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Bethe Ansatz Approach to the Thermodynamics of Superconducting Magnetic Alloys
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We derive thermodynamic Bethe ansatz equations for a model describing aU ! ` Anderson
impurity embedded in a BCS superconductor. The equations are solved analytically in the zero-
temperature limit,T ­ 0. It is shown that the impurities depress superconductivity in the Kondo limit;
however, atT ­ 0 the system remains in the superconducting state for any impurity concentration.
In the mixed-valence regime, an impurity contribution to the density of states of the system near
the Fermi level overcompensates a Cooper pairs weakening, and superconductivity is enhanced.
[S0031-9007(98)05846-3]
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Since the pioneering work of Abrikosov and Gor’kov
(AG) [1], the problem of superconducting magnetic alloy
has been the subject of many early [2] and more recent
studies. Almost all of the theoretical methods develop
to attack the Kondo problem in normal metals, from pertu
bative approaches to Wilson’s numerical renormalizatio
group, have been generalized to the case of supercond
tors. Perhaps the only exception is the Bethe ansatz (B
technique, which solves the Kondo problem in norm
metals exactly, but cannot be straightforwardly gener
ized to the case of dilute superconducting alloys. The b
sic theoretical models describing magnetic impurities
normal metals, such as thes-d (Kondo) and Anderson
models, are integrable undertwo additional conditions:
(i) An electron-impurity coupling is assumed to be energ
independent, and (ii) a band electron dispersionEk can
be linearized around the Fermi levelEk . yFsk 2 kFd,
wherekF andyF are the Fermi momentum and velocity
respectively [4]. Since a carrier dispersion in the supe
conducting state cannot be linearized near the Fermi lev
these conditions eliminate superconductivity from the B
analysis of the behavior of magnetic alloys.

However, it has recently been discerned [5] that th
basic “impurity” models of quantum optics, describin
a system of Bose particles with a nonlinear dispersi
coupled to two-level atoms, exhibithidden integrability
and are thus exactly diagonalized by BA. One of the mo
exciting potential applications of the approach develop
may be an extension of the BA method to the Kond
problem in superconductors and other Fermi systems (e
gapless Fermi systems [6]) with an essentially nonline
dispersion of charge carriers.

In this Letter, we employ hidden integrability of a
model describing an Anderson impurity with an infinitel
large Coulomb repulsion on an impurity orbital embedde
in a BCS superconductor [7] to study the thermodynam
properties of the system. In the standard manner [
we find a set of basic thermodynamic equations for t
energies of elementary excitations of the system. In ter
of these equations, we derive an exact equation for
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order parameter of the superconducting phase transitio
[8], D, minimizing the thermodynamic potential of the
system,V, with respect toD, dVydD ­ 0. While at
finite temperatures the basic equations require a numeric
analysis, in the zero-temperature limitT ­ 0 they are
solved analytically, giving an exact expression for the
impurity contribution to the parameterD.

At T ­ 0, the order parameter is given by the expres-
sion D ­ D0 exps2mimpd, whereD0 is the order parame-
ter in the absence of impurities, and the parametermimp
[see Eq. (15)] describes the impurity contribution. The
magnitude and sign ofmimp are determined completely by
the position of the impurity energy leveled with respect
to the Fermi energy of the host metaleF . In the Kondo
limit, where ed lies much beloweF , mimp is positive,
and hence magnetic impurities depress superconductivit
However, the system remains in the superconducting sta
at any concentration of impurities. In the mixed-valence
regime, whereed lies near the Fermi level, the parameter
mimp becomes negative. An impurity contribution to the
density of states of the system near the Fermi level dom
nates over a Cooper pairs weakening, and the Anderso
impurities enhance superconductivity.

Throughout this paper, the BA technique and many
results of the exact solution of the Anderson model in
normal metals are often used with no special reference
All needed details can be found in excellent comprehen
sive reviews [4] and references therein.

We start with a Hamiltonian that includes the Hamilto-
nians of the BCS and Anderson models,

H ­
X
k,s

Eka
y
ksaks 2

X
k

sDa
y
k"a

y
k# 1 Dpak#ak"d

1 D2yg 1
X
k,s

yksay
ksds 1 dy

saksd

1 ed

X
s

dy
sds 1 Ud

y
" d"d

y
# d# , (1)

where we have used the standard spherical harmon
representation for band electron operators. The Ferm
© 1998 The American Physical Society
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ks creates a conduction electron with th

momentum modulusk, spins ­", #, and the energyEk ­
ek 2 eF , where ek is the kinetic energy. Only thes
wave is assumed to be coupled to the impurity, therefo
all other partial waves have been dropped. An electr
localized in the impurity orbital is described by the Ferm
operatorsds. The fourth term of Eq. (1) represents th
hybridization of the band and impurity level electron
with the matrix elementyk , while the Coulomb repulsion
on the impurity orbital is described by the last term. Th
parameterD ­ g

P
kkak#ak"l is assumed to result from

the Cooper pairing phenomenon with positive couplin
constantg.

Diagonalization of the BCS part of Eq. (1) by the
Bogoliubov-Valatin unitary transform [9] gives

H ­ EBCS 1
X
ks

vkc
y
kscks 1 y

X
ks

sdy
scks 1 c

y
ksdsd

1 ed

X
s

dy
sds 1 Ud

y
" d"d

y
# d# , (2)

where vk ­ 2
p

k2 1 D2 for k , 0, vk ­
p

k2 1 D2

for k . 0, andEBCS ­
P

ksk 2 vkd 1 D2yg. For sim-
plicity, we have linearized the band spectrum of the ho
metal in the normal state around the Fermi level and s
yF ­ 1. The electron momentum and energy are tak
relative to the Fermi values. We have also setk ­ kF in
both the hybridization matrix elementy ­ yskF d and in
the coefficients of the unitary transform.

Moreover, to apply the BA method to the Hamiltonia
(2), we have omitted the termsdy

sc
y
ks anddscks, which

do not conserve the number of excitations in the syste
these terms are assumed to lead only to insignifica
corrections. The bare vacuum of the model is then defin
by cks j0l ­ ds j0l ­ 0. To obtain the ground state of the
system in the absence of the impurity, one thus needs
fill all states with k , 0. In the normal state,D ­ 0,
Eq. (2) reduces to the integrable version of the Anders
model diagonalized by Wiegmann [10].

In what follows, we confine ourselves to very larg
values ofU, ed 1 U . D s1d, whereD s1d is the upper
edge of the band, so that double occupancy of t
impurity level is excluded. The eigenvalues of the mod
Hamiltonian (2) are then found from the following Beth
ansatz equations (BAE) [7]:

expsikjLd
hj 2 edy2G 2 iy2

hj 2 edy2G 1 iy2
­

MY
a­1

hj 2 la 2 iy2

hj 2 la 1 iy2
,

(3a)
NY

j­1

la 2 hj 2 iy2

la 2 hj 1 iy2
­ 2

MY
b­1

la 2 lb 2 i

la 2 lb 1 i
,

(3b)
where E ­

P
j vskjd is the eigenenergy,N is the total

number of particles in the intervalL, andM is the number
of particles with spin down. The functionhj ; hskjd
is defined by hskd ­

k
2G 1

ed

2G s1 2
k

vskd d, where G ­
e
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pry2 ­ y2y2 andr ­ 1y2p is the density of states of
the host metal in the normal state.

In the thermodynamic limit, spin “rapidities”la are
grouped into bound spin complexes of sizen,

lsn,jd
a ­ ln

a 1 isn 1 1 2 2jdy2, j ­ 1, . . . , n .
(4)

The simplest bound states of charge excitations a
associated with real spin rapiditiesla, and their charge
rapiditiesks6d

a are found from the equation

hsks6d
a d ­ la 6 iy2 . (5)

In the normal state, Eq. (5) has a single solution,ks6d
a ­

2Gsla 6 iy2d. SinceD ø G, this solution acquires in
the superconducting state a small correction of the ord
of sDyGd2,

ks6dsld . 2Gsl 6 iy2d 2
1
2

µ
D

2G

∂2 ed

sl 6 iy2d2
. (6a)

The energy of such “normal” charge complexes,vnsld ­
vsks1dd 1 vsks2dd, is found to be

vnsld
4G

. l 1
1
2

µ
D

2G

∂2 l 2 edy2G

l2 1 1y4
, (6b)

where the second term describes the “gap” correctio
The sign of this correction is different for differentl,
therefore the appearance of the energy gap can either
crease or decrease the total energy of normal charge c
plexes. In what follows, this fact will play a crucial role
in the interplay between the magnetic and supercondu
ing properties of the system.

Equation (5) also admits gap charge complexes w
rapiditiesps6d

a ­ 6iD coszs6d
a and the energyvgslad ­

2DRe sinza. Here,

zs1dslad ­ zs2dpslad ­ arctan
2iedy2G

la 2 edy2G 1 iy2
,

(7)

and the terms of orderDyG are omitted. In what follows,
we consider the case of negativeed . The gap complexes
can then be shown to exist only forl . edy2G, and their
energies are positive,vg . 0. Bethe ansatz equations
admit also “long” charge complexes associated with sp
complexes (4). We, however, do not consider su
excitations, because, as in the normal state, they
not contribute to the low-temperature thermodynamics
the system. Finally, the subgap spectrum of the mod
contains a discrete mode (DM) [7], which is naturall
treated as a particle-impurity bound state. In the B
approach, a DM is first found as a solution of a sing
particle problem rather than as a multiparticle discre
mode predicted by Shiba [11]. It can be shown th
for ed , 0 the renormalized energy of a DM in the
multiparticle spectrum of the model (2) is much bigge
than D, and hence a DM does not contribute to th
thermodynamics of the system in the temperature range
3369
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physical interestT # Tc, whereTc is the superconducting
critical temperature.

In the standard manner, we then find in the therm
dynamic limit a set of equations for the renormalize
energies of the elementary excitations´skd, jsld, and
knsld, corresponding to unpaired charge excitations wi
real kj , normal charge complexes and spin complexe
respectively:

´skd ­ vskd 1
Z `

2`
dla1fhskd 2 lgFf2jsldg

1
Z `

edy2G
dla1fhskd 2 lgFf2hsldg

2
X̀
n­1

Z `

2`
dlanfl 2 hskdgFf2knsldg , (8a)

jsld ­ vnsld 1
Z `

2`

dkh0skda1fl 2 hskdgFf2´skdg

1
Z `

2`

dla2sl 2 l0dFf2jsl0dg

1
Z `

edy2G
dla2sl 2 l0dFf2hsl0dg , (8b)

Ffknsldg ­
X̀

m­1

Z `

2`

dlAnmsl 2 l0dFf2kmsl0dg

1
Z `

2`

dkh0skdanfl 2 hskdgFf2´skdg . (8c)

The renormalized energy of gap complexes is given by

hsld ­ vgsld 1 jsld 2 vnsld, l . edy2G .
(8d)

Here, Ff fsxdg ; T lnf1 1 expsss fsxdyTdddg, h0 ­ dhydk,
ansxd ­ s2nypd sn2 1 4x2d21, and Anmsxd ­ dnmdsxd 1

s1 2 dnmd fajn2mj 1 an1m 1 2
Pminsn,md21

k­1 ajn2mj12ksxdg.
The thermodynamic potentials of the host superconduc
Vh and the impurityVi are found to be

Vh

L
­

EBCS

L
2 2

Z `

2`

dk
2p

Ff2vskdg , (9a)

Vi ­ 2ed 2 jsedy2Gd . (9b)

Therefore, the equation for the order parameterdsVh 1

VidydD ­ 0 takes the form

1 ­
gL
2

Z dk
2p

tanhfvskdy2T g
vskd

2
g

2D

dVi

dD
, (10)

where the first term is the standard BCS term, whi
the second term describes the impurity contributio
The low-temperature thermodynamics of theU ! `

Anderson impurity embedded in a BCS superconduct
is thus described completely by Eqs. (8)–(10).

At finite temperatures, the thermodynamic BA equa
tions require a numerical analysis. However, atT ­ 0
they are significantly simplified and can be solved an
lytically. Indeed, one can show that the energies´skd,
hsld, andknsld are positive. Therefore, as in the norma
3370
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alloys, the ground state of the system contains on
normal charge complexes and is described by a sin
equation for the functionjsld ­ j2sldusQ 2 ld 1

j1sldusl 2 Qd, whereQ is a single zero of the function
jsld, jsQd ­ 0,

jsld ­ dsld 1
Z `

Q
dl0Rsl 2 l0dj1sl0d . (11a)

Here,Rsxd ­
R

sdvy2pd exps2ivxdys1 1 expjvjd, and

dsld ­ vnsld 2
Z `

2`
dl0Rsl 2 l0dvnsl0d . (11b)

Equations (11) determine completely the physical pro
erties of the ground state of the system, but for our pu
poses it is more convenient to derive equations describ
the ground state directly from BAE. Introducing the “pa
ticle” and “hole” densities of normal charge complexe
ssld ­ 0, l . Q, and s̃sld ­ 0, l , Q, respectively,
we find in the continuous limit of BAE,

1
2p

dksld
dl

1
1
L

a2sl 2 edy2Gd

­
Z Q

2`

dl0a2sl 2 l0dssl0d 1 ssld 1 s̃sld , (12)

where ksld ­ ks1dsld 1 ks2dsld is the momentum of
complexes. The functionsssld and s̃sld are divided
into the host and impurity parts, i.e.,ssld ­ shsld 1

L21sisld, s̃sld ­ s̃hsld 1 L21s̃isld. The gap-
dependent part of the impurity energy is then given by

EisDd ­
D2

2G
F, F ­

Z Q

2`
dlfsldsisld , (13a)

wherefsld ; sl 2 edy2Gdysl2 1 1y4d, while the func-
tion sisld is determined by the same equation as in t
normal state,

sisld 1 s̃isld ­ Rsl 2 edy2Gd

1
Z `

Q
dl0Rsl 2 l0ds̃isl0d . (13b)

At T ­ 0, Eq. (10) reads

1 ­
gL
2p

Z vD

0

dk
p

D2 1 k2
2

g
2D

dEi

dD
, (14a)

wherevD is the Debye frequency. By inserting the wel
known solution of the Wiener-Hopf equation (13b) int
Eq. (13a), we finally obtain

EisDd ­ 2
D2

2G

Z `

2`

dv

2p

fs2vd expsivQd
Gs2dsvd

3
Z `

2`

dv0

2pi
Rsv0dGs2dsv0d
v0 2 v 1 i0

expsiv0ep
dy2Gd .

(14b)

Here, fsvd and Rsvd are the Fourier images of
the functions fsld and Rsld, and e

p
d ­ ed 2 2GQ
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is the renormalized impurity level. The func-
tions Gs1dsvd ­ Gs2ds2vd, Gs2ds2pvd ­

p
2p 3

fsiv 1 0dyegivyGs1y2 1 ivd are analytical functions in
the uppers1d and lowers2d half-planes.

Equations (14) determine explicitly the order paramet
at T ­ 0. Neglecting a small gap correction to the norma
value ofQ ­ 2s1y2pd lnsD s1dyGd, one easily finds the
solution of Eq. (14a) in the multi-impurity case

D ­ D0 exps2mimpd . (15)

The parametermimp ­ scieFyGdF, which is proportional
to the impurity concentrationci, describes the impurity
contribution.

The qualitative behavior of the impurity contribution
is clearly seen without a detailed study of the integra
in Eq. (14b). Let us first consider the Kondo limit
of the problem, where the renormalized impurity leve
lies much below the Fermi energy,2e

p
dy2G ¿ 1. The

function fsld is then positive on an essential interva
of integration in Eq. (13a),edy2G , l , Q, and hence
the parametermimp is also positive. The asymptotic
estimate of the integral (14b) givesmimp . cieFyjed j.
Thus, in the Kondo limit, magnetic impurities depres
superconductivity.

If the impurity level is shifted to the vicinity of the
mixed-valence regimejep

d jy2G # 1, the parametermimp

changes the sign at some pointed ­ ẽd , Q. At ed .

ẽd , mimp is negative, and hence the Anderson impuritie
which in the mixed-valence regime play the role of
nonmagnetic resonance energy level rather than that
a local magnetic moment, enhance superconductivity.

In summary, making use of the BA approach, w
have derived the exact equations describing the low
temperature thermodynamics of the model (2). We ha
also derived an equation for the order parameterD, mini-
mizing the thermodynamic potential of the system wit
respect toD [12]. Finally, at T ­ 0 we have evaluated
the impurity part of the total energy of the system, an
thus found an exact zero-temperature expression for t
order parameter.

The results obtained have a clear physical meanin
The ground state of a normal magnetic alloy is we
known to be composed of the charge complexes [4
The appearance of a superconducting energy gap res
in a gap correction to the energy of these complexe
and hence to the impurity part of the total energy o
the system. The sign of the impurity contribution to a
energy balance,dEiydD, is different in the Kondo and
mixed-valence regimes, leading, respectively, to eith
a depression or an enhancement of superconductivi
Equation (15) shows that atT ­ 0 the system remains in
the superconducting state at any impurity concentratio
Because of the well-developed Kondo screening of
local magnetic moment of impurities, the system exhibi
a Cooper pairs weakening rather than a pairs breaki
predicted by the AG theory [1], not accounting for the
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Kondo effect. Moreover, in the mixed-valence regime, a
impurity contribution to the density of states of the system
near the Fermi level even dominates over a Cooper pa
weakening, and superconductivity is enhanced.

Finally, it should be emphasized that the results ob
tained do not contradict a concept of gapless superco
ductivity suggested by Abrikosov and Gor’kov [1]. At
T ­ 0 an energy gap in the spectrum of the system ma
vanish at some critical impurity concentration, while an
order parameter along with the parameterD remains fi-
nite. The BA technique admits an analytical computatio
of an energy gap atT ­ 0 that can clarify this very im-
portant and interesting question.
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