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Anisotropic Coarsening of Periodic Grooves: Time-Resolved X-Ray Scattering
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Coarsening dynamics of mesoscopic periodic grooves (500-1500 A) is characterized, as they self-
assemble on a miscut Si(113) surface, following a temperature quench through a faceting transformation.
Use of an area detector in glancing angle reflection geometry allowed for simultaneous measurements
of highly anisotropic length scales. Over more than two decades of time, the length of the
grooves grows as the third power of the width of the grooves. This result constitutes a direct
confirmation of a recently proposed theory and the observation of anisotropic dynamic scaling behavior.
[S0031-9007(97)05003-5]

PACS numbers: 68.10.Jy, 61.10.Eq, 64.75.+g, 82.65.Dp

Faceting refers to the phase transformation at which an Subsequently, Milner proposed a theory that reproduces
initially uniform surface decomposes into coexisting do-the 1/6 power law, and in addition predicts that the length
mains of different orientation [1]. Studies of faceting to of grooves would increase as the third power of their width
date have established its close analogy to the phase sepaf#9,11], i.e., as the A2 power of time. Our motivation
tion of a binary mixture [2]. Generally, following a quench for the present study was to directly test the theory, by
from a uniform phase into a coexistence region, domainguantifying the time-dependent aspect ratio of coarsening
of the low temperature phases form and subsequentlgrooves on Si(113), by means of time-resolved x-ray
coarsen in time. For binary mixtures, the mechanismscattering. Preliminary work by atomic force microscopy
of coarsening (ripening) is well known: larger domains(AFM) on a quenched surface indicated an aspect ratio
with smaller domain wall curvature accrete material at theof approximately 50. Simultaneous measurement of the
expense of smaller domains with larger domain wall cur-evolution of two length scales that differ by nearly 2 orders
vature [3]. Application of this principle results in the pre- of magnitude poses a technical challenge, which was met
diction that the average domain size grows as a power laly utilizing an area detector [12] in a glancing-angle
versus time with an exponent of 3. In addition, the do- reflection geometry, which nicely matches the instrumental
main morphology exhibits dynamic scaling behavior, soresolution to the requisite length scales. The results,
that the distribution of domain sizes or the scattering funcpresented here, generally endorse the theory of Ref. [10].
tion, when scaled to the average domain size, appears sefhe simplicity of the theory and its apparent success lead
similar at different times. These predictions have beerus to suspect that it will be applicable to other faceting
realized experimentally in many systems [4]. transitions and more generally to different types of uniaxial

For faceted surfaces, however, the domain walls thasystem. Despite the prevalence of uniaxial phases in
must disappear so that coarsening may proceed arature, the kinetics of domain formation in such systems
linear edges, requiring a different mechanism. Althoughremains largely unexplored [13].
faceting has been of considerable interest for many We begin with a brief review: At nonzero tempera-
decades, pioneering studies of faceting kinetics havéeure, steps on a crystal surface are subject to long-
focused mainly on the early stage nucleation and growtkvavelength fluctuations. The relation between amplitude
[2,5,6]. Only recently has the subject of late stage(k) and wavelengthM) of the fluctuations is determined
coarsening begun to receive attention [7—9]. Of particulain a statistical manner by the stiffnesy)(of the steps
relevance to the present paper, it was found that whefl4]: (h?) = MkT /3. The theory asserts that a bunch
a miscut Si(113) surface was quenched from abovef N steps on a faceted surface may itself be treated as a
a faceting temperature to below, quasiperiodic grooveg§macro) step possessing a stiffness thavitimes larger
formed and subsequently coarsened in time. The widthhan the stiffness of a single step = X ,N) and a mo-
of the grooves was observed to grow following approxi-bility that is N times smaller than that of a single step
mately a ¥6 power law versus time, and the scattering(I'y = I';/N). Faceting proceeds via coalescence of ad-
function from the grooves revealed a dynamic scalingacent step bunches as they thermally fluctuate and collide
behavior [8]. Another interesting observation was madewvith each other. The rate of coalescence is controlled
on a grooved alumina surface, where a rapid increase iby the time to develop fluctuations of sufficiently large
the aspect ratio of the grooves was noted as a function amplitude, i.e.,h = L, where L is the mean separation
annealing time [9]. between step bunches. It follows thiat = MkgT /3.
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BecauseN and Xy increase linearly withL, this rela- andk = 2#/A. However, for shallow structures such as
tionship between amplitude and wavelength of the collidshown in Fig. 1(b) and for the values ¢f studied here,
ing step bunches yields® = MkT¥€y/3, where{, is  the scattering intensity depends only weakly@n so that
the mean step separation. The theory furthermore takesir measurements accurately reflected the variation versus
the characteristic time for a collision between two stepQ,. It follows that the resolution irQ, is finer than in
bunches to be = ksTM?/TySy = L°3, /ksT€3T), as- theQ, direction by a factor of sif; = 1072. This choice
suming that step fluctuations are determined by adatom atf scattering geometry is particularly suitable for our stud-
tachment and detachment [11]. As a consequehaeil ies, where strong anisotropy in length scales is expected.
increase as a/B power of time in the coarsening process The sample was a Si(113) wafer with its surface miscut by
of the step bunchesM increases more rapidly, with a 2.1° towards (001) so that steps are separated on average
coarsening exponent of2. The step-free facets bounded by ¢, = 45 A. The equilibrium morphology of this sur-
by step bunches should become increasingly elongatddce has been studied extensively [15]. Faceting occurs at
along the step edge direction with increasing time. 1220 K, whereupon the steps self-assemble into a grooved
Experiments were performed at beam line X20C at thesuperstructure. An example of a faceted surface is shown
National Synchrotron Light Source [15]. X rays with a in Fig. 1(b). One side of each groove is a step-free (113)
wavelength ofA = 1.4 A were selected by WSi multi-  facet, and the other side is a step bunch. The sample was
layers with a relative bandpass ©fl0~2. The scattering oriented so that the grooves were horizontal, as indicated
geometry is illustrated in Fig. 1(a). A CCD area detectorin Fig. 1(a).
[12] was mounted 0.92 m downstream of the sample. X After annealing the sample at 1530 K for 60 s, we
rays scattered into the detector correspond to a plane itooled the surface to 1250 K, where the surface is known
reciprocal space defined Iy, = k sin26; — 8,), 0, =  to have a uniformly stepped morphology. The scattering
ké,, andQ, = sin6;kd,, wheres, andés, are horizontal from such a surface is a single peak with a resolution-
and vertical angular displacements of the scattered x raylgnited width corresponding to specular reflection. The
from specular reflectiom; = 0.56° is the incident angle, peak width corresponds t6.9 X 107> A~! in the Q,
direction and1.4 X 10~3 A~ in the Q, direction. The
line shape is well described by a Gaussian. We then

(0) Grooved guenched the surface to 1195 K and collected the scattered
Sample intensity every 4 s with an exposure time of 1 s. Examples
Synchrotron — are displayed in Fig. 2 for times 10, 100, 1000, and

I N 58 10000 s after the quench.
In addition to the central peak which corresponds to

H § Detector specular reflection, two vertically displaced peaks are ob-

(13) j‘ox/sin(ow) served. They may be identified as the first order diffrac-
Qb Tll0,20 tion peaks from the periodic grooves. With increasing
,=0.088A"" time they grow in intensity, narrow in width, and move

(b) Detector Plane in towards the center. The vertical position of the peaks

is related to the groove periodicity vig = 277/L, so that

the growth ofL versus time is evident from these data.
Equally evident is the dramatic decrease in the horizontal
width of the groove peaks, which arises from the increasing
extent of ordering along the grooves. Especially striking is
the change in the shape of the peaks. Beginning elongated
alongQ, at early times, the peaks evolve to appear nearly
circular in shape at late times. In fact, because of the reso-
lution effects described above, the length of the grooves in
the x direction is much larger than the period in theli-
rection, even at the earliest times.

FIG. 1. (a) Scattering geometry.Q. is along the surface Closer examination reveals that the two first-order peaks
normal.  An area detector subtends a plane in reciprocalyo|ye slightly differently. In particular, it may be seen

. Centered at th | flectfoh = 2k sing; = . . .
g%agcée,&fl et?]izrglar?e is ig’gﬁ;upg;aﬁlef@ 0 withszllnsemall that at late times the horizontal width of the lower peak
. ) y=z

component alongQ,: Q — Q° = (sin6,k5,, k8,,cos0;ks,). (at negativeQ,) seems broader than that on the upper side
Since the scattered intensity from the structure of (b) is(positive Q,). We observe no difference in the vertical
independent ofQ, within the range ofQ. sampled, we may width or in the vertical position of the two. In reference to
consider the horizontalk¢,) and vertical £4,) axes of the e scattering geometry shown in Fig. 1(a), the facet side of

detector plane to represemd,/sind; and Q,, respectively. ? . e . .
(b) AFM image of a grooved sample with 500 A periodicity. the grooves is oriented towards the posit@g direction,

One side of each groove is the (113) facet, and the other side &nd the step-bunch side towards the negaflyelirection.
a bunch of 11 steps. Apparently, the peak on the step-bunch side is broader.
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FIG. 2. Diffraction patterns from a grooved sample after quench. 10, 100, 1000, and 10000 s. Intensity is displayed in
logarithmic scale. Each frame displays a detector arega>f8 mm?. Projected in the,Q, plane, it corresponds to a reciprocal
area of3.5 X 107* A by 3.5 X 1072 A. The peaks are fit to 2D Gaussian with the fitting parameters as defined in the schematic.

The source of broadening aloidd. on the facet side is the to instrumental resolution.) The dashed line in Fig. 4

finite length of the grooves. By contrast, on the negativeéndicates the expected/2 power law. Relating<; to

Q, side, step fluctuations within the step bunches mayhe finite length of grooves viadf = 5.9/« [10], we

contribute to a broader peak width, in addition to the finitefind that at 1195 K the groove length increases from 1.4

length of the grooves. We do not at present understand thts 16.5 um for times between 4 and 1000 s, while

behavior quantitatively. Instead, we will focus on the peakincreases from 450 to 960 A. The anisotropy radgL

on the facet side, which is unaffected by these fluctuationf the shape of the coarsening grooves changes from 32 at
We have also fit the groove peaks to 2D Gaussian lind s to 172 at 1000 s.

shape, examples of which are shown in Fig. 3. The results We plot in Fig. 5 the ratios,/«, and 6;//(;. For

for the position €,) and the deconvoluted full widths at times between 4 and 1000 s, we measure constant ratios

half maximum &, and ,) are shown in Fig. 4. The ¢,/x, =2.0ande;/x} = 0.0069 A~2. Constant, /«x,

width of the specular peak remains resolution limitedsignifies dynamic scaling along tiig, direction [8]. Con-

at all times. The position and the width in th@, stante)/«; indicates thatM is proportional toL?, in

direction reproduce the findings of Ref. [8]. Evolution agreement with Milner’s predictions [10]. We may de-

of the horizontal width proceeds at a much faster ratefine the coarsening regime to correspond to times frem

as shown in Fig. 4. Beginning dtx 107* A~! at the to 1000 s, in which the growth of grooves is governed by

earliest times measured, the two peaks evolve tg  simple scaling relations. This is the principal result of

107> A~Tand4 x 1075 A~!, respectively. The behavior this Letter, namely, that the scaling relations, predicted

of each appears consistent with a power law versuby a model of thermally fluctuating step bunches, are

time. The best fit for times less than 2000 s yields

k= 0.00077t7%4 A~! for the peak on the facet side

and k; = 0.00066¢ %3 A~! for the peak on the step-

bunch side. The exponents 0.44 and 0.35 £gr are | o8 o A
unquestionably different from 0.16 far, and «x,. The X I500 &
width of the peak on the facet side follows a power law
up to 4000 s, at which time it reaches our resolution limit. S L A
The measured exponent of 0.44 is close to the predicted
exponent of 12, given the uncertainties at early times = N
(due to counting statistics) and at very late times (due = 107 g
Q 1 um ™
> 5
s01(a)100s ) () ~
2 2 1 ® 107 Sy,
& 10 X-FWHM (k}) 110 pm
&5 160 {04 -
v 150 [(b) 10005 | ooav 1171 K
% 80 105 T O S
40 10° 10’ 102 10° 10t
TIME (SECONDS)

91510705 0 05 10 15 -10-05 0 05 10 15
Q, (x1072 &1 Q, (x107* A7) FIG. 4. Power law evolution of the position and width of
the first-order groove peaks. Results for two temperatures are
FIG. 3. Line profiles of data obtained at (a) 100 s anddisplayed. Resolution corresponds3 xm in thex direction
(b) 1000 s. and 4500 A in they direction.
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6 , ‘ : ing morphology. The width of the scattering along the
s} () ° 1171 E groove direction evolves as a power law versus time with
S © e 1 an exponent close to/2, and the width of the scattering
>3 - across the grooves and the peak wave vector of the scat-
2 ----;;;—,Mmam&gom tering both evolve with an exponent of&. Such is a
1 clear realization of a simple model of groove coarsening,
0.020 ‘ ‘ ' which focuses on the thermal fluctuations of step bunches
s (b) ----£,=0.72x107eVA™! L and takes the collision between adjacent step bunches as
T o) the rate-limiting mechanism.
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FIG. 5. Scaling relations are demonstrated in the coarsen-
ing regime. (a) Best fit to a constant yields/«, = 2.0. *On sabbatical leave from Robert Wood Johnson Medical
(b) €}/x; =0.0069 A2, This quantity is proportional to School.
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