VOLUME 80, NUMBER 15 PHYSICAL REVIEW LETTERS 13 ARIL 1998

de Haas—van Alphen Effect in Anisotropic Superconductors in Magnetic Fields Well BelovH .,

L.P. Gorkov? and J. R. Schrieffér
'National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32306
2L.D. Landau Institute for Theoretical Physics, Russian Academy of Sciences, 117334 Moscow, Russia
(Received 21 October 1997

We develop a quasiclassical approach to the energy spectrum of an anisotropic superconductor in a
magnetic field,B, such thatH,; < B < H.. Low temperature de Haas—van Alphen oscillations are
considered for two cases: (1) the extremal electron orbit may coincide with a symimetand (2) the
orbit crossegoints where the superconducting order parameter has zeros. The signal is shown to be
small in both cases. [S0031-9007(98)05873-6]

PACS numbers: 74.20.Fg, 72.15.Gd, 74.60.-w

The de Haas—van Alphen (dHvA) effect in supercon- We investigated the problem for two situations men-
ductors continues to attract theoretical and experimentdloned above. Our conclusion in the first case is that the
efforts since its observation in NBe at fieldsB below the  dHvVA in the regime,H.; < B < H,,, is suppressed by
critical field H., [1]. The effect was later seen in;8i, the electron’s scattering on periodic superconducting cur-
Nb;Ge, and borocarbides, for whidd.,(T = 0) is high  rents in the vortex state, leading to Dingle’s temperature
enough to satisfy the criteriom.7 > 1 (see [2] for re- of order of A(&y/d). The excitation spectrum in the sec-
cent review). Theoretical efforts [3—9] have mostly beenond situation possesses a topologic property which ex-
concentrated on the field ranffe, — B << H.,. Nonzero cludes level crossing the chemical potential.
dHVA effect is considered to be due to a finite normal den- We developed below the approach which allows a
sity of states at the Fermi level, which survives beldw.  general treatment of a superconductor in the mixed state.

The normal dHVA effect is a quasiclassical feature: In the chosen field range the spatial dependence of the
the total number of states occupied by electrons in th@ap is of the form

magnetic field being largey = wi > 1, a minor field A(r) = Aei®® (1)
N AB w, . . . :

variation ~ - leads to crossing the chemlc_al PO tentlal Superconducting currents outside the vortex cores are

by a single level and changing the magnetization in a

steplike manner. fr) = — < 6‘2<A _ Ly > =_C 52 2
We investigate the possibility of a low temperature jr) 4o F 2e ¢ 4 L Q. @

dHvA for a superconductor in the field reginfé.; < The topological singularity of the phase at each paint,

B < H.,, where distance between vorticesis large  \yhere the gap passes through zero, results in the following
enough to separately treat the “bulk” of the superconduc(-_:.qu(,monS [12]:

tor, where the gap valudA(r)|, is a constant, and the

vortex cores, occupying only a fractiot€,/d)> < 1, of curlQ = B — ¢y Z S(r —r;),
the volume, and their contribution to the dHvA may be i (3)
neglected. Unfortunately, no experiments have been per- B — §7AB = ¢025(r -r;).

formed so far in this fundamentally important field range
due to limitations imposed by sensitivity of the current ex-gqr the square latticar] = d(n, m)],
perimental methods. ikr

The singularity of the isotropic BCS model At= |A| B(r) = %o Z 62—; <k _ 27 (l,k)). (4)
results in an exponential reduction of the dHvA amplitude d> K25 + 1 d
[7]. This might change if superconductivity is anisotropic From (2) and (4) it follows that
or the gap has zeros at some symmetry points or on _ _
lines along the Fermi surface. For the latter case if the B = #od >, |Ql ~ ¢o/d; AB ~ B(d/5.)>, (5)
extremal electron trajectory coincides with a zero-gapwvhere B = B is the spatial field average, aniiB the
line, one may expect an increase in the dHVA signal fofyeak deviation of8 from B. For simplicity we assume
the corresponding field direction [10]. Another caseds “ two dimensionality of the Fermi surface.
wave” superconductivity, now commonly assumed in high Quite generally, the oscillatory part of the magnetiza-
T. cuprates. Here the gap crosses zero at some symmetiy¥n M is contained in the expression
pointsof the (2D) Fermi surface. This fact is known [11]
to give rise to a finite density of states in the magnetic M = _% Spu(T Z Gn(z)>. (6)

field at the chemical potential. z=i@n+ )T
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Spul---) means trace over all states (including spin—p,. After p, is excluded, we have
variables) of the componenit;;(z) of the matrix A 1 e . A
H,H = %{Px + Pyt = 2 (0:Qe + 5)Q)), (13)

Aoy G Fl2) 7
G(z) f+( ) _g( ) s ( ) A . .
z z where p,,p, are the Kkinetic momenta operators,
which satisfies the system of the Gor'kov equations, ~ [Px Py] = ie/cB. Here and below all calculations were
(i ) done in the momentum representation. Correspondingly,
- H—u ~ - . i}
( A - (- M)>G(z) =1. (8 Aoy = —iB(d/dpy). (14)

. . 1 /. A H
In (8) the spatial gap dependence (1), of the phi@e, is The bare Ha}mlltqnlan%(pf + p3). has e|ge.nvalues
removed by an appropriate gauge transformation. On th&x = @c(N + 3), with real wave functions, which may
other hand, the gap itsely, = A(p), may be anisotropic b€ used for calculating Spiur-} in Eq. (6). The terms
and depend on the position along the Fermi surface.  linearinQ in (13), and the gap terms in (8) both result in
For simplicity we consider a spherical Fermi surface.nondiagonal transitions between free-electron eigenstates

Two Hamiltoniansi and & in Eq. (8) act on operatog  [OF the matrixG(z)y y of the form

and¢ " in the definitions of the Green functiof;(z) and > Avw Fuis > AvwiGu s (15)
F*(z). Inamagnetic field they are N N

I 1 /. e 2 if A(p) is anisotropic.

H,H = %(P * ?A(r)> ‘ (©) In the weak coupling limit the gap dependence on

. _ _distance to the Fermi surface may be neglected. Only
Equations (3) and (4) properly determine the magnetighe angular dependence of the gayp), on position of
field outside the cores and the part of the vecAdr)  the electron momenta along the Fermi surface is relevant.

[or Q(r)] responsible for the periodic variations, leaving For instance, for/-wave gapA@ p? — p}%, one has
unspecified the potential(r) which corresponds to the

average fieldp = curlAo(r). We write forA(r) in (9) AY(p) = Agcos2¢ = Ao(1 — 2p;/pp).  (16)
A(r) = Ao(r) + Q(r) (10) The only nonzero matrix elements of operafgrare
and use below the Landau gauge, = —By. [A (Py)ww-1 = (Py)v-1nx = \NeB/2c. (17)

different choice ofA((r) would redefineQ(r) without
affecting its topological singularities in (3).] Expanding one immediately obtains

in (9
") [AD(p)]yyea = (1/2)A,. (18)

Vr - Q(r) (11) [The diagonal elements are zero, as expected from the
broken gap symmetry in (16). We have previously used

to first order inQ, comparing the linear term with the the fact that at the Fermi surfade = p7/2mw..]

order of magnitude of the gap in (8), it follows from (5) From (17) and (18) it is straightforward to conclude

l(evr/c)0| ~ vp/d < A; (d > &). (12) that the matrix elementd\y »/, in (15), for arbitrary gap

anisotropy are of the form
To start with, we omit theQ term in (11). In the A _ A (19)
Landau gaugep, is conserved. This is also true for N.N' N=NT-
Egs. (8), for the gap couples together momeptaand | Equation (8) then becomes

2 A 1 2
H B = —<p + iAo(r)> + £
2m c c

[z — w(N + %) + wléno; Ay )A -
’ Gy-nw(z) = Dy i - (8)
%( —Ans; [z = @ N + 3) + uldo
Introducing the notation for the chemical potential
w=wNo+ j, (20)

where Ny is the integer part ofu/w., one may rewrite (§ for any function f participating in (8), in the new
representation

—in 1 i in
FO =S e p =g [ e, (21)
withn = N — Ny in (8). As a result, one arrives at the following system of equations:
. d _
Z —iwegz + Ap) N
g a4, |G@e,e) =8(e — @), (22)
“Alp) 2w
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with the periodicity, f(¢ + 27) = f(¢), imposed as substitution
the boundary condition. The new Gorkov's matrix

G(z; ¢, ') can be written in the obvious form, E=E+ h(g) =E + (e/c)vr - Q(r). (31)
The dependence o is determined by the classical
2 1 u (@) . ; e
Gz 0, 90") = Z 7( > motion of an electron along a circular orbit with the
— 7z — E, \vale)

Larmour radiusy; = vr/w.,

® (u3(¢"), vi(@), (23) £ — 1o + (—rpCoSw.t,ry SiNw,1), (32)
where the BCS notations are adopted for the normallzegnd Vi
eigenfunctionu,(¢), va(¢)]. In (23) E, is the energy of
the level A with respect to the chemical potential. The
eigenvalue problem for thie:, v) functions becomes

=r,¢ = w.t. Assuming that the system in
the periodic potentials\(¢), 2(¢) is solved, the Green
functions must be averaged over all trajectories.

The term withh(¢) represents interactions with peri-
(E —iweg5 dw + wu(e) + Alp)v(e) =0, odic currents (2), as seen by an electron moving along the
(E + 4 (o) + Ale)u(p) = 0 (24)  circle rp with the Fermi velocityvr. Characteristic fre-

i dso mvie P ’ quencies of this motion through the currents’ lattice are of
where (u, v) must be periodic atp — ¢ + 27, as in  order ofvr/d, much larger thanv.. The rapidly oscil-
Eqg. (21). Degeneracy of each level remains the same dating 2(¢) terms, while being small compared with the
for free electrons in the magnetic fieRl (per spin;V is  overall gap scale, may smear away fine gap features, such
the total volume), as the spectrum (29). These oscillations take place with a

= 2 change ofp of order of6¢ ~ (d/ry) < 1.
VeBdp:/Q2m)c. (25) Applying the Poisson’s summation formula to expres-
The expression (6) may be rewritten as sion (8), taking into account that only the narrow vicinity
we . of the Fermi surface|A| = |A — Ny| < Ny, may con-
M=- > uale)PIn(Ey) (6')  tribute to the dHVA effect, the oscillatory pam,., after
Ao

integration by parts, may be written in the form
where again we omitted dependencegn Summation
in A runs over all new eigenvaluds,. As for the spin

energy, it is always small compared to other scales below.  iue <2R Z 1 o 2mk< )}
We

osc

Equations (24) get simpler if we remoye  (2m)2c
— _i(p’/wc)‘P 71 26
u,v e u,v),
e v) = e L) 26) x [ g Paep)an
and come over to the functionis, z), —
B=1/2y - i v =1/2c iy, (26) (33)
in terms of which the problem (25) reduces to the(;orrespondmgly, the two terms arising from differentia-
s ; tion of the expression in the bold parentheses, present os-
Schrodlnger equation, i ) ; )
5 ) . cillations due to a level crossing the chemical potential (at
1 A -
2= [0’ + Aleh], (28) = [ mMTas(E ak, (33)

which describes global features for motion of a quasiparer a singularity due to a specific structure of the excita-

ticle along the Fermi surface in the magnetic fidld In  tions spectrum in the superconducting state,
particular, ajE| < A, in (16) excitations are confined in [+x Vo d
= i

the four “potential wells” formed byA%(¢) around the
pointsg; = § + k5. The low energy pattE < A) of

uil)n(Es)dA.  (33)

the spectrum is given by the two branches Transition from summation ovex to integration in (33)
_ ) _ poses the problem of expressing the enefgy as a
= *Wohon;  n=01,.... (29)  fynction of the continuous variabie
It is clear that (29) is not applicable at too low To implement this approach to the two situations dis-
energyE, because the energy scale.Ao)!/? is small, cussed, consider first a symmelige of zeros, and the
if compared to the) terms in Eq. (11): field direction such that the extremal electron orbit would

12 _ ~1/2 lie onit. In (22) and (24) the gap equals zero identically,
(d/vF) (w:A0)"* ~ (préo)™? < 1. (30) so the electron (hole) wave functions are of the form
To incorporate the) terms into the scheme of Eqgs. (22) v
and (24) we apply the quasiclassical approach developedexdﬂs(gp)] S(p) = 1 f [E + h(¢))]de'.
in [13]. Omitting details of the derivation, the resulting we Jo
equation can be obtained from (22) and (24) by the (34)
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The eigenvalue problem follows from the periodicity of function exponentially decays & — ¢i| > w./A, on
(34): which scale variation ofi(¢) is negligible. For a given
- 1 2w , , ’ trajectory, hence, the position of such a level is shifted:

2mA = SQm) = P fo [Ex + h(@")]de'.  (34)  E = —p(py). Thus, levels close to the chemical potential
¢ remain separated from the manifold of leved$ > A2,
Their dependence on magnetic figddshows up through
dependence dfi| ~ vy/d ~ B'/2, i.e., is the same as in
) (29). Averaging over trajectories smears each level into
N ik g , ; a band|AE| ~ vr/d. Recall now that one level has the
Mo (k) = Moy (k)<exp w. fo hig))de > (35) capacity (25). In the 2D case it produces the density of

The average in (35) is taken over electronic orbits. ByStates of order [15]

Comparison with (33) and (38 leads to the relation
between thé& components oM. in the superconducting
and normal states,

making use of (3), (31), and (32), the exponent may be s eB d vA/B 1/2
presented as the integral over the orbit area vt o ; ~v ; <H 2)
2 ¢
Lf he)de = = ij ~dl=(1/2¢y) To summarize, we developed a rigorous approach to
wc Jo c gquantization of motion of superconducting excitations in

= the presence of magnetic field < H.,. The dHvVA
X - -r; .
ff [B ¢Ozi:6(r r’):|dS effect is formulated in terms of a singularity produced

(36) either by the Fermi function or by a modified structure
Y the factor i t(35 fluctuati .of levels in the superconducting state. For an order
ere, the factor in exponent (35) measures fluctuations IBarameter with a line of zeros there is a field direction

numb.e:j.of flu>t<es Ie?tplrcled by elle(;troglg qrbtiig. Fofr th at which dHvA oscillations may become observable. In
a periodic vortex lattice we evaluate (36) N terms ot th€case of points of zeros on a 2D Fermi surface the effect
Gaussian distribution fot, with the averagey,, as

is expected to be weaker. Analysis of dHVA effects

g = Qmrid)/d* = 2m(r,/d). (37)  produced by singularities in the energy spectrum of the
For the Dingle factor, exp-2mcm/erB], we get superconducting state will be published elsewhere.
This work was supported by the NHMFL through NSF
1/7 ~ Ag(&o/d). (38)  cooperative agreement No. DMR-9016241 and the State

Note that (37) is but an estimate. In any case, the dHvAf Florida, and No. DMR 9629987 (J.R.S.).
signal will be very weak(rw.)™' ~ prd > 1.
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