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Duality Transformation in a Three Dimensional Conducting Medium with Two Dimensional
Heterogeneity and an In-Plane Magnetic Field
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The classical duality transformation of two dimensional continuum conductors is extended to three
dimensional conductors with a two dimensional heterogeneity. This is used to discuss the classical
magnetotransport of a periodic array of parallel cylindrical inclusions, which are either perfect insulators
or superconductors, embedded in a free electron conducting host. A detailed understanding of the local
field and current distributions is thereby achieved, and closed form expressions are obtained for the
strong field magnetoresistance in some important configurations. [S0031-9007(98)05772-X]

PACS numbers: 73.50.3t, 03.50.Kk, 72.15.Gd, 72.80.Tm

Duality transformations appear in many different physi-special case of electrical conduction in a 3D system with a
cal contexts. One of the best known is the duality trans2D heterogeneity, a nontrivial duality transformation does
formation in a two dimensional (planar coordinatey)  exist. We will then use that transformation in order to
heterogeneous conductor [1-4]. In such a system, the l@ain insight about the magnetotransport properties of a
cal electric current densit}(x, y) and electric field®E(x,y)  two component composite medium of that type. We wiill
are both planar, and are related locally through a local comsbtain some surprising results which will be compared with
ductivity tensoré-(x, y) in the usual way = & - E. The  numerical computations on such systems.
transformation consists of rotating the two vector fields by Consider a heterogeneous medium, characterized by a
90° in the x, y plane, so as to obtain a new pair of “dual local resistivity tensor that depends only upprand z;
fields” Ep = e, X J andJp = e, X E, which are the i.e., thex axis is an axis of cylindrical symmetry. If the
electric and current density fields of the dual electrical conboundary conditions on the electric potential or the normal
duction problem, where the local conductivity tenggy  current density are macroscopically uniform, then the local
is simply related tar and the boundary conditions are ap- values ofE andJ will also be independent of, with the
propriately related to those of the original problem. possible exception of regions near the boundaries. From

This transformation works even wheénis nonsymmet- the local curl-free condition satisfied iy it then follows
ric; therefore it can be applied in the presence of a perperthat E, is constant everywhere. It is easy to see that the
dicular magnetic field [5]. It has some important physicaldual electric field, defined by = (Ex, —pooJ;. pooy),
consequences: The critical exponentwhich describes is curl-free, while the dual current density, defined by
how the bulk effective conductivity of a metal-insulator Jp = (J,, —E./poo. Ey/poo), is divergence-free. The
mixture tends to 0 at a conductivity threshold, as a funcandz components of these 3D fields were obviously ob-
tion of the metal volume fraction or some other struc-tained by rotating the, z components of andE by 90°,
tural parameter, must be equal to the critical exponent respectively, in they,z plane. The constant resistivity
which describes how the bulk effective conductivity of afactor pyy, which remains to be specified, has been intro-
superconductor-normal conductor mixture with a similarduced so as to ensure that the component8 pfandJp
microstructure tends te, as a function of the same pa- have consistent physical dimensions. These fields are re-
rameter [6]. Other consequences of duality are the fadated byJp = 6p - Ep, where the precise form of the
that the bulk effective Hall resistivitpy, of a two com-  “dual conductivity tensor'é-p can easily be worked out
ponent isotropic composite can be written entirely in termsand is usually nonsymmetric, even df was symmetric.
of the bulk effective Ohmic resistivity, of that system Because any linear combination®BfandE will be curl-
[7,8] and the fact that the bulk effective magnetoresistivfree, and any linear combination of and Jp will be
ity of a metal-insulator mixture can be obtained from thedivergence-free, therefore one may attempt to find such
magnetoresistivity of the pure metal and the bulk effectivecombinations that will be related by a symmetric conduc-
zero field resistivity [7,8]. tivity tensor, as was done in Ref. [8] for a strictly 2D sys-

This duality symmetry is based upon the fact thattem. This would allow results which are available for
a two dimensional (2D) curl-free vector field becomesproblems with symmetric conductivity tensors to be ap-
divergence-free when itis rotated 89° in the plane, while  plied to cases wheré is nonsymmetric.

a 2D divergence-free vector field becomes curl-free when We will restrict the subsequent discussion to systems
itis similarly rotated. Three dimensional (3D) vector fieldswhere a periodic square array of identical, parallel, non-
usually lack these properties. We will show that, for theoverlapping inclusions of cylindrical shape, with nearest
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neighbor distance: and radiuskR < a/2, and with the
cylindrical symmetry axis taken as theaxis, is embedded Y )
in a uniform, free electron metal host, and the entire
system is subject to a strong applied magnetic figl¢

z. Such systems have recently begun to be studied both

theoretically [9,10] and experimentally [11]. The host is A A JDy’EDy
characterized by a resistivity tensor of the form

1 -H 0

/A)host = Po H 1 0, (1)

0o 0 1 T h
where p, is the Ohmic resistivity, which is independent a. yIKEp)
of B, andH = w.7 = wu|B| denotes the Hall-to-Ohmic
resistivity ratio . = ¢|B|/mc is the cyclotron frequency
and u is the Hall mobility—both have the same sign IBI3)

V4

as the charge of the charge carriers; is the transport

relaxation time). We will henceforth ugg, = pg in the
definition of the dual fields—this value will, of course, also
be used in the inclusions. Becau&eoes not lie along the

cylindrical symmetry axis, therefore the electrical transport
always has a 3D character: Even if the volume averaged

E,.J,
current densitJ) lies in they,z plane, the local Hall
effect in the host, in conjunction with the heterogeneous
microstructure, will usually induce local fields and currents
in all directions. . 5
b

The dual conductivity tensor of the host, obtained from
the resistivity tensor of (1), is symmetric,
FIG. 1. (a) Distribution of dual currents in longitudinal trans-

1 10 H port along(001) axis of insulating cylinder array whej#| >
Ophost = — | 0 1 0 . (2) 1. Jp, is uniform in the obstacle-free slabs perpendiculap to
Po\HgH 0 1+ H? in the host. (b) Distribution of physical current: # 0 only in

the above-mentioned slabs. The other componengswainish
When |H| > 1 this represents an extremely anisotropiceverywhere.
conductor, with principal axes that are only slightly rotated
about they-coordinate axis, and with a very large conduc-|ates into a flow pattern for the original problem as shown
tivity in the z direction. If the inclusions arperfectly in-  in Fig. 1(b):J, = J, = 0 everywhere, and. = 0 in the
sulating,then their dual conductivity tensor has the form sjab-shaped regiohs defined by the rows of parallel ob-
stacles. In between those slalissmust then have the uni-

0 0 O
form value
Opinec = |0 o 0 [. 3)
0 0 o U

fe =1z 2R/a " “)

We now use the dual problem in order to study the
magnetotransport in such a composite medium for the limit N order to test this surprising prediction we computed
of a very strong applied magnetic field, namdly| > 1.  the detailed current distribution for such a system, using

If the array of inclusions is aligned so that its princi- @ method developed earlier [9,12]. The results essentially
pa| axes are a|ong and Z, and if we app|y a boundary agree with the above expectations—see Flg 2: The hot
condition such thatJ) = e. || B, then, becausg = 0 in spots a_lt the inclusion edges are probably due to the
the inclusions and, = po(J, — HJ,) in the host, there- Squeezing of/. at those points—only at thosevalues
fore, integrating the last equation over the host subvolumedoes/; strictly vanish outside the unobstructed slabs when
we conclude thak, = (E,) = 0. The boundary condition |H| < . These results imply that the distribution of
for the dual problem is therefore such tiBj,) = —ppe,.  J(r) is saturated for larg®, and therefore that the local
Because dual current must sometimes flow through the ho8fissipation rateV = pJ* is saturated as well, and along
in the y direction, but it costs very little to flow through with it the bulk effective longitudinal resistivityﬁe). This
the host in thez direction, and it costs nothing at all to agrees both qualitatively and quantitatively with results of
flow through the obstacles (sineg, i, = « in those di- earlier computations [see Figs. 12(b), 12(e), and 12(h) of
rections), therefore we expect a flow pattern in the duaRef. [9]]. A similar behavior occurs whenevéf) || B
problem as shown qualitatively in Fig. 1(a). This trans-lies along a low order lattice axis, and the obstacles are
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z|BJ(3) H, eventhough its average value vanishes. Thatis why the
dissipation rate does not saturate. Its volume average gives
the bulk effective in-plane transverse resistivity, which is
easily found for large fields from (6),

~(e)
R 1
p_i;HZ[l_z__i_l
a

Po 1 — w(R/a)? 2
6 2 1+ 2R/a>1/2:|
+ ———= arcta ————— :
V1 — 4R%/a? 1 —2R/a
4 ()
2 ForR/a = 0.4 this leads tqa(f)/po = (.782H?, in good
agreement with Fig. 12(c) of Ref. [9]. In Fig. 3 we show
0

a numerically computed 3D plot of,( y, z) for this case,
whenH = 20, which agrees quantitatively with (6).

If, instead of aligningB and (J) along the principal
FIG. 2. Numerically computed 3D plot of.(y,z) for longi-  axes(001) and (010), we align them along thd5° lat-
tudinal transport alond001), using insulating cylinders with e axes(011), (011), then similar considerations lead to
R/a =04 andH = 20. a more complicated, but still closed form, expression for

. . (e) .
small enough so that slab-shaped regions parall€Jxo Jy(y). The asymptotlc b§haV|or q(f)i at strong fields
exist that are obstacle-free, as in Fig. 1(b). For otheWhenR/a = 0.4 is then given byp 1 /po = 0.0240H>.
directions ofB, the current lines cannot be straight, evenAlthough this means thap,” does not saturate when
at largeB—they must distort in order to circumvent the B || (011), the coefficient of theZ? term is much smaller
obstacles. Thus, there will be nonzero local values othan wherB || (001). Therefore a very strong angular de-
J,, and consequently also of,, in most of the host pendence o' on the direction oB will be observed.
subvolume. Furthermore, even though and J; may  We note that earlier numerical computations, though con-

saturate for largs, J, will never saturate, because =  sistent with these results, were not sufficiently precise to
HJy. Therefore W will not saturate for most directions of §etect the smallz? term in ﬁ<f> for B || (011) in this

B, and consequentlyﬁe) must exhibit strong oscillations sample—see Fig. 12(c) in Ref. [9]. Only the present dis-

with the direction ofB. That, too, is in agreement with cussion is able to assert that, even Boin this direction,

previous computations [9]. 5 does not saturate but includes HA term with a small
Continuing to align the principal axes of the squareput calculable coefficient.

array of obstacles along theandz axes, we now apply a  Finally, instead of inclusions that aperfect insulators,

boundary condition such thad) = e, LB. In that case, we now consider the other extreme situation, namely, a

E, no longer vanishes, but has the constant vajug{is  square array obsuperconducting cylindrical inclusions,
the volume fraction of the host subvolume)

E. = ~Hpoll,)/prow = ~Hpo/pros- () <”<J )

The dual problem then satisfieBp, = —H po/ Phost
(Epy) = 0, (Ep.) = po. In the limit [H| > 1, the dual z|B
current lines in they,z plane will be straight lines in g |11 :'un‘.‘,
the z direction, but the magnitude ofp, will depend . nigal, (1 o
upony in such a way that the total voltage drop along all ‘
current lines is the same. Using this picture, we can easily
calculateEp,(y) in the host, and consequently(y) in A
the host (herey is measured with respect to the cylinder /RN
axis in one unit cell), ‘ }

N

E
Jyz_ Dz
PO
2 _
— (I_EVRZ_)’Z) l, |y|<R, (6)
1, R <|y|l<a/2.

L . . .. FIG. 3. Numerically computed 3D plot of,(y,z) for trans-
In this situation/, = Ep,/po is negligible; howeverl, =  yerse transport along010), using insulating” cylinders with
Jpx = (Epy + HEp;)/po has very large values, of order R/a = 0.4 andH = 20.

3358



VOLUME 80, NUMBER 15 PHYSICAL REVIEW LETTERS 13 ARIL 1998

again embedded in a free electron host. In that casd,(y) can be computed in closed form by first computing
Eq. (3) is replaced by Jpy, Which is given by the same expressionJasof (6).
The longitudinal magnetoresistance in {961) direction

. © 00 will therefore saturate for larg#/, and its value will be
ODinc — 0 00 (8) given by
0 00
Because the superconducting cylinders span the entire p|(|e) _ R T 2
thickness of the film, thereforgé, = 0 everywhere. By E =|1- 2; Y + 1 — 4R2/ a2

contrast, although we will usually assume boundary con- 1/24-1
ditions such that/,.) = 0, locally J, will usually not van- % arctar(w> } ) (10)
ish: Becauset, = po(J, — HJ,) in the host, therefore 1 —2R/a
we will have there/, = HJ,. Thus, even if/, andJ,
saturate asd — o, J, and W will not saturate unless In summary, we have extended the classical duality
Jy = 0 everywhere. transformation to a 3D classical continuum conductor
For transverse transport boundary conditions|&ict>  which exhibits a 2D heterogeneity. For composite films
1, wher{J) = e, L B and bothB and(J) lie along principal made of a free electron conducting host with a periodic ar-
axes of the square array, the dual problem result&in  ray of cylindrical inclusions that are either superconduct-
Ep, being nonzero and uniform in the unobstructed slabing or perfectly insulating, we used this transformation to
shaped regions and zero elsewhere, JikeE, in Fig. 1(b),  discuss magnetotransport when the magnetic field lies in
andJp, = Jp, = 0 everywhere. Therefore, in the origi- the film plane. When that field is strong, the current distri-
nal problem,/, will be uniform in the unobstructed slabs, butions and angular dependence of the magnetoresistance
and will flow entirely through the superconducting cylin- have a surprisingly rich behavior. Much insight, as well
ders in the slabs defined by them, likg, in Fig. 1(a). It as quantitative results for asymptotic behavior at strong

then follows that the dissipation, and along witi{f’, do ~ fields, were obtained in this way.

not saturate withi, and we can easily calculate their lead- This research was supported in part by grants from
ing behavior, the U.S.-Israel Binational Science Foundation, the Israel
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