
VOLUME 80, NUMBER 16 P H Y S I C A L R E V I E W L E T T E R S 20 APRIL 1998

5

evisited.
edded
in the
ar the

rizons

3432
Cosmic Censorship: As Strong As Ever

Patrick R. Brady,1 Ian G. Moss,2 and Robert C. Myers3
1Theoretical Astrophysics 130-33, California Institute of Technology, Pasadena, California 9112

2Department of Physics, University of Newcastle Upon Tyne, NE1 7RU United Kingdom
3Institute of Theoretical Physics, University of California, Santa Barbara, California 93117

(Received 12 January 1998)

Spacetimes which have been considered counterexamples to strong cosmic censorship are r
We demonstrate the classical instability of the Cauchy horizon inside charged black holes emb
in de Sitter spacetime for all values of the physical parameters. The relevant modes that mainta
instability, in the regime which was previously considered stable, originate as outgoing modes ne
black-hole event horizon. This same mechanism is also relevant for the instability of Cauchy ho
in other proposed counterexamples to strong cosmic censorship. [S0031-9007(98)05837-2]
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As demonstrated by the elegant theorems of Hawki
and Penrose [1], spacetime singularities are unbiquito
features of general relativity. Thus Einstein’s theory i
self impels us to search for a more fundamental theo
of gravity in order to understand the physics of these e
treme situations. The utility of general relativity in de
scribing gravitational phenomena is maintained by cosm
censorship [2]. The latter is based on the common w
dom that singularities are not pervasive, and has been
pressed in two forms: (1)Weak cosmic censorshipstates
that, beginning with generic initial conditions, singular
ties only form in gravitational collapse hidden behind a
event horizon. (2)Strong cosmic censorshipstates that
the evolution of generic initial data will always produce
globally hyperbolic spacetime.

Thus the weak form of the conjecture suggests sing
larities are always hidden inside of black holes, invisib
to distant observers. The strong form indicates that sing
larities only appear on spacelike or null surfaces, and
are hidden from all observers; i.e., the only way to exam
ine a spacetime singularity is to run into it. At present, n
rigorous theorems have been established to prove eithe
these conjectures; rather the evidence for (or against) c
mic censorship comes from our experience in solving E
stein’s equations. Of the two conjectures, weak cosm
censorship enjoys a better “bill of health” [3]. Strong co
mic censorship seems to have run afoul of certain coun
examples in which timelike singularities develop for
(small but) finite range of physical parameters [4]. Stron
cosmic censorship and these examples are the focu
this Letter. We will demonstrate that a more comple
analysis of the latter solutions shows that they do not p
vide counterexamples to strong cosmic censorship. I
worth emphasizing that the failure of the strong form
cosmic censorship would indicate that the predictability
the Einstein equations can be lost in regions of spaceti
where observers encounter no extreme gravitational fie

Solutions of Einstein’s equations which have timelik
singularities hidden inside event horizons are familiar; bo
Reissner-Nordström and Kerr-Newman black holes belo
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to this class. In general, there is a Cauchy horizon (C
associated with a timelike singularity. The CH is a nu
hypersurface which marks the limit of the evolution of th
solution from some initial time slice; that is, observers th
cross the CH enter a region in which past directed n
geodesics may terminate on the singularity. The Reissn
Nordström solution, given by settingL ­ 0 in Eqs. (1)
and (2), is the archetypical example of this situatio
The solution has two horizons atr6 ­ M 6

p
M2 2 Q2

determined by solvingfsrd ­ 0. The smaller horizon
r2 is the CH. The solution can be analytically extende
to include r ­ 0, which is then the locus of a timelike
singularity. However, many extensions tor , r2 are
possible corresponding to alternative boundary conditio
at the origin. Thus, this elementary solution of Einste
equations is not globally hyperbolic.

Nevertheless, the Reissner-Nordström metric should
be considered a counterexample to strong cosmic cen
ship. Building on the initial observation by Penrose [5
that the CH is a surface of infinite gravitational blueshif
it has been demonstrated that the CH is unstable to lin
gravitational and electromagnetic perturbations [6,7]. Fu
ther investigations have demonstrated that the CH is tra
formed into a null, scalar curvature singularity when fu
nonlinear evolution is considered [8–10]. The essent
feature responsible for the instability is the same in all
these analyses: small time-dependent perturbations or
nating outside the black hole are gravitationally blueshift
as they propagate inwards parallel to the CH. The loca
measured flux of these perturbations grows without bou
as the CH is approached along timelike geodesics.

This situation changes if the charged black hole
immersed in de Sitter space by the introduction of a po
tive cosmological constant,L. The metric takes the form

ds2 ­ 2fsrddt2 1
dr2

fsrd
1 r2sdu2 1 sin2 udf2d , (1)

fsrd ­ 1 2
2M
r

1
Q2

r2 2
Lr2

3
. (2)
© 1998 The American Physical Society
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In this solution, there are three horizons corresponding
the positive solutions offsrd ­ 0; we label themr3 #

r2 # r1 wherer3 denotes the Cauchy horizon,r2 is the
event horizon, andr1 is the radius of the cosmological
horizon. Thus, one again finds an inner CH and a timelik
singularity at r ­ 0. In terms of global structure, the
main modification is at large radius where the spacetim
is asymptotically de Sitter rather than flat. As a resu
the standard blueshift argument of Penrose is sligh
modified. Radially infalling radiation which propagate
along the CH originates in the asymptotic region close
the cosmological horizon. Consequently, such radiation
redshifted as it falls away from the cosmological horizon a
well as being blueshifted at the CH; there is a competitio
of these two effects in determining the corresponding flu
of radiation at the CH. For a limited range of physica
parameters (corresponding to near-extremal black hole
one finds that the cosmological redshift dominates and
finite flux is produced [11,12]. Thus this mechanism i
ineffective in destabilizing the CH.

The essential point of the present Letter is that,
this latter situation, one must extend the analysis to al
consider outgoing modes which originate from close to th
event horizon. These modes are scattered by the curva
to produce an additional influx along the CH. There
again a competition of a redshift in climbing away from
the event horizon and a blueshift in falling towards the CH
but, in this case, the latteralwaysdominates to produce
a diverging flux at the CH. Generically, this effect is
subdominant in comparison to the flux due to the infallin
modes; however, it persists into the regime where t
latter only yield a finite flux. This argument, which is
made precise below, demonstrates that the CH rema
unstable over the entire range of physical paramete
and that Reissner-Nordström–de Sitter black holes are
counterexamples to strong cosmic censorship.

To begin a quantitative discussion, we transform th
metric (1) to null coordinates

ds2 ­ 2fsrd dy du 1 r2sdu2 1 sin2 u df2d , (3)
whereu ­ t 2 rp and y ­ t 1 rp are defined in terms
of the tortoise radial coordinate

rp ­
Z

dryfsrd . (4)

These coordinates are illustrated in Fig. 1. The mai
points to note arey ­ ` on the ingoing sheets of the
cosmological and the inner horizons, andu ­ ` on the
outgoing sheet of the black-hole event horizon. The va
ous blueshift and redshift effects discussed above are c
trolled by the surface gravities of the respective horizon
The latter are defined by

ki ­
1
2

Ç
df
dr

Ç
r­ri

, (5)

where1 # i # 3.
In this spacetime, we consider the evolution of linearize

perturbations denoted asF. The fieldF satisfies a wave
to
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FIG. 1. A portion of the Penrose conformal diagram for th
Reissner-Nordström–de Sitter black-hole spacetime. Regio
II and III correspond to the exterior and interior of the
black hole, respectively, separated by the event horizon
r ­ r2. See Ref. [4] for a detailed description of the spacetim
geometry.

equation, which can be reduced to a one-dimensio
scattering problem, e.g., see Eq. (10) below, by virtue
the spherical symmetry and static nature of the backgrou
spacetime. If the evolution produces a diverging flux
radiation as measured by observers at the CH, the re
is interpreted as indicating the CH is unstable. The flu
received by any observer is proportional to the square
the amplitude

F ­ F,aua , (6)

whereua is the observer’s four-velocity.
Now the essential features of the linear perturbatio

analysis can be summarized by the following argume
First, reasonable initial conditions must be determined f
perturbations in the vicinity of the cosmological and eve
horizons. Generally, observers crossing the cosmologi
horizon will measure a finite flux. Considering Eq. (6) fo
a radially moving observer, one shows thatF must satisfy

F,y , e2k1y (7)

as y ! `. This determines the behavior of the initia
ingoing modes. Observers falling into the black ho
should see a finite flux of radiation at the event horizo
Similarly, this requires that the variation of the field satisf

F,u , e2k2u (8)

asu ! ` in bothregions II and III, fixing the initial condi-
tions for the outgoing modes. The evolution of these ou
going modes will result in backscattering, adding an ext
contribution to the influx along the CH. This additiona
flux may be estimated by observing that the backscatt
ing occurs roughly on ay 2 u ­ const surface; i.e., the
3433
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effective potential falls off very rapidly near the event an
Cauchy horizons, and so in this process theu dependence
of Eq. (8) is converted to ay dependence. Therefore, the
total amplitude measured by observers crossing the C
takes the form

F , ek3yse2k1y 1 const 3 e2k2yd . (9)

The first term above, due to the ingoing modes, produc
a divergent result fork3 . k1, which is satisfiedexcept
for near-extremal black holes [11,12]. The backscatter
contribution diverges fork3 . k2, which is valid when-
everr3 fi r2. Therefore the second flux ensures that th
CH is generally unstable. It should be noted that ove
most of the range of physical parametersk1 . k2, so the
backscattered term is subdominant and neglecting the o
going modes still yields quantitatively correct results. I
is only in the regime previously thought to be stable, i.e
r3 . r2, that the importance of the outgoing modes man
fests itself.

While the previous argument may appear simplistic
the final result for the amplitude (9) is supported b
our detailed analysis of the linear instability of the
Cauchy horizon. Our approach was threefold: extendin
the null fluid model of [11] and the mode analysis o
[12] to incorporate backscattering, and making numeric
investigations to confirm the latter analytic results. Th
details of this work will be presented elsewhere, but he
we discuss the new result revealed by the mode analys
This mechanism for the instability of the CH arises purel
from modes confined to theinterior of the black hole, i.e.,
region III of Fig. 1

The equations governing the metric and electromagne
perturbations of a Reissner-Nordström–de Sitter bla
hole have been worked out in detail in [13], where it wa
shown that they reduce to four scalar wave equations. T
perturbation fieldsF are decomposed into eigenmodes o
frequencyv and spherical harmonics, which satisfy√

d2

dr2
p

1 v2

!
F̂sv, rpd ­ V srpdF̂sv, rpd (10)

(where angular eigenvalues will be suppressed throug
out). The details of the potential depend on the type
perturbation [13], e.g., for axial perturbations

V ­ fsrd

"
a
r2 1

b
r3 1

c
r4

#
, (11)

where Eq. (2) givesfsrd, Eq. (4) determinesrsrpd, and
a, b, c are certain constants. An important general featu
is that the potential is always analytic in both exps2k3rpd
and expsk2rpd throughout region III. It is useful to intro-
duce a basis of mode solutions of Eq. (10):

√
F sv, rpd and

!
F sv, rpd normalized to satisfy

√
F sv, rpd ! e2ivrp

!
F sv, rpd ! eivrp

asrp ! 2` . (12)

These modes represent initially ingoing and outgoin
waves, respectively, in the black-hole interior. The fu
3434
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time-dependent solution can now be written as

Fst, rpd ­
Z `

2`

dv

2p
f√W svd√F sv, rpd

1
!
W svd !

F sv, rpdge2ivt , (13)

with the functionsW svd being determined by the ini-
tial data.

Perturbations falling in across the event horizon fro
the exterior would fix

√
W svd. These would be analyzed

as in Ref. [13], and we do not consider them further he
Instead, we focus on outgoing perturbations which wou
arise from the surface to the star which collapses to fo
the black hole. These would be the perturbations det
mining

!
W svd. The asymptotic behavior of the field given

in Eq. (8) implies that
!
W svd has a pole atv ­ 2ik2.

As above, we wish to determine the flux of radiatio
measured by an observer crossing the CH, and so m
calculate the amplitudeF defined in Eq. (6). The part of
the amplitude which may be divergent at the CH is

F , ek3yF,y . (14)

Now the initially outgoing modes of Eq. (12) are dis
persed by the potential between the two horizons so t
asrp ! `

!
F ! Asvdeivrp 1 Bsvde2ivrp . (15)

It is the behavior of the reflected waves that are releva
to our discussion, thus

!
F , ek3y

Z `

2`
dv v

!
W svdBsvde2ivy . (16)

The integral is computed by closing the contour in th
lower half-plane and using the residue theorem. T
dominant contribution to the flux comes from the po
nearest to the real axis. Using arguments similar to tho
in Ref. [7], one shows thatvBsvd is analytic in the strip
f2ik3, ik2g. Hence, the pole in

!
W svd at 2ik2 provides

the leading contribution, that is,
!
F , esk32k2dyh2ik2Bs2ik2dResf !

W s2ik2dgj . (17)

As discussed above, it is easy to show thatk3 . k2

provided thatr3 fi r2; therefore,
!
F always diverges as

y ! ` provided Bs2ik2d is nonzero. While it seems
unlikely that Bs2ik2d would vanish, we have verified it
numerically.

The evolution of scalar waves on the spherical blac
hole de Sitter spacetimes has been considered in [14]
is straightforward to apply the same numerical techniqu
to the fields F above, except inside the black-hol
horizon. Reinstating the time dependence in the scatter
equations (10), the wave equations may be written as

F,uy ­ 2
1
4 V srdF . (18)

We use a characteristic evolution scheme to solve th
equations, so the initial data is supplied on an ingoi
null hypersurfacey ­ 0, and the event horizon of the
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black hole (in reality a very large positive value ofu).
The initial data corresponds to what can reasonably
expected from a collapsing star. Near the event horiz
the field is presumed to be analytic in a Kruskalize
coordinate tailored to that horizon. Thus

Fsu, y ­ 0d . F0 1 F1e2k2u 1 . . . , (19)

which reproduces the dependence of Eq. (8). On t
event horizon the field was taken to decay exponentia
with advanced time; the precise form was motivated b
considerations of tails of gravitational collapse in th
external field of the black hole [14]. However, the resul
are insensitive to the details of these boundary conditio

The results of the numerical integration are consiste
with the scattering analysis described above. We find t
rate of decay of the field satisfies

F,y ~ e2sy (20)

along surfaces of constantu crossing the CH, where
the decay constants was found to equalk2 within
numerical errors. For example, in a calculation wit
M ­ 1.0, Q ­ 1.000 015, and L ­ 1024, s was equal
to k2 to an accuracy of,0.035%. Moreover, the decay
of the perturbations at the horizon was also found to
independent of the angular eigenvalues, in contrast
the results obtained for wave evolution in the exterio
region [14]. Together these calculations show that t
instability of the CH will, in fact, generally result from
modes entirely confined to the interior of the black hole

In this Letter, we have shown that the CH of th
Reissner-Nordström–de Sitter black hole is unstable to l
ear perturbations over the entire range of physical param
ters. This should imply that CH instability also arises i
the full nonlinear evolution. The significant new contri
bution was identified as arising from the backscattering
outgoing perturbations emerging near the event horizo
The physical origin of such an outflux is nothing more tha
the collapsing star which forms the black hole, and mu
surely be present. The backscattered flux extends the
stability of the CH through the regime previously though
to be stable. Furthermore, our analysis readily extends
the other proposed counterexamples to strong cosmic c
sorship, such as accelerating black holes [15], or rotati
black holes in de Sitter space [16]. Once again backsc
tering of initially outgoing modes provokes the instabilit
of the CH for otherwise stable configurations. Thus, on
be
on
d

he
lly
y

e
ts
ns.
nt
he

h

be
to
r

he

.
e
in-

e-
n
-
of
n.
n
st
in-
t
to

en-
ng
at-

y
e

may conclude that there are no known counterexamples
strong cosmic censorship within classical general relativi
coupled to reasonable matter.
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