counterexamples to strong cosmic censorship. [S0031-9007(98)05837-2]

PACS numbers: 04.20.Dw

As demonstrated by the elegant theorems of Hawkingo this class. In general, there is a Cauchy horizon (CH)
and Penrose [1], spacetime singularities are unbiquitouassociated with a timelike singularity. The CH is a null
features of general relativity. Thus Einstein’s theory it- hypersurface which marks the limit of the evolution of the
self impels us to search for a more fundamental theorgolution from some initial time slice; that is, observers that
of gravity in order to understand the physics of these exeross the CH enter a region in which past directed null
treme situations. The utility of general relativity in de- geodesics may terminate on the singularity. The Reissner-
scribing gravitational phenomena is maintained by cosmitNordstrém solution, given by setting = 0 in Egs. (1)
censorship [2]. The latter is based on the common wisand (2), is the archetypical example of this situation.
dom that singularities are not pervasive, and has been eXhe solution has two horizons at = M + /M2 — Q2
pressed in two forms: (IyVeak cosmic censorshgtates determined by solvingf(r) = 0. The smaller horizon
that, beginning with generic initial conditions, singulari- »_ is the CH. The solution can be analytically extended
ties only form in gravitational collapse hidden behind anto include » = 0, which is then the locus of a timelike
event horizon. (2)Strong cosmic censorshigtates that singularity. However, many extensions to<< r_ are
the evolution of generic initial data will always produce apossible corresponding to alternative boundary conditions
globally hyperbolic spacetime. at the origin. Thus, this elementary solution of Einstein

Thus the weak form of the conjecture suggests singuequations is not globally hyperbolic.
larities are always hidden inside of black holes, invisible Nevertheless, the Reissner-Nordstrém metric should not
to distant observers. The strong form indicates that singuse considered a counterexample to strong cosmic censor-
larities only appear on spacelike or null surfaces, and sehip. Building on the initial observation by Penrose [5]
are hidden from all observers; i.e., the only way to examithat the CH is a surface of infinite gravitational blueshift,
ine a spacetime singularity is to run into it. At present, noit has been demonstrated that the CH is unstable to linear
rigorous theorems have been established to prove either gfavitational and electromagnetic perturbations [6,7]. Fur-
these conjectures; rather the evidence for (or against) cogher investigations have demonstrated that the CH is trans-
mic censorship comes from our experience in solving Einformed into a null, scalar curvature singularity when full
stein’s equations. Of the two conjectures, weak cosmimonlinear evolution is considered [8—10]. The essential
censorship enjoys a better “bill of health” [3]. Strong cos-feature responsible for the instability is the same in all of
mic censorship seems to have run afoul of certain countethese analyses: small time-dependent perturbations origi-
examples in which timelike singularities develop for anating outside the black hole are gravitationally blueshifted
(small but) finite range of physical parameters [4]. Strongas they propagate inwards parallel to the CH. The locally
cosmic censorship and these examples are the focus nfeasured flux of these perturbations grows without bound
this Letter. We will demonstrate that a more completeas the CH is approached along timelike geodesics.
analysis of the latter solutions shows that they do not pro- This situation changes if the charged black hole is
vide counterexamples to strong cosmic censorship. It iimmersed in de Sitter space by the introduction of a posi-
worth emphasizing that the failure of the strong form oftive cosmological constanfy. The metric takes the form
cosmic censorship would indicate that the predictability of

the Einstein equations can be lost in regions of spacetimey 2 — — ¢(;)4s2 + dr? + r2(do? + sint 0de?), (1)
where observers encounter no extreme gravitational fields. f(r)

Solutions of Einstein’s equations which have timelike
singularities hidden inside event horizons are familiar; both M 02 Ar?
Reissner-Nordstrom and Kerr-Newman black holes belong flr)y=1- o + 2 T3 ()
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In this solution, there are three horizons corresponding to
the positive solutions of (r) = 0; we label themr; =

r» = r; wherer; denotes the Cauchy horizom; is the
event horizon, and; is the radius of the cosmological
horizon. Thus, one again finds an inner CH and a timelike
singularity atr = 0. In terms of global structure, the
main modification is at large radius where the spacetime
is asymptotically de Sitter rather than flat. As a result,
the standard blueshift argument of Penrose is slightly
modified. Radially infalling radiation which propagates
along the CH originates in the asymptotic region close to
the cosmological horizon. Consequently, such radiation is
redshifted as it falls away from the cosmological horizon as
well as being blueshifted at the CH; there is a competition
of these two effects in determining the corresponding flux
of radiation at the CH. For a limited range of physical
parameters (corresponding to near-extremal black holesé,

one finds that the cosmological redshift dominates and Igéslr{er -/;\\lc?r(c)irstit(r)gmojcﬁQesi?:rr%slgcﬁ?k?c?l)errgglagieati%aem E’gé!:)ens
finite flux is produced [11,12]. Thus this mechanism S| and 1 correspond to the exterior and interior of the

ineffective in destabilizing the CH. black hole, respectively, separated by the event horizon at
The essential point of the present Letter is that, inr = r,. See Ref. [4] for a detailed description of the spacetime

this latter situation, one must extend the analysis to alsgeometry.

consider outgoing modes which originate from close to the

event horizon. These modes are scattered by the curvature

to produce an additional influx along the CH. There isequation, which can be reduced to a one-dimensional

again a competition of a redshift in climbing away from scattering problem, e.g., see Eq. (10) below, by virtue of

the event horizon and a blueshift in falling towards the CH the spherical symmetry and static nature of the background

but, in this case, the lattealwaysdominates to produce spacetime. If the evolution produces a diverging flux of

a diverging flux at the CH. Generically, this effect is radiation as measured by observers at the CH, the result

subdominant in comparison to the flux due to the infallingis interpreted as indicating the CH is unstable. The flux

modes; however, it persists into the regime where theeceived by any observer is proportional to the square of
latter only yield a finite flux. This argument, which is the amplitude

made precise below, demonstrates that the CH remains N

unstable over the entire range of physical parameters, F = Qqu”, 6)

and that Reissner-Nordstrom—de Sitter black holes are nethereu® is the observer’s four-velocity.

counterexamples to strong cosmic censorship. Now the essential features of the linear perturbation
To begin a quantitative discussion, we transform theanalysis can be summarized by the following argument.

metric (1) to null coordinates First, reasonable initial conditions must be determined for

ds®> = —f(r)dvdu + r’(d6> + sif6d¢?), (3) perturbations in the vicinity of the cosmological and event
whereu =t — r, andv = ¢t + r. are defined in terms horizons. Generally, observers crossing the cosmological

of the tortoise radial coordinate horizc_)n will measure a finite flux. Considering Eq. (_6) for
a radially moving observer, one shows tdamust satisfy
o= [ar/s. @
(I),U ~e (7)

These coordinates are illustrated in Fig. 1. The mainyg,, _, ., this determines the behavior of the initial
points to note arev = o« on the ingoing sheets of the

cosmoloaical and the inner horizons. amd= = on the ingoing modes. Observers falling into the black hole
S gl : 120nS, .should see a finite flux of radiation at the event horizon.

outgoing sheet of the black-hole event horizon. The variw; . . : L . .
ous blueshift and redshift effects discussed above are cor?—'m”arly’ this requires that the variation of the field satisfy

trolled by the surface gravities of the respective horizons. b, ~ e (8)
The latter are defined by asu — o0 in bothregions Il and Il1, fixing the initial condi-
K; = 1 ]df i (5) tions for the outgoing modes. The evolution of these out-
2 Ldr = going modes will result in backscattering, adding an extra
wherel =i = 3. contribution to the influx along the CH. This additional

In this spacetime, we consider the evolution of linearizedlux may be estimated by observing that the backscatter-
perturbations denoted &@. The fieldd satisfies a wave ing occurs roughly on @& — « = const surface; i.e., the
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effective potential falls off very rapidly near the event andtime-dependent solution can now be written as
Cauchy horizons, and so in this process #hdependence * do —

of Eq. (8) is converted to a dependence. Therefore, the @ (t,r.) = f Py [W(w) D (w,7s)

total amplitude measured by observers crossing the CH = LT

takes the form + W(0)® (0,r)]e ", (13)

F ~ e"V(e 1Y + const X e *2Y), (9)  with the functionsW(w) being determined by the ini-
The first term above, due to the ingoing modes, producetial data. o _
a divergent result foks; > «;, which is satisfiecexcept Perturbations falling in across the event horizon from

for near-extremal black holes [11,12]. The backscatterethe exterior would fixW (w). These would be analyzed
contribution diverges foks > «,, which is valid when- as in Ref. [13], and we do not consider them further here.
everr; # ry. Therefore the second flux ensures that thdnstead, we focus on outgoing perturbations which would
CH is generally unstable. It should be noted that ovegrise from the surface to the star which collapses to form
most of the range of physical parametefs> «, so the the bIac_k) hole. These would be the perturbations deter-
backscattered term is subdominant and neglecting the oumining W (). The asymptotic behavior of the field given
going modes still yields quantitatively correct results. Itin Eqg. (8) implies thatW (w) has a pole abv = —ik;.

is only in the regime previously thought to be stable, i.e., As above, we wish to determine the flux of radiation
r3 = ry, that the importance of the outgoing modes mani-measured by an observer crossing the CH, and so must

fests itself. calculate the amplitudg defined in Eq. (6). The part of
While the previous argument may appear simplistic.the amplitude which may be divergent at the CH is
the final result for the amplitude (9) is supported by F ~ VP, | (14)

our detailed analysis of the linear instability of the o . _

Cauchy horizon. Our approach was threefold: extendinglow the initially outgoing modes of Eq. (12) are dis-

the null fluid model of [11] and the mode analysis of persed by the potential between the two horizons so that

[12] to incorporate backscattering, and making numericafS7« — ®

inve_stigations to confirm the latter analytic results. The P — A(@)e'®" + B(w)e 1" (15)

details of this work will be presented elsewhere, but here )

we discuss the new result revealed by the mode analysi¥. 1S the behavior of the reflected waves that are relevant

This mechanism for the instability of the CH arises purelyt0 our discussion, thus

from modes confined to thaterior of the black hole, i.e., — ww [~ — iww

region Il of Fig. 1 F o~ e® f_ do o W(w)B(w)e . (16)
The equations governing the metric and eIectromagnetul:he integral is computed by closing the contour in the

perturbations of a Reissner-Nordstrom—de Sitter blac'fower half-plane and using the residue theorem. The
hole have been worked out in detail in [13], whe_re 't WaSy,minant contribution to the flux comes from the pole
shown th‘."‘t th_ey reduce to four scalar wave equations. Thr‘?earest to the real axis. Using arguments similar to those
perturbation fieldsp are decompos_ed Into elgen_modes Ofin Ref. [7], one shows thab B(w) is analytic in the strip
frequencyw and spherical harmonics, which satisfy [—ixs.iky]. Hence, the pole irW(w) at —ik, provides

( dZ2 N w2><i>(w 7o) = V(r)®(w,r.) (10) theleading contribution, thatis,
d s Ik * 9 I3k N

wh r*l _ | b 4 throudh F ~ e —jiyB(—iks)Res[W (—ika)]}.  (17)
where angular eigenvalues will be suppressed through- L
out). The details of the potential depend on the type of's discussed above, it is easy to show thgt> «;

perturbation [13], e.g., for axial perturbations provided thatrs # ry; therefore, 7 always diverges as
b . v — o provided B(—ik;) is nonzero. While it seems
vV = f(r)|:% + 5+ —4] (11)  unlikely that B(—ik») would vanish, we have verified it
r r r numerically.
where Eq. (2) givesf(r), Eq. (4) determines(r.), and The evolution of scalar waves on the spherical black-

a, b, c are certain constants. An important general featuréole de Sitter spacetimes has been considered in [14]. It
is that the potential is always analytic in both éxpsr.) is straightforward to apply the same numerical techniques

and exx,r.) throughout region Ill. It is useful to intro- to the fields ® above, except inside the black-hole
duce a basis of mode solutions of Eq. (1@((1)’ r.)and horizon. Reinstating the time dependence in the scattering
5’((1) r.) normalized to satisfy equations (10), the wave equations may be written as
— A 1
) — e @ D, =—7V(I)P. 18
D (w,r) = e asr. — —o. (12) e (.) (18)
D (w,r) — e We use a characteristic evolution scheme to solve these

These modes represent initially ingoing and outgoingequations, so the initial data is supplied on an ingoing
waves, respectively, in the black-hole interior. The fullnull hypersurfacev = 0, and the event horizon of the
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black hole (in reality a very large positive value @f.  may conclude that there are no known counterexamples to

The initial data corresponds to what can reasonably bstrong cosmic censorship within classical general relativity

expected from a collapsing star. Near the event horizogoupled to reasonable matter.
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