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We study dendritic microstructure evolution using an adaptive grid, finite element method applied
to a phase-field model. The computational complexity of our algorithm, per unit time, scales
linearly with system size, allowing simulations on very large lattices. We present computations on
a 2'7 x 27 Jattice, but note that this is not an upper limit. Time-dependent calculations in two
dimensions are in good agreement with the predictions of solvability theory for high undercoolings,
but predict higher values of velocity than solvability theory at low undercooling, where transients
dominate, in accord with a heuristic criterion which we derive. [S0031-9007(98)05847-5]

PACS numbers: 81.10.Aj, 05.70.Ln, 64.70.Dv, 81.30.Fb

Dendrites are the primary component of solidificationtransition region in the vicinity of the solidification front.
microstructures in metals. Their properties have been @he level set ofp(r) = 0 is identified with the solidifica-
topic of intense study in the past 10—15 years. Experition front, and the dynamics ap are designed to follow
ments by Glicksman and co-workers [1,2] on succinonitrilethe evolving solidification front [13—19]. The phase-field
(SCN) and other transparent analogs of metals have prgarameters can be derived from parameters of the Stefan
vided tests of theories of dendritic growth, and haveproblem [13,20]; however, this mapping is not very sensi-
stimulated considerable theoretical progress [3—5]. Théve to the precise form of the phase-field model [21].
experiments have demonstrated clearly that naturally While the phase-field model finesses the problem of
growing dendrites possess a unique steady state tip, chdrent tracking, it is still prohibitively expensive for large
acterized by its velocity, radius of curvature, and shapesystems, because the grid spacing must be small enough
which leads to a time-dependent sidebranched dendrite @& erywhere that the phase-field model converges to the
it propagates. the sharp interface limit [13,20]. Caginalp and Chen [22]

Insight into the steady state dendrite problem was firsshowed rigorously that the phase-field model converges
obtained from local models [6—9] describing the evolutionto the sharp interface limit when the interface width (and
of the interface, and incorporating the features of thehence the grid spacing) lmuch smallethan the capillary
bulk phases into the governing equation of motion for thdength. This result is necessary for acceptance of the
interface. These models showed that a nonzero dendrifghase-field model, but is not sufficient for computational
velocity is obtained only if a source of anisotropy—for tractability in the experimentally relevant regime.
example, anisotropic interfacial energy—is present in the However, more recently, Karma and Rappel [20] pre-
description of dendritic evolution. It was then shown sented a different asymptotic analysis in powers of the ra-
that the spectrum of allowed steady state velocities isio of the interface width to the diffusion length. Their
discrete, not continuous, and the role of anisotropy wagrocedure allows the selection of parameters such that the
understood theoretically, both in the local models and thghase-field model corresponds to the sharp interface limit
full moving boundary problem [5,10,11]. Moreover, only when the interface width (and hence the grid spacingj is
the fastest of a spectrum of steady state velocities is stablthe orderof the capillary length—a much more tractable
thus forming the operating state of the dendrite. It isregime. Furthermore, their improved analysis allows the
widely believed that sidebranching is generated by thermatinetic coefficient to be tuned to zero, which corresponds
or other statistical fluctuations on a microscopic scaleto the experimentally realized situation at low undercool-
which are amplified by advective diffusion. This body of ing in succinonitrile [2]. Karma and Rappel’s numerical
theoretical work is generally known as solvability theory. results are in excellent agreement with solvability theory at

Brute force solution of the time-dependent Stefan probdimensionless undercoolings as low as 0.30, but fail to ac-
lem requires front tracking and lattice deformation to con-cess the range of experimentally realizable undercoolings
tain the interface at predefined locations on the grid [12]near 0.1. What is needed is an effective adaptive tech-
The phase-fieldnodel avoids this problem by introducing nique [23] which dynamically coarsens the grid spacing
an auxiliary continuous order parametgfr) that couples away from the front.
to the evolution of the thermal field. The phase field in- In this Letter we show how the phase-field model can
terpolates between the solid and liquid phases, attaininige solved in a computationally efficient manner that opens
two different constant values in either phase, with a rapich new large-scale simulational window on solidification
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physics. Our method uses a finite element, adaptive- We model solidification using the phase-field model
grid formulation, and exploits the fact that the phase andised by Karma and Rappel [20]. We rescale temperature
temperature fields vary significantly only near the in-T by U = ¢p(T — Ty)/L, Wherecp is the specific heat
terface. We illustrate how our method allows efficientat constant pressurd, is the latent heat of fusion, and
simulation of phase-field models in very large systems, and’, is the melting temperature. The order parameter is
verify the predictions of solvability theory at intermediate defined by¢, with ¢ = 1 in the solid and¢$ = —1 in
undercooling. We then present new results at low underthe liquid. The interface is defined lay = 0. We rescale
coolings that suggest that solvability theory may not givetime by 7y, a time characterizing atomic movement in the
the correct tip speed in that regime. interface, and length by, a Iength characterlzmg the

| liquid—solid interface. The model is given by

Wy, L6
- =DVU a
Az(ﬁ)aj’ — V- [AGVG] + [b — AU — ¢D](1 — ¢?) + ('W"ZA( ﬁ;ﬁ) ('V""ZA( )afiﬁ(n)>
y

whereD = a7y/W3 anda is the thermal diffusivity, and! large fluxes in a composite field based on begttand U.
where A controls the coupling ot/ and ¢». Anisotropy  Typically, the grid is adapted about evel§0 time steps,
has been introduced in Egs. (1) by defining the widthwhich permits¢ andU to remain within the refined range
of the interface to beW (i) = WyA(72) and the charac- between regriddings. We allow a difference of at most
teristic time byr(n) = 70A%(n) [20], with A(ﬁ) € [0,1], one level of refinement between neighboring quadrilateral
oy 1 de () +(dy) elements. In such a case, the quadrilateral element of
andA@) = (1 = 3e)[1 + 1=5¢ gy ] The vector lower level of refinement has an extra side node. The
= (.t + ¢,9)/(¢% + $3)"/? is the normal to the extra nodes are resolved with triangular elements.
contours of¢, and ¢, and ¢ , represent partial deriva-  On an adaptive grid, the concept of a grid spacing
tives with respect ta andy. The constané parametrizes s replaced by that of a minimum grid spacidgrmin,
the deviation of (7)) from W,. We expect the results to representing the finest level of spatial resolution. We
be similar for other definitions of anisotropy [13]. found that, for solutions to converge properly, the grid
We use the asymptotic relationships given in [20] tomust belayeredsuch that the highest density of elements
select the parameters in Egs. (1) such that it operates @ppears around thé interface, while thel/ field, whose
the sharp interface limit, defined by at the interface width is of orderD/V,, can be encompassed by a mesh
satisfyingUin« = —d(n)x — B(n)V,. The variabled(n)  of larger grid spacing. Convergence of our solutions is
is the capillary length,x is the local curvatureB(n)  relatively insensitive ta\x,. For a test case of dendrites
is the interface attachment kinetic coefficient, didis  grown atA = 0.55, D = 2, € = 0.05, and integration
the normal speed of the interface, all in dlmenS|onIess|me stepd: = 0.016, our solutions for the steady state
form. In terms of A(n), d(n) = do[A(n) + aeA(n)] velocity converge to that given by solvability theory to
whered, = 0.8839/1 and ¢ is the angle between and  within a few percent fo0.3 = Axpi, = 1.6.
the x axis. In this formulation, the constani,, ¢, and Figure 1 shows a dendrité0’ time steps into its
A may be chosen so as to simulate arbitrary valueg.of evolution computed using our adaptive grid method,
In particular, A = 1.5957D makesB = 0 [20], a limit  using the parameters mentioned above. The system
which is appropriate for SCN. size is 800 X 800, with Axnix, = 0.78, and about half
We compute fourfold symmetric dendrites in a quarter-of the computational domain is shown. Sidebranching
infinite space, initiated by a small quarter disk of rad4s is evident, and arises due to numerical noise. This
centered at the origin. The order parameter is initially setalculation took approximately 10 CPU hours on a Sun
to its equilibrium valuegy(¥x) = —tanH(|¥| — Ro)/~/2]  UltraSPARC 2200 workstation.
along the interface. The initial temperature decays expo- We examined the CPU scalability of our algorithm
nentially fromU = 0 at the interface te-A asx — . with system size by growing dendrites in systems of
We simulate Egs. (1) on an adaptive grid of linearvarious linear dimensiorLg and measuring the CPU
isoparametric quadrilateral and triangular finite ele-time Ry for the dendrite branches to traverse the entire
ments, formulated using Galerkin’'s method. Followingsystem. We once again use the same parameters as above,
Ref. [24], elements are arranged on a two-dimensionagxcept Axyi, = 0.4. The relationship betweeR; and
quadtree data structure, which makes our code scalable; is shown in Fig. 2, where we see th&f ~ L3.
when implemented using dynamic memory allocation.The number of calculations performed, per time step,
The largest system sizes we have considered thus fé proportional to the number of elements in our grid,
correspond to 2D uniform lattices havirzg” X 2!7 grid  which is set by the arclength of the interface simulated
points. The grid is locally refined to have a higher densitybeing multiplied by the diffusion lengthD/V,. For
of elements in the vicinity of the interface, identified by a parabolic shape the arclengthLg. Thus, since the
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We also tested for grid anisotropy by rotating the grid
by 45°, which should represent the lowest accuracy for
square elements. In this case, the steady state tip velocity
was within1% of its value in the original orientation.

We further verified our algorithm by comparing mea-
sured tip velocities and shapes for dendrites grown us-
ing the same undercoolings, parameter sets, and system
sizes reported in [20]. We found very good agreement for
- A = 0.65, 0.55, 0.45, and 0.30. We next investigated the

P — : effect of system size. Figure 3 shows the time evolution of
EW tip velocity for several undercoolings and system dimen-
sions. The two cases fdx = 0.65 are typical of results
at intermediaté\, showing a relatively rapid leveling to an
asymptotic speed within a few percent of that predicted by
solvability theory.

At lower A, however, we found that the tip velocity de-
viates from that predicted by solvability theory. Figure 3
also shows the evolution of the tip velocity far= 0.25
in two different sized boxes. Whereas the computed tip
FIG. 1. A dendrite grown using the adaptive-grid method forvelocity falls a few percent below the solvability value
tAhezuo'SZ’r fi) o 2t’h ;?id lfr:s%g\?\;s Cco'gfokl‘f;?%f gﬂee%ilglr(;mtgheat in the 6400 X 400 box, it exceeds b% the solvability
COﬂtOE?d) =go, Ezontou?s of thep field, and the current mesh. value in thes400 X 32.00 k_)ox. This effect IS even Iar-gerat

A = 0.1, also shown in Fig. 3, where the tip speed is about

3 times larger than that predicted by solvability theory.
dendrite tip moves at a constant veloclty, thenR¢ = The explanation for this behavior is that, at ldw the
[R§DV2/Ax:]LE, whereR{ is a constant that depends thermal fields of the two dendrite branches overlap, vio-
on the implementation. The CPU timR" needed to lating the assumptions of solvability theory, which model
compute the same case on a uniform grid scaleBass  an isolated single dendrite. At large undercooling, each
[R§/(V,Ax2)IL3. For large system sizeR?/RY ~ L.  dendrite arm quickly outruns the other's thermal bound-

We tested the effective anisotropy of our dynamicallyary layer, and solvability theory should apply (see Fig. 1,
adapting lattice in two ways. Following the method A = 0.65). The conditions of solvability theory can also
outlined by Karma [20], we find an equilibrium shape be approximated at lower undercooling if simulations are
for the interface when the background field is adjustedperformed in a domain which is small in one direction.
dynamically so as to maintain the velocity of the interfaceFor the simulation performed with = 0.25 in the small
at zero. The effective anisotropy is inferred by fitting anbox 6400 X 400), the branch in the direction is extin-
equation to the computed interface. We foung to be  guished by its interaction with the wall, and agreement
within 5% of the intended value for inpét= 0.02-0.04.  with solvability theory is obtained. However, when both
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FIG. 2. CPU time vs the system size, illustrating the comput-
ing time for a dendrite to move through the system of linearFIG. 3. The time evolution of the tip velocity for undercool-
dimensionLp using our adaptive mesh method. ing A = 0.65, 0.25, and0.10.
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