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de Haas–van Alphen Effect in Anisotropic Superconductors in Magnetic Fields Well BelowHc2
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We develop a quasiclassical approach to the energy spectrum of an anisotropic superconductor in a
magnetic field,B, such thatHc1 ø B ø Hc2. Low temperature de Haas–van Alphen oscillations are
considered for two cases: (1) the extremal electron orbit may coincide with a symmetryline and (2) the
orbit crossespoints where the superconducting order parameter has zeros. The signal is shown to be
small in both cases. [S0031-9007(98)05873-6]
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The de Haas–van Alphen (dHvA) effect in supercon
ductors continues to attract theoretical and experimen
efforts since its observation in Nb2Se at fieldsB below the
critical field Hc2 [1]. The effect was later seen in V3Si,
Nb3Ge, and borocarbides, for whichHc2sT ­ 0d is high
enough to satisfy the criterionvct ¿ 1 (see [2] for re-
cent review). Theoretical efforts [3–9] have mostly bee
concentrated on the field rangeHc2 2 B ø Hc2. Nonzero
dHvA effect is considered to be due to a finite normal de
sity of states at the Fermi level, which survives belowHc2.

The normal dHvA effect is a quasiclassical featur
the total number of states occupied by electrons in t
magnetic field being large,N . m

vc
¿ 1, a minor field

variation DB
B , vc

m leads to crossing the chemical potentia
by a single level and changing the magnetization in
steplike manner.

We investigate the possibility of a low temperatur
dHvA for a superconductor in the field regimeHc1 ø
B ø Hc2, where distance between vorticesd is large
enough to separately treat the “bulk” of the supercondu
tor, where the gap value,jDsrdj, is a constant, and the
vortex cores, occupying only a fraction,sj0ydd2 ø 1, of
the volume, and their contribution to the dHvA may b
neglected. Unfortunately, no experiments have been p
formed so far in this fundamentally important field rang
due to limitations imposed by sensitivity of the current ex
perimental methods.

The singularity of the isotropic BCS model atE ­ jDj

results in an exponential reduction of the dHvA amplitud
[7]. This might change if superconductivity is anisotropi
or the gap has zeros at some symmetry points or
lines along the Fermi surface. For the latter case if t
extremal electron trajectory coincides with a zero-ga
line, one may expect an increase in the dHvA signal f
the corresponding field direction [10]. Another case is “d-
wave” superconductivity, now commonly assumed in hig
Tc cuprates. Here the gap crosses zero at some symm
pointsof the (2D) Fermi surface. This fact is known [11
to give rise to a finite density of states in the magnet
field at the chemical potential.
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We investigated the problem for two situations men
tioned above. Our conclusion in the first case is that t
dHvA in the regime,Hc1 , B , Hc2, is suppressed by
the electron’s scattering on periodic superconducting c
rents in the vortex state, leading to Dingle’s temperatu
of order ofDsj0ydd. The excitation spectrum in the sec
ond situation possesses a topologic property which e
cludes level crossing the chemical potential.

We developed below the approach which allows
general treatment of a superconductor in the mixed stat

In the chosen field range the spatial dependence of
gap is of the form

Dsrd ­ Deifsrd. (1)

Superconducting currents outside the vortex cores are

jsrd ­ 2
c

4p
d22

L

µ
A 2

c
2e

=f

∂
; 2

c
4p

d22
L Q . (2)

The topological singularity of the phase at each point,ri ,
where the gap passes through zero, results in the follow
equations [12]:

curlQ ­ B 2 f0

X
i

dsr 2 rid ,

B 2 d2
LDB ­ f0

X
i

dsr 2 rid .
(3)

For the square lattice [ri ­ dsn, md],

Bsrd ­
f0

d2

X
k

eik?r

k2d
2
L 1 1

;

µ
k ­

2p

d
sl, kd

∂
. (4)

From (2) and (4) it follows that

B̄ ­ fod22, jQj , f0yd; DB , B̄sdydLd2, (5)

where B ­ B̄ is the spatial field average, andDB the
weak deviation ofB from B̄. For simplicity we assume
two dimensionality of the Fermi surface.

Quite generally, the oscillatory part of the magnetiz
tion M is contained in the expression

M ­ 2
m

B
Spur

√
T

X
z­is2n11dpT

G11szd

!
. (6)
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Spurs· · ·d means trace over all states (including sp
variables) of the componentG11szd of the matrix

Ĝszd ­

Ω
G szd F szd

F 1szd 2Ḡszd

æ
, (7)

which satisfies the system of the Gor’kov equations,√
z 2 sĤ 2 md D

2D 2z 2 s ˆ̃H 2 md

!
Ĝszd ­ 1̂ . (8)

In (8) the spatial gap dependence (1), of the phasefsrd, is
removed by an appropriate gauge transformation. On
other hand, the gap itself,D ; Dspd, may be anisotropic
and depend on the position along the Fermi surface.

For simplicity we consider a spherical Fermi surfac
Two HamiltoniansĤ and ˆ̃H in Eq. (8) act on operatorŝc
andĉ1 in the definitions of the Green function,Gszd and
F 1szd. In a magnetic field they are

ˆ̃H, Ĥ ­
1

2m

µ
p̂ 6

e
c

Asrd
∂2

. (9)

Equations (3) and (4) properly determine the magne
field outside the cores and the part of the vectorAsrd
[or Qsrd] responsible for the periodic variations, leavin
unspecified the potentialA0srd which corresponds to the
average field,̄B ­ curlA0srd. We write forAsrd in (9)

Asrd ­ A0srd 1 Qsrd (10)

and use below the Landau gaugeAx0 ­ 2B̄y. [A
different choice ofA0srd would redefineQsrd without
affecting its topological singularities in (3).] Expandin
in (9)

ˆ̃H , Ĥ .
1

2m

µ
p̂ 6

e
c

A0srd
∂2

6
e
c

v̂F ? Qsrd (11)

to first order inQ, comparing the linear term with the
order of magnitude of the gap in (8), it follows from (5)

jseyFycdQj , yFyd ø D; sd ¿ j0d . (12)

To start with, we omit theQ term in (11). In the
Landau gaugepx is conserved. This is also true fo
Eqs. (8), for the gap couples together momentapx and
in

the

e.

tic

g

g

r

2px. After px is excluded, we have

ˆ̃H, Ĥ .
1

2m
hp̂2

x 1 p̂2
y j 6

e
mc

sp̂xQx 1 p̂yQyd , (13)

where p̂x , p̂y are the kinetic momenta operators,
fp̂x , p̂yg ­ ieycB̄. Here and below all calculations were
done in the momentum representation. Correspondingly

Â0x ­ 2iB̄sdydpyd . (14)

The bare Hamiltonian,1
2m sp̂2

x 1 p̂2
y d, has eigenvalues

En ­ vcsN 1
1
2 d, with real wave functions, which may

be used for calculating Spurh· · ·j in Eq. (6). The terms
linear inQ in (13), and the gap terms in (8) both result in
nondiagonal transitions between free-electron eigenstat
for the matrixĜszdN ,N̄ of the formX

N 0

DN ,N 0F
1

N 0N̄ ,
X
N 0

DN ,N 0GN 0N̄ , (15)

if Dspd is anisotropic.
In the weak coupling limit the gap dependence on

distance to the Fermi surface may be neglected. On
the angular dependence of the gap,Dspd, on position of
the electron momenta along the Fermi surface is relevan
For instance, ford-wave gap,Dsdd ~ p2

x 2 p2
y , one has

Dsddspd ­ D0 cos2w ; D0s1 2 2p2
yyp2

Fd . (16)

The only nonzero matrix elements of operatorp̂y are

sp̂ydN ,N21 ­ sp̂ydN21,N ­
q

NeB̄y2c . (17)

One immediately obtains

fDsddspdgN ,N62 ­ s1y2dD0 . (18)

[The diagonal elements are zero, as expected from t
broken gap symmetry in (16). We have previously use
the fact that at the Fermi surfaceN ø p2

Fy2mvc.]
From (17) and (18) it is straightforward to conclude

that the matrix elements,DN ,N 0 , in (15), for arbitrary gap
anisotropy are of the form

DN ,N 0 ; DN2N 0 . (19)

Equation (8) then becomes
X
N 0

√
fz 2 vcsN 1

1
2 d 1 mgdN 0 ,0; DN 0

2DN 0 ; f2z 2 vcsN 1
1
2 d 1 mgdN 0 ,0

!
ĜN2N 0,N̄ szd ­ s1̂dN ,N̄ . (80)

Introducing the notation for the chemical potential
m ­ vcN0 1 m̄ , (20)

where N0 is the integer part ofmyvc, one may rewrite (8′) for any function f participating in (8′), in the new
representation

fswd ­
X
n

e2inwfn; fn ­
1

2p

Z p

2p
einwfswd dw , (21)

with n ­ N 2 N0 in (8′). As a result, one arrives at the following system of equations:0@ z 2 ivc
d

dw 1 m̄ Dswd
2Dswd 2z 2 ivc

d
dw 1 m̄

1AĜsz; w, w0d ­ dsw 2 w0d , (22)
3361
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with the periodicity, fsw 1 2pd ­ fswd, imposed as
the boundary condition. The new Gor’kov’s matrix
Ĝsz; w, w0d can be written in the obvious form,

Ĝsz; w, w0d ­
X
l

1
z 2 El

µ
ulswd
ylswd

∂
≠ sssup

lsw0d, yp
lsw0dddd , (23)

where the BCS notations are adopted for the normaliz
eigenfunctionfulswd, ylswdg. In (23) El is the energy of
the level l with respect to the chemical potential. The
eigenvalue problem for thesu, yd functions becomes

sE 2 ivc
d

dw 1 m̄duswd 1 Dswdyswd ­ 0 ,

sE 1 ivc
d

dw 2 m̄dyswd 1 Dswduswd ­ 0 ,
(24)

where su, yd must be periodic atw ! w 1 2p, as in
Eq. (21). Degeneracy of each level remains the same
for free electrons in the magnetic field̄B (per spin;V is
the total volume),

VeB̄dpzys2pd2c . (25)

The expression (6) may be rewritten as

M ­ 2
me

2pc

X
l,s

fjulswdj2gnsEld , (60)

where again we omitted dependence onpz. Summation
in l runs over all new eigenvaluesEl. As for the spin
energy, it is always small compared to other scales belo

Equations (24) get simpler if we removēm,

su, yd ! e2ism̄yvcdwsū, ȳd , (260)

and come over to the functionss y, zd,

ū ­ 1y2s y 2 izd; ȳ ­ 1y2sz 2 iyd , (26)

in terms of which the problem (25) reduces to th
Schrödinger equation,

E2y ­ 2v2
cy00 1 fD2swd 2 vcD0swdgy , (27)

z ­ 2
1
E

fsvcy0 1 Dswdyg , (28)

which describes global features for motion of a quasipa
ticle along the Fermi surface in the magnetic fieldB̄. In
particular, atjEj , D0 in (16) excitations are confined in
the four “potential wells” formed byD2swd around the
pointswk ­

p

4 1 k
p

4 . The low energy partsE ø Dd of
the spectrum is given by the two branches

En ­ 62
p

vcD0n ; n ­ 0, 1, . . . . (29)

It is clear that (29) is not applicable at too low
energyEn because the energy scalesvcD0d1y2 is small,
if compared to theQ̂ terms in Eq. (11):

sdyyFd svcD0d1y2 , spFj0d21y2 ø 1 . (30)

To incorporate theQ terms into the scheme of Eqs. (22
and (24) we apply the quasiclassical approach develop
in [13]. Omitting details of the derivation, the resulting
equation can be obtained from (22) and (24) by th
3362
ed
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w.

e

r-

)
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substitution

E ) E 1 hswd ; E 1 seycdvF ? Qsrd . (31)

The dependence onw is determined by the classical
motion of an electron along a circular orbit with the
Larmour radius,rL ­ yFyvc,

r̂ ! r0 1 s2rL cosvct, rL sinvctd , (32)

and vF ­ Ùr, w ­ vct. Assuming that the system in
the periodic potentialsDswd, hswd is solved, the Green
functions must be averaged over all trajectories.

The term withhswd represents interactions with peri-
odic currents (2), as seen by an electron moving along t
circle rL with the Fermi velocityyF . Characteristic fre-
quencies of this motion through the currents’ lattice are o
order of yFyd, much larger thanvc. The rapidly oscil-
lating hswd terms, while being small compared with the
overall gap scale, may smear away fine gap features, su
as the spectrum (29). These oscillations take place with
change ofw of order ofdw , sdyrLd ø 1.

Applying the Poisson’s summation formula to expres
sion (6′), taking into account that only the narrow vicinity
of the Fermi surface,jl̄j ­ jl 2 N0j ø N0, may con-
tribute to the dHvA effect, the oscillatory part,Mosc, after
integration by parts, may be written in the form

Mosc

­
ime

s2pd2c

√
2 Re

( X
k,s

1
k

exp

"
2ipk

√
m

vc

!#

3
Z 1`

2`
e2ipkl̄ d

dl̄
fjul̄j2nsEl̄dg dl̄

)!
.

(33)

Correspondingly, the two terms arising from differentia
tion of the expression in the bold parentheses, present
cillations due to a level crossing the chemical potential (a
T ­ 0),

)
Z 1`

2`
e2pikl̄julj2dsEl̄d dl̄ , (330)

or a singularity due to a specific structure of the excita
tions spectrum in the superconducting state,

)
Z 1`

2`

e2pikl̄ d
dl̄

sjul̄j2dnsEl̄d dl̄ . (3300)

Transition from summation overl to integration in (33)
poses the problem of expressing the energyEl̄ as a
function of the continuous variablēl.

To implement this approach to the two situations dis
cussed, consider first a symmetryline of zeros, and the
field direction such that the extremal electron orbit woul
lie on it. In (22) and (24) the gap equals zero identically
so the electron (hole) wave functions are of the form

expf6iSswdg; Sswd ­
1

vc

Z w

0
fE 1 hsw0dg dw0.

(34)
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The eigenvalue problem follows from the periodicity o
(34):

2pl̄ ­ Ss2pd ­
1

vc

Z 2p

0
fEl 1 hsw0dg dw0. (340)

Comparison with (33) and (33′) leads to the relation
between thek components ofMosc in the superconducting
and normal states,

MS
oscskd ­ MN

oscskd
ø
exp

ik
vc

Z 2p

0
hsw0d dw0

¿
. (35)

The average in (35) is taken over electronic orbits. B
making use of (3), (31), and (32), the exponent may
presented as the integral over the orbit area

1
vc

Z 2p

0
hswd dw ­

e
c

I
Q ? dl ­ s1y2f0d

3
ZZ "

B̄ 2 f0

X
i

dsr 2 rid

#
dS .

(36)

Here, the factor in exponent (35) measures fluctuations
number of fluxes encircled by electronic orbitsnw . For
a periodic vortex lattice we evaluate (36) in terms of th
Gaussian distribution fornw with the average,nw, as

nw ­ s2prLddyd2 ­ 2psrLydd . (37)

For the Dingle factor, expf22pcmyetB̄g, we get

1yt , D0sj0ydd . (38)

Note that (37) is but an estimate. In any case, the dH
signal will be very weak:stvcd21 , pFd ¿ 1.

Turn now to the other case when the orbits of norm
electrons would cross points at the Fermi surface wh
the gap changes sign and passes through zero, a
Eq. (16). Although (29) is not applicable at smalln, its
structure indicates that the dHvA contribution (33′) is to
be zero identically. In fact, the dHvA effect consists i
pushing up an energy level through the chemical poten
at small field variation. Equation (25) is qualitativel
different from the spectrum of normal electrons in tha
while in the latter case levels are pushed up fro
the bottom of the band,d-wave superconductivityfixes
levels structure in the vicinity of the chemical potentia
The (1) and (2) branches in (29) are moving up an
down, respectively, with the field increase. The existen
of levels in the vicinity of E ­ 0 is a topological
property for a solitonlike problem [14] at each poin
wk ­

p

4 1 k
p

2 , where (16) changes its sign. We argu
that superconducting currents (31) only randomize t
spectrum (29) without a change in the above physics.

Consider the limiting case whenDswd changes sign in
a steplike manner [14]:

Dswd ­ D sgnsw 2 wkd . (39)

Equation (27) becomes the familiar Schrödinger equ
tion with the d-function potential. There is only one
bound state (for eachwk) which lies exactly atE ­ 0
(neglecting a weak overlap between points). The wa
f

y
be

in

e

vA

al
ere
s in

n
tial
y
t,
m

l.
d
ce

t
e
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a-
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function exponentially decays atjw 2 wkj . vcyD, on
which scale variation ofhswd is negligible. For a given
trajectory, hence, the position of such a level is shifted
E ­ 2hswkd. Thus, levels close to the chemical potentia
remain separated from the manifold of levelsE2 . D2.
Their dependence on magnetic fieldB̄ shows up through
dependence ofjhj , yFyd , B̄1y2, i.e., is the same as in
(29). Averaging over trajectories smears each level int
a band,jDEj , yFyd. Recall now that one level has the
capacity (25). In the 2D case it produces the density o
states of order [15]

yS ,
eB̄
c

d
yF

, yN D

´F

µ
B̄

Hc2

∂1y2

.

To summarize, we developed a rigorous approach t
quantization of motion of superconducting excitations in
the presence of magnetic field̄B ø Hc2. The dHvA
effect is formulated in terms of a singularity produced
either by the Fermi function or by a modified structure
of levels in the superconducting state. For an orde
parameter with a line of zeros there is a field direction
at which dHvA oscillations may become observable. In
case of points of zeros on a 2D Fermi surface the effe
is expected to be weaker. Analysis of dHvA effects
produced by singularities in the energy spectrum of th
superconducting state will be published elsewhere.
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