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Bethe Ansatz Approach to the Thermodynamics of Superconducting Magnetic Alloys
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We derive thermodynamic Bethe ansatz equations for a model describitig—ac Anderson
impurity embedded in a BCS superconductor. The equations are solved analytically in the zero-
temperature limit7 = 0. It is shown that the impurities depress superconductivity in the Kondo limit;
however, atT = 0 the system remains in the superconducting state for any impurity concentration.
In the mixed-valence regime, an impurity contribution to the density of states of the system near
the Fermi level overcompensates a Cooper pairs weakening, and superconductivity is enhanced.
[S0031-9007(98)05846-3]

PACS numbers: 74.25.Ha, 74.62.Dh, 75.20.Hr

Since the pioneering work of Abrikosov and Gor'kov order parameter of the superconducting phase transition
(AG) [1], the problem of superconducting magnetic alloys[8], A, minimizing the thermodynamic potential of the
has been the subject of many early [2] and more recent [ystem, (), with respect toA, §Q/8A = 0. While at
studies. Almost all of the theoretical methods developedinite temperatures the basic equations require a numerical
to attack the Kondo problem in normal metals, from pertur-analysis, in the zero-temperature linfit= 0 they are
bative approaches to Wilson’s numerical renormalizatiorsolved analytically, giving an exact expression for the
group, have been generalized to the case of supercondumpurity contribution to the parameté.
tors. Perhaps the only exception is the Bethe ansatz (BA) At T = 0, the order parameter is given by the expres-
technique, which solves the Kondo problem in normalsion A = A exp(— uimp), WhereA, is the order parame-
metals exactly, but cannot be straightforwardly generalter in the absence of impurities, and the parameitgy,
ized to the case of dilute superconducting alloys. The bafsee Eq. (15)] describes the impurity contribution. The
sic theoretical models describing magnetic impurities inmagnitude and sign qki,,, are determined completely by
normal metals, such as thed (Kondo) and Anderson the position of the impurity energy level; with respect
models, are integrable undéwo additional conditions to the Fermi energy of the host metgl. In the Kondo
(i) An electron-impurity coupling is assumed to be energylimit, where €, lies much belower, winp, is positive,
independent, and (ii) a band electron dispersiincan  and hence magnetic impurities depress superconductivity.
be linearized around the Fermi levEl = vg(k — kr), However, the system remains in the superconducting state
wherekr and vy are the Fermi momentum and velocity, at any concentration of impurities. In the mixed-valence
respectively [4]. Since a carrier dispersion in the superregime, wheres,; lies near the Fermi level, the parameter
conducting state cannot be linearized near the Fermi level;,, becomes negative. An impurity contribution to the
these conditions eliminate superconductivity from the BAdensity of states of the system near the Fermi level domi-
analysis of the behavior of magnetic alloys. nates over a Cooper pairs weakening, and the Anderson

However, it has recently been discerned [5] that thémpurities enhance superconductivity.
basic “impurity” models of quantum optics, describing Throughout this paper, the BA technique and many
a system of Bose particles with a nonlinear dispersiomesults of the exact solution of the Anderson model in
coupled to two-level atoms, exhibitidden integrability normal metals are often used with no special references.
and are thus exactly diagonalized by BA. One of the mosAll needed details can be found in excellent comprehen-
exciting potential applications of the approach developedive reviews [4] and references therein.
may be an extension of the BA method to the Kondo We start with a Hamiltonian that includes the Hamilto-
problem in superconductors and other Fermi systems (e.gnjans of the BCS and Anderson models,
gapless Fermi systems [6]) with an essentially nonlinear

dispersion of charge carriers. H = ZEkaZ,,akU — Z(Aa,&a,ﬁl + A agjag)
In this Letter, we employ hidden integrability of a k.o k

model describing an Anderson impurity with an infinitely + A2/0 + t g+ gt

large Coulomb repulsion on an impurity orbital embedded /8 ,; vk(@io do o ko)

in a BCS superconductor [7] to study the thermodynamic

properties of the system. In the standard manner [4], + Edzd;da + Ud;rdrdfdl, 1)

we find a set of basic thermodynamic equations for the o

energies of elementary excitations of the system. Interma&here we have used the standard spherical harmonic
of these equations, we derive an exact equation for theepresentation for band electron operators. The Fermi
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operator a;, creates a conduction electron with the mpv? = v?/2 andp = 1/27 is the density of states of

momentum modulus, spino =1,], and the energg;, =  the host metal in the normal state.

€x — €r, Where ¢; is the kinetic energy. Only the In the thermodynamic limit, spin “rapiditiesA, are
wave is assumed to be coupled to the impurity, thereforgrouped into bound spin complexes of size

all other partial waves have been dropped. An electron ABD =AM i+ 1 - 2)))2, i=1,...n.
localized in the impurity orbital is described by the Fermi @)
operatorsd,,. The fourth term of Eq. (1) represents the

hybridization of the band and impurity level electronsThe simplest bound states of charge excitations are
with the matrix element,, while the Coulomb repulsion associated with real spin rapidities,, and their charge
on the impurity orbital is described by the last term. Therapldltlesk“) are found from the equation

parameterA = .glzk<aklak1> is assumed to _r_esult from h(ka— )= Ay /2. 5)
the Cooper pairing phenomenon with positive coupling
constantg. In the normal state, Eq. (5) has a single solutibfr’,) =
Diagonalization of the BCS part of Eq. (1) by the 2I'(Ae = i/2). SinceA < T, this solution acquires in
Bogoliubov-Valatin unitary transform [9] gives the superconducting state a small correction of the order
X ) ; of (A/T)?,
H = Epcs + Zwkcka-ckzr + UZ(do—Ckzr + Crodos) - 1/ AV e
ko ko PN =2rA=i/2) — = (=) — . (6
o W =2r0= i/ - 5 (5] Gty €
+ €D did, + Udl did) d, )
= The energy of such “normal” charge complexeg(A) =
where o, = —VK2 + A2 for k <0, w, = Vi2 + 47 (k™) + k), is found to be
for k > 0, andEgcs = D, (k — wi) + A?/g. For sim- wa(A) 1 AN2A — €g/2T 6b
plicity, we have linearized the band spectrum of the host AT A o) A2 +1/4° (6b)

metal in the normal state around the Fermi level and set
vr = 1. The electron momentum and energy are take
relative to the Fermi values. We have alsoket kr in
both the hybridization matrix element = v(kr) and in
the coefficients of the unitary transform.

Moreover, to apply the BA method to the Hamiltonian !
(2), we have omitted the terrmg,c,“r andd,ci,, which
do not conserve the number of excitations in the system;
these terms are assumed to lead only to insignifica
corrections. The bare vacuum of the model is then define
by ci+10) = d,|0) = 0. To obtain the ground state of the
system in the absence of the impurity, one thus needs toz(+)()l ) = z(*)*()\ ) = arctan —ieq/2T
fill all states withk < 0. In the normal stateA = 0, “ Ao — €3/2T +i/2°
Eq. (2) reduces to the integrable version of the Anderson (7)
model diagonalized by Wiegmann [10].

In what follows, we confine ourselves to very large

here the second term describes the “gap” correction.
he sign of this correction is different for differen,
therefore the appearance of the energy gap can either in-
crease or decrease the total energy of normal charge com-
plexes. In what follows, this fact will play a crucial role
in the interplay between the magnetic and superconduct-
ing properties of the system.
' Equation (5) also admlts gap charge complexes with
p|d|t|e3pa—) = *iA COSZa_ and the energw,(A,) =
ARe sinz,. Here,

and the terms of ordex/T" are omitted. In what follows,
values ofU, e; + U > D™, whereD™) is the upper we consider the case of negatigg. The gap complexes

edge of the band, so that double occupancy of th&an then be shown to exist only far> ¢,/2I", and their
impurity level is excluded. The eigenvalues of the modeENETgies are positivey, > 0. Bethe ansatz equations

Hamiltonian (2) are then found from the following Bethe admit also *long” charge complexes associated with spin
ansatz equations (BAE) [7]: complexes (4). We, however, do not consider such

hi — €g)2T — i/2 Mo —in excitations, because, as in the normal state, they do
explik;L) - d = l_[ hy = Aa — 072 not contribute to the low-temperature thermodynamics of
Ty = €q/20 +i/2 0 5 by = Ag + /27 the system. Finally, the subgap spectrum of the model
contains a discrete mode , which is naturally
(3a) i di de (DM) [7], which i I
NN, — h; — l/2 Mo\, — Aa = Ag — i treated as a particle-impurity bound state. In the BA
11:11 A, — h iz l:[ Ne — Ag ¥ i approach, a DM is first found as a solution of a single

particle problem rather than as a multiparticle discrete

(3b) mode predicted by Shiba [11]. It can be shown that
where E = 3 ; w(k;) is the eigenenergyV is the total for e, < 0 the renormalized energy of a DM in the
number of part|cles in the interval, andM is the number  myltiparticle spectrum of the model (2) is much bigger
of particles with spin d0W” The function; = h(k;)  than A, and hence a DM does not contribute to the

is defined byh(k) = r + 55(1 — w'(‘k)), where I' = thermodynamics of the system in the temperature range of
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physical interest” = T., whereT. is the superconducting alloys, the ground state of the system contains only
critical temperature. normal charge complexes and is described by a single
In the standard manner, we then find in the thermoequation for the functioné(A) = £-(A)6(Q — A) +
dynamic limit a set of equations for the renormalizedé+(A)8(A — Q), whereQ is a single zero of the function
energies of the elementary excitationgk), £(A), and  £(X), £(Q) = 0,
kn(A), corresponding to unpaired charge excitations with o
real k;, normal charge complexes and spin complexes, £(A) = d(A) + f dMNR(A — A)éL(N). (11a)
respectively: Q
* Here,R(x) = [(dw/27)exp(—iwx)/(1 + explw]), and
eR) = o) + [ draht) — AFT-£] () = JUo/2m)ex~ian)/(1 + explo)
N d(A) = w,(A) — ] dNR(A — Mw,(V).  (11b)

+ — —
]ed/zr drailhk) = AJF[=n ()] Equations (11) determine completely the physical prop-

o % erties of the ground state of the system, but for our pur-
-y f dAa,[A — h(k)]F[—k,(A)], (8a) poses it is more convenient to derive equations describing
=177 the ground state directly from BAE. Introducing the “par-
EN) = wu(A) + ] dkh'(k)a;[A — h(k)]F[—e(k)] ticle” and “hole” densities of normal charge complexes,
— o(A) =0, A> 0, anda(A) =0, A < Q, respectively,
* we find in the continuous limit of BAE,
+ f dAay(A — A)F[—£(X)]

o %%&A) + %612()\ — ed/2F)
o[ dhea - MR, @) .
€,/2T _ / Y / ~
% o = f dXay(A — M)a(A) + o(A) + (A, (12)
Fo] = 3 [ i = 0F= k(1] =
m=1 2 =% where k(1) = k(1) + k() is the momentum of

n fm dkh'(K)a,[A — h(k)]F[—&(k)]. (8c) complexes. The functions(A) and 5(A) are divided
—e " into the host and impurity parts, i.eg(A) = o,(A) +

The renormalized energy of gap complexes is given by g_lffi(d)l), a(d) fzh&h_()\) + L7'5(M). hThe' 938'
ependent part of the impurity energy is then given
() = @) + EA) — @), 4> eg/2l pendentp PHTEY Sherdy Jven Dy

) o= - [ iAW), (13a)

Here, F[ f(x)] = TIn[1 + exp(f(x)/T)], h’ = dh/dk, 2t

an(x)=Q2n/m) (n® + 4x>)7, and A,,(x) = 8,,6(x)+  Wherep(A) = (A — €,/2I')/(A* + 1/4), while the func-

(1 = Spm)[apn—m| + nim + 2Z?fin’m)_lam—muzk(ﬂ]- tion o;(X) is determined by the same equation as in the
The thermodynamic potentials of the host superconductdiormal state,

Q) and the impurity€); are found to be o) + () = RO\ — e4/2T)
Q,  Egcs * dk oo
L L 2f_x 5, Flme®]. (92) + fQ dNR(A — M)a:(\). (13b)
O, =2e4 — &(eq/210). (9b)

At T = 0, Eq. (10) reads

Therefore, the equation for the order parametén, + L [ dk SE:
Q;)/8A = 0 takes the form | =22 &5 —, (14a)
27 Jo A2 + k2 2A 6A
| — &f dk tanfio(/2T] g 09 0 . .
> o w (k) A SA wherewp is the Debye frequency. By inserting the well-

, ) _ known solution of the Wiener-Hopf equation (13b) into
where the first term is the standard BCS term, Whl|eEq_ (13a), we finally obtain

the second term describes the impurity contribution. s e ]
The low-temperature thermodynamics of tié— < g (A) = _A’ do $(zw)explioQ)
Anderson impurity embedded in a BCS superconductor 2I' J o 27 G(w)
is thus described completely by Egs. (8)—(10). * do' R(w)G () .
At finite temperatures, the thermodynamic BA equa- X S oo SXHiw'e;/2D).
tions require a numerical analysis. However,Tat= 0 (14b)
they are significantly simplified and can be solved ana-
Iytically. Indeed, one can show that the energig€s), Here, ¢(w) and R(w) are the Fourier images of
n(A), andk,(X) are positive. Therefore, as in the normalthe functions ¢(A) and R(A), and €; = €; — 2I'Q

—w 27 w — w + i0
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is the renormalized impurity level. The func- Kondo effect. Moreover, in the mixed-valence regime, an

tions GH(w) =G (—w), G)Q2mw)= 27 X  impurity contribution to the density of states of the system
[(w + 0)/e]’“/T(1/2 + iw) are analytical functions in near the Fermi level even dominates over a Cooper pairs
the upper(+) and lower(—) half-planes. weakening, and superconductivity is enhanced.

Equations (14) determine explicitly the order parameter Finally, it should be emphasized that the results ob-
atT = 0. Neglecting a small gap correction to the normaltained do not contradict a concept of gapless supercon-
value of @ = —(1/27) In(D™)/T), one easily finds the ductivity suggested by Abrikosov and Gorkov [1]. At
solution of Eq. (14a) in the multi-impurity case T = 0 an energy gap in the spectrum of the system may

A = Agexp(— i) (15) vanish at some critical impurity concentration, yvhilg an
0 Kimp) - order parameter along with the parameteremains fi-
The parametepin, = (c;er/I)®P, which is proportional  nite. The BA technique admits an analytical computation
to the impurity concentratior;, describes the impurity of an energy gap & = 0 that can clarify this very im-
contribution. portant and interesting question.
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The ground state of a normal magnetic alloy is well energy gap and an order parameter. As in Refs. [1-3],
known to be composed of the charge complexes [4]. e use the term “order parameter” becadsganishes in
The appearance of a superconducting energy gap results the normal state of the system. In our case of a strongly
in a gap correction to the energy of these complexes, correlated electron system, the parameteis auxiliary.
and hence to the impurity part of the total energy of A real order parameter of the superconducting transition
the system. The sign of the impurity contribution to an is only proportional toA, and may differ from both an
energy balance$E;/8A, is different in the Kondo and energy gap in the spectrum of the system [1] and from the
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Because of the well-developed Kondo screening of a15] Equations (10) and (14a) are not related to integrability
local magnetic moment of impurities, the system exhibits ~ of the model. They are obviously valid for any dilute

a Cooper pairs weakening rather than a pairs breaking magnetic alloy, provided superconductivity of a host metal
predicted by the AG theory [1], not accounting for the is described by the BCS theory.
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