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A theoretical investigation of quantum-transport phenomena in mesoscopic systems is presented. In
particular, a generalization to “open systems” of the well-known semiconductor Bloch equations is
proposed. The presence of spatial boundary conditions manifests itself through self-energy corrections
and additional source terms in the kinetic equations, whose forms are suitable for a solution via a
generalized Monte Carlo simulation. The proposed approach is applied to the study of quantum-
transport phenomena in double-barrier structures as well as in superlattices, showing a strong interplay
between phase coherence and relaxation. [S0031-9007(98)05753-6]
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The Monte Carlo (MC) method, which has beenthe generalized MC approach recently proposed for the
applied for more than 25 years for calculation of semi-analysis of the coupled coherent and incoherent carrier
classical charge transport in semiconductors, is the moslynamics in photoexcited semiconductors [7]. Compared
powerful numerical tool for microelectronics device to more academic quantum-kinetic approaches [3—5]—
simulation [1]. However, present-day technology pushesvhose application is often limited to highly simplified
device dimensions toward limits where the traditionalphysical models and conditions—the proposed simulation
semiclassical transport theory can no longer be appliedscheme allows one to maintain all the well known
and a more rigorous quantum transport theory is requireddvantages of the MC method in describing a large variety
[2]. To this end, various quantum-kinetic formulations of of scattering mechanisms on a microscopic level [1].
charge transport have been proposed, based on Green’sin order to properly describe carrier-transport phenom-
function [3] or Wigner function [4] approaches. While ena in mesoscopic structures, an electron-phonon system
such quantum-mechanical formalisms allow for a rigorousan be considered, whose Hamiltonian can be schemati-
treatment of phase coherence, they typically describeally written asH = H, + H’. Here, the single-particle
energy-relaxation and dephasing processes via puretgrm Hy includes the phonon and free-carrier Hamil-
phenomenological models. A full quantum-mechanicaltonians as well as the potential profile (including pos-
simulation scheme for the analysis of transient-transporsible external fields), while the many-body contribution
phenomena in the presence of carrier-phonon interactioH’ accounts for all possible interaction mechanisms, e.g.,
has also been proposed [5]. However, due to the hugearrier-carrier and carrier-phonon coupling. By denoting
amount of computation required, its applicability is still with ¢,(r) = (r | a) the wave functions of the single-
limited to short time scales and extremely simplifiedparticle statesy [8] and with €, the corresponding en-
situations. As a result, despite many efforts and despitergies, the equations of motion for the single-particle
the unquestionable intellectual progress associated witttensity matrixp [9] in this « representation—known as
the study of these quantum-kinetic formulations, theirsemiconductor Bloch equations (SBE) [10,11]—can be
application to realistic devices in the presence of a strongchematically written as
scattering dynamics is still an open problem. Recent d d d
results by Datta, Lake, and co-workers seem to be rather —Pap = — Papla, T — pPaplu . (1)
promising [6]. However, their steady-state Green's dt dt dt
function formulation cannot be applied to the analysis ofThe time evolution induced by the single-particle Hamil-
time-dependent nonequilibrium phenomena, which play @anianH, can be evaluated exactly. In contrast, the con-
crucial role in modern optoelectronic devices. tribution due to the many-body Hamiltonid#’ involves

In this letter we propose a generalized MC approactphonon-assisted as well as higher-order density matrices;
for the analysis of hot-carrier transport and relaxatiorthus, in order to “close” our set of equations, approxi-
phenomena in quantum devices. The method is based onations are needed. In particular, as described in [11],
a MC solution of the set of kinetic equations governingthe “mean-field” approximation together with the Markov
the time evolution of the single-particle density matrix; limit leads to a closed set of equations still local in time.
it can be regarded as an extension to open systems Wfithin such an approximation scheme, the equations of
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motion in (1) can be written as our « B representation to the desired phase spake
d 1 _—
o Pap = D LapapPap (@) Uuap(r,k) = (27)_3/2f dr’dJa(r + —r’>e_"”
a/‘BI 2
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Logag = — (€4 — €53)0, a'p T I, alBl - 3 . .
Pk ih £)apap pra'k ®) By applying the above Weyl transform to the single-

Here, the two terms correspond to the separation iparticle density matriyp, we obtain the so-called Wigner

(1).The explicit form of the scattering tensbrinvolves  function [4],

the microscopic in- and out-scattering rates for the various

interaction mechanisms [12]. Y, k) = Zpaﬂuaﬁ(r, k). (5)
The analysis presented so far is typical of a so-called aB

“closed” system, i.e., defined over the whole coordinate _— '

space. However, this is not the case of interest for th&Or @ closed systemy™ is defined for any value of the

study of quantum-transport phenomena in mesoscopic géeal-space coordinate, and its time evolution is fully

vices, where the properties of the carrier subsystem a,getermmed by its initial condition. In contrast, for an

W ; i . .
strongly influenced by the spatial boundaries with the exPPen Systemf™ is defined only within a given region
of interest and its time evolution is determined by

ternal environment. This requires a real-space descriﬁ) L D .
tion, which can be obtained in terms of the phase-spac_@e initial Cv(andltlon inside such a region as 'WeII as by
formulation of quantum mechanics originally proposed by/tS valuesf, on the boundary, of the domain at any

Wigner [13] and generalized to solids in the pioneeringliMe #' > 7o. More specifically, by applying the Green’s

. . . o
paper by Buot [14]. In our case, this corresponds to introfunction theory to the equation of motion fof" —

ducing the following unitary transformatian connecting | yg;@%?ﬁ???)ﬂnev%:é :tpplying to Eq. (2) the Weyl-Wigner

Y k;r) = / dr'] dk'G(r,k;r' k't — 1) fV (', K'; 1)
Q

t
+ [drbfdk’f dt'G(r,k;ry, k'st — 1) f) (ry, K, t)v(K'), (6)
to
where
Gr.kir kK57) = D uap(t,K) [ laparpityz (' k) (7)
a,B,a’,B’

is the evolution operator, while(k) is the component of while
the carrier group velocity normal to the boundary surface. . "
We clearly see that the value ¢ is obtained from Sap = %, Uaparp' | drp | dKitgp(ry. k)
the propagation of the initial conditiofi” (ty) inside the w
domain ) plus the propagation of the boundary values X v(k)f, (x5 k) (11)
£ from the points of the surface at any timeto the is a source term induced by our spatial boundary
pointr, k of interest. conditions.

Given the above Wigner formulation for open systems, Equation (9) is the desired generalization to the case
we now introduce a corresponding density-matrix descripef open systems of the conventional SBE in Eqg. (2). In
tion via the following “inverse” Weyl-Wigner transform: addition to the source term in Eq. (11), the presence of

spatial boundary conditions induces modifications on the
Pap = [ dr[ dkuy (e, k) f " (r, k). (8)  Liouville operatorL of the system via the transformation
o U in Eq. (10).
By applying the above transformation to Eq. (6) and then The generalized SBE (9) can still be regarded as the re-
performing its time derivative, we finally obtain sult of a coherent single-particle dynamics plus incoherent
d _ _ many-body contributions [see Eq. (1)]. Therefore, they
N > LogapPap T Sap, (9)  can be solved by means of the same MC simulation scheme
a'p! described in [7]. The method is based on a time-step
whereL = ULU ™! is the Liouville tensor (3) “dressed” Separation between coherent and incoherent dynamics: The
by the transformation former accounts in a rigorous way for all quantum phe-

nomena induced by the potential profile of the device as

Uapa'pp :f dr] dkul5(t, K)ugp(r,k), (10) well as for the proper boundary conditions. The latter, de-
’ Q scribed within the basis given by the eigenstatesf the
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potential profile, accounts for all of the relevant scatteringshown in Fig. 2(a). In particular, the presence of phase-
mechanisms by means of a conventional “ensemble” MMreaking scattering processes is found to reduce both the
simulation [7]. interference peaks and the transmitted wave packet. This
In order to illustrate the power and flexibility of is confirmed by the corresponding energy distribution in
the proposed theoretical approach, we have simulateBig. 2(b), where we clearly recognize the granular nature
gquantum-transport phenomena in rather different physicadf the dissipation process through the formation of an
systems. Since we are interested in low temperatureptical-phonon replica. This is the fingerprint of any full
and low carrier density conditions, only optical-phononmicroscopic treatment of energy relaxation, in contrast
scattering has been considered. We have first carriedith all previous phenomenological approaches.
out the simulation of an electron wave packet entering As a second test bed, we have also simulated electrically
the double-barrier structure [15] of a GahdGaAs injected Bloch oscillations in superlattices (SLs). The sys-
resonant tunneling diode (RTD). Figure 1 shows the timgem under investigation consists of a biased Ga#d&aAs
evolution of the wave packet in the absence of scatteringL [16] surrounded by two semi-infinite GaAs regions.
as a function of position (a) and energy (b). It is easy tdn our simulated experiment an electron wave packet is
recognize the well-established resonance scenario typicaijected from the left contact (GaAs region) into the SL
of any purely coherent dynamics: As the wave packetegion [see Fig. 3]. Figures 3 and 4 illustrate the time evo-
enters our RTD structure, a part of it is transmitted andution of the wave packet with and without scattering, re-
a part is reflected [see Fig. 1(a)]. Since scattering ispectively. When the wave packet reaches the SL structure
not included in this simulation, the wave-packet centralmost of it gets reflected backwards, while some portion of
energy is conserved, i.e., no energy relaxation occurgtunnels into the Wannier-Stark ladder associated with the
[see Fig. 1(b)]. On the contrary, in the presence ofSL and starts to oscillate at a frequency of abbfitTHz.
incoherent scattering processes the resonance dynamicskdich time the packet reaches the boundary of the oscilla-
Fig. 1(a) is strongly modified by the scattering itself, astion region a part of it gets transmitted via Zener tunnel-
ing. We should notice, however, that such Zener processes
do not destroy the Bloch-oscillation dynamics, but simply
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FIG. 1. Carrier density at different times as a function of 0.00 oq0 020 030 040
position (a) and energy (b) corresponding to an electron wave Energy [eV]

packet injected into a RTD structure in the absence of scattering
processes (the two barriers are schematically depicted as blagkG. 2. Same as in Fig. 1, but in the presence of scattering
vertical lines). processes (see text).
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1.2 typical quantum-transport phenomena in semiconductor

nanostructures.  Contrary to all previous quantum-
transport investigations, the proposed theoretical scheme
allows one to fully recover—and benefit from—the
unquestionable advantages of the semiclassical MC simu-
lation, thus opening the way to the theoretical modeling
of realistic quantum devices.
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