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Efficient Computation of Dendritic Microstructures Using Adaptive Mesh Refinement
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We study dendritic microstructure evolution using an adaptive grid, finite element method applied
to a phase-field model. The computational complexity of our algorithm, per unit time, scales
linearly with system size, allowing simulations on very large lattices. We present computations on
a 217 3 217 lattice, but note that this is not an upper limit. Time-dependent calculations in two
dimensions are in good agreement with the predictions of solvability theory for high undercoolings,
but predict higher values of velocity than solvability theory at low undercooling, where transients
dominate, in accord with a heuristic criterion which we derive. [S0031-9007(98)05847-5]

PACS numbers: 81.10.Aj, 05.70.Ln, 64.70.Dv, 81.30.Fb
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Dendrites are the primary component of solidificatio
microstructures in metals. Their properties have been
topic of intense study in the past 10–15 years. Expe
ments by Glicksman and co-workers [1,2] on succinonitri
(SCN) and other transparent analogs of metals have p
vided tests of theories of dendritic growth, and hav
stimulated considerable theoretical progress [3–5]. T
experiments have demonstrated clearly that natura
growing dendrites possess a unique steady state tip, c
acterized by its velocity, radius of curvature, and shap
which leads to a time-dependent sidebranched dendrite
it propagates.

Insight into the steady state dendrite problem was fi
obtained from local models [6–9] describing the evolutio
of the interface, and incorporating the features of th
bulk phases into the governing equation of motion for th
interface. These models showed that a nonzero dend
velocity is obtained only if a source of anisotropy—fo
example, anisotropic interfacial energy—is present in t
description of dendritic evolution. It was then show
that the spectrum of allowed steady state velocities
discrete, not continuous, and the role of anisotropy w
understood theoretically, both in the local models and t
full moving boundary problem [5,10,11]. Moreover, only
the fastest of a spectrum of steady state velocities is sta
thus forming the operating state of the dendrite. It
widely believed that sidebranching is generated by therm
or other statistical fluctuations on a microscopic sca
which are amplified by advective diffusion. This body o
theoretical work is generally known as solvability theory

Brute force solution of the time-dependent Stefan pro
lem requires front tracking and lattice deformation to co
tain the interface at predefined locations on the grid [12
Thephase-fieldmodel avoids this problem by introducing
an auxiliary continuous order parameterfsrd that couples
to the evolution of the thermal field. The phase field in
terpolates between the solid and liquid phases, attain
two different constant values in either phase, with a rap
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transition region in the vicinity of the solidification front.
The level set offsrd ­ 0 is identified with the solidifica-
tion front, and the dynamics off are designed to follow
the evolving solidification front [13–19]. The phase-field
parameters can be derived from parameters of the Ste
problem [13,20]; however, this mapping is not very sens
tive to the precise form of the phase-field model [21].

While the phase-field model finesses the problem
front tracking, it is still prohibitively expensive for large
systems, because the grid spacing must be small enou
everywhere that the phase-field model converges to t
the sharp interface limit [13,20]. Caginalp and Chen [22
showed rigorously that the phase-field model converg
to the sharp interface limit when the interface width (an
hence the grid spacing) ismuch smallerthan the capillary
length. This result is necessary for acceptance of t
phase-field model, but is not sufficient for computationa
tractability in the experimentally relevant regime.

However, more recently, Karma and Rappel [20] pre
sented a different asymptotic analysis in powers of the r
tio of the interface width to the diffusion length. Their
procedure allows the selection of parameters such that
phase-field model corresponds to the sharp interface lim
when the interface width (and hence the grid spacing) isof
the orderof the capillary length—a much more tractable
regime. Furthermore, their improved analysis allows th
kinetic coefficient to be tuned to zero, which correspond
to the experimentally realized situation at low undercoo
ing in succinonitrile [2]. Karma and Rappel’s numerica
results are in excellent agreement with solvability theory
dimensionless undercoolings as low as 0.30, but fail to a
cess the range of experimentally realizable undercoolin
near 0.1. What is needed is an effective adaptive tec
nique [23] which dynamically coarsens the grid spacin
away from the front.

In this Letter we show how the phase-field model ca
be solved in a computationally efficient manner that ope
a new large-scale simulational window on solidificatio
© 1998 The American Physical Society
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physics. Our method uses a finite element, adaptiv
grid formulation, and exploits the fact that the phase an
temperature fields vary significantly only near the in
terface. We illustrate how our method allows efficien
simulation of phase-field models in very large systems, a
verify the predictions of solvability theory at intermediate
undercooling. We then present new results at low unde
coolings that suggest that solvability theory may not giv
the correct tip speed in that regime.
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We model solidification using the phase-field mod
used by Karma and Rappel [20]. We rescale temperat
T by U ­ cPsT 2 TMdyL, wherecP is the specific heat
at constant pressure,L is the latent heat of fusion, and
TM is the melting temperature. The order parameter
defined byf, with f ­ 1 in the solid andf ­ 21 in
the liquid. The interface is defined byf ­ 0. We rescale
time by t0, a time characterizing atomic movement in th
interface, and length byW0, a length characterizing the
liquid–solid interface. The model is given by
≠U
dt

­ D=2U 1
1
2

≠f

≠t
,

A2s $nd
≠f

dt
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whereD ­ at0yW 2
0 anda is the thermal diffusivity, and

wherel controls the coupling ofU and f. Anisotropy
has been introduced in Eqs. (1) by defining the wid
of the interface to beWs $nd ­ W0As $nd and the charac-
teristic time byts $nd ­ t0A2s $nd [20], with As $nd [ f0, 1g,
andAs $nd ­ s1 2 3ed f1 1

4e

123e

sf,xd41sf,yd4

j=fj4 g. The vector

$n ­ sf,xx̂ 1 f,yŷdysf2
,x 1 f2

,yd1y2 is the normal to the
contours off, and f,x and f,y represent partial deriva-
tives with respect tox andy. The constante parametrizes
the deviation ofWs $nd from W0. We expect the results to
be similar for other definitions of anisotropy [13].

We use the asymptotic relationships given in [20] t
select the parameters in Eqs. (1) such that it operates
the sharp interface limit, defined byU at the interface
satisfyingUint ­ 2ds $ndk 2 bs $ndVn. The variableds $nd
is the capillary length,k is the local curvature,bs $nd
is the interface attachment kinetic coefficient, andVn is
the normal speed of the interface, all in dimensionle
form. In terms of As $nd, ds $nd ­ d0fAs $nd 1 ≠

2
uAs $ndg,

whered0 ­ 0.8839yl and u is the angle between$n and
the x axis. In this formulation, the constantsW0, t0, and
l may be chosen so as to simulate arbitrary values ofb.
In particular, l ­ 1.5957D makesb ­ 0 [20], a limit
which is appropriate for SCN.

We compute fourfold symmetric dendrites in a quarte
infinite space, initiated by a small quarter disk of radiusR0
centered at the origin. The order parameter is initially s
to its equilibrium valuef0s$xd ­ 2 tanhfsj $xj 2 R0dy

p
2 g

along the interface. The initial temperature decays exp
nentially fromU ­ 0 at the interface to2D as $x ! `.

We simulate Eqs. (1) on an adaptive grid of linea
isoparametric quadrilateral and triangular finite ele
ments, formulated using Galerkin’s method. Followin
Ref. [24], elements are arranged on a two-dimension
quadtree data structure, which makes our code scala
when implemented using dynamic memory allocatio
The largest system sizes we have considered thus
correspond to 2D uniform lattices having217 3 217 grid
points. The grid is locally refined to have a higher densi
of elements in the vicinity of the interface, identified by
th
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large fluxes in a composite field based on bothf andU.
Typically, the grid is adapted about every100 time steps,
which permitsf andU to remain within the refined range
between regriddings. We allow a difference of at mos
one level of refinement between neighboring quadrilater
elements. In such a case, the quadrilateral element
lower level of refinement has an extra side node. Th
extra nodes are resolved with triangular elements.

On an adaptive grid, the concept of a grid spacin
is replaced by that of a minimum grid spacingDxmin,
representing the finest level of spatial resolution. W
found that, for solutions to converge properly, the grid
must belayeredsuch that the highest density of element
appears around thef interface, while theU field, whose
width is of orderDyVn, can be encompassed by a mes
of larger grid spacing. Convergence of our solutions i
relatively insensitive toDxmin. For a test case of dendrites
grown at D ­ 0.55, D ­ 2, e ­ 0.05, and integration
time stepdt ­ 0.016, our solutions for the steady state
velocity converge to that given by solvability theory to
within a few percent for0.3 # Dxmin # 1.6.

Figure 1 shows a dendrite105 time steps into its
evolution computed using our adaptive grid method
using the parameters mentioned above. The syste
size is 800 3 800, with Dxmin ­ 0.78, and about half
of the computational domain is shown. Sidebranchin
is evident, and arises due to numerical noise. Th
calculation took approximately 10 CPU hours on a Su
UltraSPARC 2200 workstation.

We examined the CPU scalability of our algorithm
with system size by growing dendrites in systems o
various linear dimensionLB and measuring the CPU
time Ra

t for the dendrite branches to traverse the entir
system. We once again use the same parameters as ab
except Dxmin ­ 0.4. The relationship betweenRa

t and
LB is shown in Fig. 2, where we see thatRa

t , L2
B.

The number of calculations performed, per time step
is proportional to the number of elements in our grid
which is set by the arclength of the interface simulate
being multiplied by the diffusion lengthDyVn. For
a parabolic shape the arclength,LB. Thus, since the
3309
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FIG. 1. A dendrite grown using the adaptive-grid method f
D ­ 0.55, D ­ 2, and e ­ 0.05. Clockwise, beginning at
the upper right, the figure shows contours of theU field, the
contourf ­ 0, contours of thef field, and the current mesh.

dendrite tip moves at a constant velocityVn, thenRa
t ­

fRa
0 DV 2

n yDx2
mgL2

B, where Ra
0 is a constant that depend

on the implementation. The CPU timeRu
t needed to

compute the same case on a uniform grid scales asRu
t ­

fRu
0 ysVnDx2

mdgL3
B. For large system sizes,Ra

t yRU
t , LB.

We tested the effective anisotropy of our dynamical
adapting lattice in two ways. Following the metho
outlined by Karma [20], we find an equilibrium shap
for the interface when the background field is adjust
dynamically so as to maintain the velocity of the interfac
at zero. The effective anisotropy is inferred by fitting a
equation to the computed interface. We foundeeff to be
within 5% of the intended value for inpute ­ 0.02 0.04.

FIG. 2. CPU time vs the system size, illustrating the compu
ing time for a dendrite to move through the system of line
dimensionLB using our adaptive mesh method.
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We also tested for grid anisotropy by rotating the gri
by 45±, which should represent the lowest accuracy fo
square elements. In this case, the steady state tip veloc
was within1% of its value in the original orientation.

We further verified our algorithm by comparing mea
sured tip velocities and shapes for dendrites grown u
ing the same undercoolings, parameter sets, and sys
sizes reported in [20]. We found very good agreement f
D ­ 0.65, 0.55, 0.45, and 0.30. We next investigated th
effect of system size. Figure 3 shows the time evolution
tip velocity for several undercoolings and system dimen
sions. The two cases forD ­ 0.65 are typical of results
at intermediateD, showing a relatively rapid leveling to an
asymptotic speed within a few percent of that predicted b
solvability theory.

At lower D, however, we found that the tip velocity de-
viates from that predicted by solvability theory. Figure 3
also shows the evolution of the tip velocity forD ­ 0.25
in two different sized boxes. Whereas the computed t
velocity falls a few percent below the solvability value
in the 6400 3 400 box, it exceeds by8% the solvability
value in the6400 3 3200 box. This effect is even larger at
D ­ 0.1, also shown in Fig. 3, where the tip speed is abo
3 times larger than that predicted by solvability theory.

The explanation for this behavior is that, at lowD, the
thermal fields of the two dendrite branches overlap, vio
lating the assumptions of solvability theory, which mode
an isolated single dendrite. At large undercooling, eac
dendrite arm quickly outruns the other’s thermal bound
ary layer, and solvability theory should apply (see Fig. 1
D ­ 0.65). The conditions of solvability theory can also
be approximated at lower undercooling if simulations ar
performed in a domain which is small in one direction
For the simulation performed withD ­ 0.25 in the small
box (6400 3 400), the branch in they direction is extin-
guished by its interaction with the wall, and agreemen
with solvability theory is obtained. However, when both

FIG. 3. The time evolution of the tip velocity for undercool-
ing D ­ 0.65, 0.25, and0.10.



VOLUME 80, NUMBER 15 P H Y S I C A L R E V I E W L E T T E R S 13 APRIL 1998

’s
ur

g
rt

s
y

d
h-

.

n,

.

s,

r,

e

l.

.

FIG. 4. Dendrite silhouette and isotherms from20.01 to
20.9 for undercoolingDT ­ 0.1. Full domain dimensions
are 102 400 3 51 200. The dendrite tip is approximately
1300 units from the origin, while the temperature field spread
to about5000 units.

branches are present, as in the simulation withD ­ 0.25
in the larger box (6400 3 3200), their interaction leads
to an increased tip velocity because the dendrites are e
bedded in a circular rather than parabolic diffusion field
This is seen clearly in Fig. 4, where the dendrite shap
and its associated field are shown forD ­ 0.10 (D ­ 13,
d0 ­ 0.043, e ­ 0.05, Dx ­ 0.78, dt ­ 0.08). The den-
drite arms never became free of each other in this sim
lation, causing the observed deviation from solvabilit
theory shown in Fig. 3. This latter simulation was per
formed in a102 400 3 51 200 domain, chosen to contain
about10DyVn. We note that the ratio of the largest to
smallest element size in this simulation is217. A fixed
mesh having the same resolution would contain9 3 109

grid points, clearly beyond current computing capability.
We can estimate the timet? when the growth of the

dendrite tip crosses over from the transient regime whe
the branches interact to where they become independ
by equating the length of the full diffusion field3sDt?d1y2

to the length of a dendrite armVnt?. This gives the
crossover time ast? ­ 9DyV 2

n . The values fort? corre-
sponding to the casesD ­ 0.65, 0.25, and 0.10 in Fig. 3
are 2.5 3 103, 1.6 3 104, and 5.9 3 107, respectively.
Inspection of Fig. 3 confirms this scaling.

These results have important implications when com
paring theory to experimental observations at low unde
cooling. We find that, in this regime, the appropriat
theory to use is one which explicitly takes into accoun
the long range effects of other branches [25]. In particu
lar, the study of real dendrites with sidebranches, growin
at low undercooling will require such treatment. An in
vestigation of this effect, as well as results on direction
solidification will appear in future publications.
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