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Profile Scaling in Decay of Nanostructures
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The flattening of a crystal cone below its roughening transition is studied by means of a step flow
model. Numerical and analytical analyses show that the height prdfile) obeys the scaling scenario
ah/ar = F(rt~'/*). The scaling function is flat at radii < R(r) ~ t'/*. We find a one parameter
family of solutions for the scaling function, and propose a selection criterion for the unique solution the
system reaches. [S0031-9007(98)05700-7]

PACS numbers: 68.55.—a, 68.35.Bs

In recent years it has become technologically possible tflat terraces. The step indéxgrows in the direction away
design and manufacture crystalline nanostructures, whicfiom the center of the cone. We assume no deposition
are of tremendous importance for the fabrication of elecof any new material, no evaporation, and no transport of
tronic devices. In many cases, these nanostructures aatoms through the bulk. To calculate the time dependence
thermodynamically unstable, and tend to decay with timeof the radii, we have to solve the diffusion equation for
This phenomenon has triggered experimental and theoret&datoms on the terraces with boundary conditions at the
cal efforts to try and understand the decay process [1-13%tep edges, taking into account the repulsive interactions
Under fairly robust conditions, the decay of a nanostruc{of the form G(r;+; — r;)~?] between steps. Using a
ture at low temperatures (below the roughening temperastandard approach to do this [2,14], we arrived at a set of
ture, Tg) is dominated by the motion of atomic steps onequations of motion for the step radii. It is convenient to
the surface. Hence, attempts have been made to undgresent these equations in terms of dimensionless padii
stand and predict the relaxation dynamics of simple stepnd dimensionless time,

configurations.
In this Letter we analyze, numerically as well as ana- _ T
Iytically, the time evolution of a crystalline cone formed PiTqr "
out of circular concentric steps. The decay of other types 0 T 2 D,T
of nanostructures such as biperiodic surface modulations 7 =D;Ceq Q2 or L+ wr )

has been studied experimentally on Si(001) by Tanaka
etal.[1]. Rettori and Villain [2] studied this problem
theoretically in the case of small amplitude modulations.CQq is the equilibrium concentration of a straight isolated
Our study, on the other hand, is relevant to large amplistep,T is the temperaturd, is the step line tension) is
tude modulations and in this sense is complimentary tdhe atomic area of the solid, afy is the diffusion constant
their work. We find that the height of the cone decays withof adatoms on the terracesk is a kinetic coefficient
time ash(0) — h(r) ~ '/* and the radius of the plateau at associated with attachment and detachment of adatoms to
the top of the cone grows with time &) ~ r'/4. and from steps.

Consider the surface of an infinite crystalline cone, made The equations of motion in terms of these variables take
out of circular concentric steps of radii(z), separated by, the form

. dpi ai—a; .
pi =4pi _ M’ with 1)
dr pPi
1 1 i i+
o — oo T 2e(E - A G — B En)
; 0 i
(1= a)n 32 =G+ 57)
& =(piv1 — pi) 7,

a; =

B

where the velocities of the first and second steps are mgdi;vystem. WherD; > k (or ¢ — 1), diffusion across ter-
fied to include only interactions with existing steps.quua-races is fast, and the rate limiting process is attach-
tion (1) depends on two parametegsandq. g = % ment and detachment of adatoms to and from steps.
measures the strength of step-step interactiGngel- When D; < k (or ¢ — 0), the steps act as perfect
ative to the line tensionl’, while the parametey =  sinks, and the rate limiting process is diffusion across

1+ %)*1 specifies the rate limiting process in the terraces.
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We integrated Egs. (1) numerically both in the diffusiondisappearance time of stepis 7, = (nfy)”. An imme-
limited (DL) and in the attachment-detachment limiteddiate consequence of the scaling ansatz is that if we define
(ADL) cases. When the repulsive interactions betweer® = 6 + nf,with0 < 6 < 6, and plotd " *D(x6%,0?)
steps are weak (i.eg is small), there is a striking differ- againstx, all the data with different values of and the
ence between the dynamics in the two limits. In the ADLsamevalue ofé collapse onto a single curve.
case the system becomes unstable towards step bunching;To verify that our system obeys this scaling ansatz, we
whereas in the DL case there is no such instability. Howdefine the step density at a discrete set of points in the
ever, wheng is large enough, the instability disappearsmiddle of the terraces,
even in the ADL case. We limit our discussion to situ- (7) + pisy(7) 1
ations where the step bunching instability does not occur. D(p’ Pitl , ) =
Figure 1 shows the time evolution of initially uniformly

spaced steps with unit step separation in the ADL Casei:igure 2 is a plot oD (p, 7) as a function ofc = pr— /4
Each line in the figure describes the radius of one step as@; 4 fixed value off a’md 12 different values of in
function of time. We note that the innermost step shrinkqhe ADL case. The excellent data collapse shows that
while the other steps expand by absorbing the atoms emib—ur scaling ansatz indeed holds with=0, 8 = 1, and

ted by the first step. When the innermost step disappears, _ 4 pata collapse of similar quality’is achieved in
the next step starts shrinking and so on. The disappe he DL case with the same values of the exponents. The
ance time of thesth step,r,, grows withn asrt, ~ n*. :

) ; ; ! dependence of the scaling function énris very weak in
This process results in a propagating front which leaves the DL case, and is more pronounced in the ADL case.

growing plateau behind it. At large times, the (dimension- The above results suggest that the time evolution of

" . - 1/4 ) . . .
Ie_ss_l) position of th's frqntﬁehgl\_/es,agom(.rg d'ﬁ‘T - A . the system can be described by a density, which is a
similar picture arises in the case with differences Inqqninyous function of both position and time. In the

the details of the individual step trajectories. T_hls POWer. . inder of this paper we will derive such a continuum

h It t t that for | i tonly th ¥nodel, carry out a scaling analysis to evaluate the scaling
pnenomenon. ftturns outthat for farge imes not only _eexponents analytically, and calculate the scaling function.
front position but also the positions of minimal and maxi-

| step densiti le a5 In fact. the step densi Motivated by the simulation results we assume that the
mal step densities scale as”. In fact, the step density scaling ansatz holds. This is already sufficient to calculate
D(p, 7) obeys the following scaling scenario: There ex

ist scaling exponents, 3, andy which define the scaled “"the values ofx and 3. First, we derive a relation between
» B Y these scaling exponents by considering the height profile
variablesx = p7 #/Y and@ = 7'/7. In terms of these g exp y g gn’ P

variablesD(p. 7) = 6% F(x. 8), where the scaling func- h(p,7). Assuming steps of unit height, the profile is

. ; o ; . . related to the step density b
tion F is a periodic function of § with some period,. P y by
Our ansatz is somewhat weaker than standard scaling hy- _ ] P / !

. N hip,7) = h - D(p',7)dp’, 3
potheses, which would assurmgs independent of. The (p.7) o(7) 0 (p',7)dp (3)
necessity to introduce a periodic dependenck oh 6 is a
manifestation of the discrete nature of the steps. Thusthe 15
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% 0.5 1 15 2 FIG. 2. Data collapse of the density function in the ADL case
x10° with ¢ = 0.01. The values of the scaling exponents used here

area =0, B =1, and y = 4. This figure shows density
FIG. 1. Time evolution of the step radii in the ADL case functions with 12 different values ofi and the same value
with ¢ = 0.01. The front can be fitted by a'/* power law  of 8, as a function ofc = p7~'/4. Some of the unscaled data
(dashed line). are shown in the inset.
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where ho(7) is the height at the origin. Far enough differential equation foi:

(when p — =), h(p, 7) does not change with time, i.e.,

lim,—x[h(p,7) — h(p,0)] = 0. Combining this with 4 67‘4<F’— + FZB) +

Eqg. (3), we arrive at the expression Y
= 9 oF s

ho(0) — ho(r) = 7@+B)/y ] [F(x,0) — F(x,0)]dx, S g T00 =00
0

(4) A and B are known expressions involving, F’, F”,
F'", andF'"', where the primes denote partial derivatives

the other hand/i(0) — ho(7,) = n becauser, is the with respect tox. The existence of derivatives up to

disappearance time of theh step. y satisfies the relation fourth order in this equation is a consequence of the
1/y fact that each step “interacts” with four other steps (two

/
7, ~ nY, and therefore we havi(0) — ho(7,) ~ ™ : ; ;
. (a+B)/ / on each side) through the equations of motion (1). A
Tr;lst_and tﬂe" — 1 ” dependence in Eq. (4) lead to the yoiaiieq derivation of the continuum model and the exact
relationa + B = 1. expressions foA and B will be given elsewhere [15].

": ad(.j't'oln’ c:t)]nst,femrva};uon ofdth(_e t.Ot(‘;"I Vo'gmet 0;_ the Consider Eq. (9) at largé. Our expansion in the small
system implies thayl, ph(p, 7)dp is independent of. parametel ! is valid only at values of whereF does

Integration by parts of the c.ierivative.of this integral with not diverge or vanish (see above). Therefore, the first
respect tor yields the following equation: term in Eq. (9) isO(1). This term has to be canceled

* ,9D(p,7) _ by the second term if we requirE to satisfy a single
0 or dp =0. (5)  differential equation. Hence, we must have

where we have used the definition of the function On

Evaluation of this integral in terms of the functighand y =4. (10)
the scaled variables and 6 shows the integral diverges Tne fourth term vanishes a& — %, sincey — 5 < 0,

unlessa = 0 [15]. Combining this withw + B = 1,we  gn{ the third term must vanish as well. Therefore, in the

conclude thapp = 1. _ large # limit, F is only a function ofx, and we are left
To evaluate the scaling exponest and the scaling \ith an ordinary differential equation far,
function F, we continue with the equation for the full time
derivative of the step density, F’( A _ i) + F2B=0. (11)
4

dD aD D dp
dr  or ap dr’ ® et us emphasize that our continuum model is valid
] i ) for arbitrarily large surface curvature and slope (unlike
Equation (6) can be evaluated in the middle of the terrac@ther treatments [2,6]). Moreover, since our model is an
between two steps [i.e., gt = (pi(7) + pi+1(7))/2]l.  expansion in the truly small paramet@r! [see Eq. (8)],
The left-hand side of (6) is calculated by taking the timeijt hecomesexactin the larged (long time) limit. Note
derivative of Eq. (2):dD/dt = —D*(pi+1 — pi).- This  that in going to the continuum limit we lost the periodic
together with the fact thatp /d7 = [pi(7) + pi+1(7)]/2  dependence of on 6, which is a manifestation of the

leads to the relation discretenature of the steps.
OD piv1 + pi . oD Db — 5y =0 . We now turn to study the solutions of Eg. (11).
5 5 T s D(pi+1 — pi) =0, (7)  We will consider only the DL case, but an equivalent

o _ treatment can be applied to more general situations [15].
where the step velocities; can be expressed in terms of |n the DL case Eq. (11) becomes [10]

the p;’s using Eq. (1).

Now we changg variables t@ and x; = p,-Q‘l, and. g(le/F/// 4 3FF"™ 4 QR 4+
transform Eq. (7) into an equation for the scaling function
F. Interms of these variables, Eq. (2) takes the form ISF'F" + SFF"  7(F"* + FF")
g1 x B x? "
S e ez O e R
According to this, the difference between successive x xt 4 xt .

is of orderd ! whereverF does not vanish. In the large Without loss of generality, we choose the boundary
0 (long time) limit these differences become vanishinglycondition at infinity to beF(«) = 1. Any other choice
small. This allows us to go to a continuum limit in the is equivalent to our choice with a different value of
variable x, by expanding all the terms in the equationthe interaction parametey, since Eq. (12) is invariant
for the scaling functionF in the small parametef~!.  under the transformatioA — aF, x — a~"/*x, andg —
The final result of these manipulations is the followinga2g. Numerical solutions of Eq. (12) which satisfy
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F() = 1 indicate that there exists a point= x, near
which F behaves agF(x) ~ ,/x — xo. An analytical s
expansion of Eqg. (12) for smal also leads to the same
conclusion. Thus, our model naturally predicts a singular ,:0‘8_
point in the profile at whichF — 0. We can prove [15] 061
thatx, is the scaled position of the boundary of the plateau |
at the top of the hill.

In the derivation of Eq. (12) we assuméddx) # 0.
This is clearly violated on the plateau. Equation (12) 0
is therefore valid only atx > x,, while for x < x, 0
the solution forF is simply F = 0. Now we have to
solve Eq. (12) forx > xo with some boundary conditions FIG. 3. Data collapse of the density function in the diffusion
at x = xo together with the conditionF(«) = 1. In limited case withg = 0.01. Simulation data from several

addition, we have to make sure that all the atoms expellege!laPse p‘f”t?ds i? ého"‘inz as dots, while the dashed line is the
by the growing plateau at < x, are absorbed by the *° — *0 SOUHONOTEq (12).

steps ait > xy. This is taken care of by the conservation

law (5). We rewrite (5) in terms of scaled variables andéquation that describes the scaling function. This equa-
get the following equation: tion admits many solutions, and the system dynamically

selects the one with the smallest plateau. We hope this

0.2}

~————

1 2 3 4 5 6 7 8
x=p1:’”4

* (7, work will motivate new experiments in which our predic-
f V() = 1]dx = ]XU VIF(x) = 1]dx tions will be tested. P P
X2 This research was supported by Grant No. 95-00268
-— =0. from the United States-Israel Binational Science Founda-
3 tion (BSF), Jerusalem, Israel. D. Kandel is the incumbent

To carry out the last integra| we integrate Eq. (]_2)Of the Ruth Epstein Recu Career Development Chair.
multiplied by x*> from x, to «, and obtain the boundary
condition

, p ” *Electronic address: israeli@wicc.weizmann.ac.il
g(6FF' + xFF" + xF'" — "Electronic address: fekandel@wicc.weizmann.ac.il
[1] S. Tanaka, N.C. Bartelt, C. C. Umbach, R. M. Tromp, and
Py 2l ol J. M. Blakely, Phys. Rev. Let#8, 3342 (1997).
3x°FF" — 9x°FF") — 1 =0. (13) [2] A. Rettori a%d J.)\//illain, J. Phys. (Parié}a, 25)7 (1988).
[3] K. Yamashita, H. P. Bonzel, and H. Ibach, Appl. Phg5,
So far, we have not determined the value xf 231 (1981); H.P. Bonzel and E. Preuss, Appl. PhyS5A
In fact, we solved Eq. (12) numerically and found a 1 (1984); H.P. Bonzel and W.w. Mullins, Surf. S@50,
family of solutions satisfying the boundary conditions, 285 (1996).
which differ in the value ofxy. For xo < x5 ~ 1.44 [4] J. Villain, Europhys. Lett2, 531 (1986).
the equation does not have a solution. However, for[®] M. Uwaha, J. Phys. Soc. Jp7, 1681 (1988)-
any value ofx, = xi there is a single solution that [©! Ni'gs%z‘jem" and A. Zangwill, Phys. Rev. B2, 5013
satisfies theT boundary_condit.ions.. Dgspite the existence oh] l(: Lar?(':on and J. Villain, Phys. Rev. Lefi4, 293 (1990).
many solutlon_s, our sn_nulatlons_ |nd_|cate that the system 8] C.C. Umbach, M.E. Keeffe, and J.M. Blakely, J. Vac.
reaches a unique scaling solution independent of initial "~ g¢j Technol. A9, 1014 (1991).
conditions. Flgure 3 shows an impressive agreement[g] M.A. Dubson and G. Jeffers, Phys Rev. 89, 8347
between thex, = x, solution and the data collapse of (1994).
density functions taken from the simulations in the DL[10] J. Hager and H. Spohn, Surf. S&24, 365 (1995). The
case. Thus, the system dynamically selects the scaling straight steps limit of our DL case coincides with the
state with the minimal value of,. The precise nature of continuum theory of these authors.
this selection mechanism is not yet understood and will bél1] M.V. Ramana Murty and B. H. Cooper, Phys. Revo&
investigated in the future. 10377 (1996). These Monte Carlo simulations agree with

In summary, we have presented a complete descriptioHZ] EEZ’(SS].Fu M.D. Johnson. D.J. Liu. J.D. Weeks. and E.D

of the relaxation process of an infinite crystalline cone Williams, Phys. Rev. Lett77, 1091 (1996)

below its roughening transition. The hypothesis that in 13] W. W. l\/iullins,.\]. Appl. Pﬁys.28, 333 ('1957);3(), 77
the long time limit the step density exhibits scaling leads” ~ (1959).

to an accurate continuous model for the morphologicaj14] G.s. Bales and A. Zangwill, Phys. Rev. Bl, 5500
evolution of the crystal. Using the model, we were able  (1990).

to derive the exact scaling exponents and the differentigiL5] N. Israeli and D. Kandel (unpublished).

lim

X—Xg

3303



