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Quantum Breathers in Electron-Phonon Systems
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Quantum breathers are studied numerically in several electron-phonon coupled finite chain systems,
in which the coupling results in intrinsic nonlinearity but with varying degrees of nonadiabaticity. As
for quantum nonlinear lattice systems, we find that quantum breathers can exist as eigenstates of the
system Hamiltonians. Optical responses are calculated as signatures of these coherent nonlinear exci-
tations. We propose a new type of quantum nonlinear excitation, “breather excitons,” which are bound
states of breathers and excitons, whose properties are clarified with a minimal exciton-phonon model.
[S0031-9007(98)05788-3]
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Much progress has been made toward understand
the physical consequences of nonlinearity over the pa
decade. In particular, recent developments concerni
“breathers” [1] or “intrinsic local modes” (ILM) [2], sug-
gest that energy focusing is prevalent in both classical [2
5] and quantum [6 –8]discrete nonlinear nonintegrable
frameworks. The existence and stability of multiquan
bound states (breathers, ILMs) are now established fo
wide variety of discrete classical models with prescribe
nonlinearity. Recently, we demonstrated that this pro
erty also persists in a discrete quantum nonlinear lattic
and exhibited some distinctive observable signatures
terms of spatiotemporal correlations [8]. However, o
more profound concern is the typical origin of effec
tive nonlinearity in quantum systems, namely, through th
coupling of two or more fields. Adiabatic slaving of fields
usually results in nonlinear Schrödinger models. Rea
istically, however, nonadiabatic effects must be consi
ered and the influences of nonlinearity and nonadiabat
ity are inevitably interrelated. Here we consider exampl
of electron-phonon (e-ph) coupled models frequently used
to describe organic and inorganic correlated electron
materials, for which an adiabatic treatment of breathe
is inadequate for various physical observables [9]. Th
interactions of electrons with the lattice and among them
selves provide sources of nonlinearity and strongly influ
ence electronic, optical, and structural properties. He
we use numerical approaches restricted to finite chains
without any adiabatic approximation. We find that quan
tum breathers oftwo types can exist in thee-ph systems
considered—those near electronic ground states and p
toexcited breathers (termed “breather excitons” below).

We consider a Holstein-Hubbard (HH) tight-binding
model Hamiltonian [10] of ane-ph coupled system:
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Here,c
y
is scisd andb

y
i sbid are the creation (annihilation)

operators of electrons and phonons, respectively.t0, U,
and V are the electron kinetic energy, and the on-sit
and nearest-neighbor Coulomb repulsions.v0 is the bare
phonon frequency. The form of thee-ph coupling (l term)
is that used in the Holstein (H) model [12]. We use mode
with one electron per site (i.e., a half-filled band).

Our numerical approach consists mainly of exact d
agonalization of Hamiltonian matrices represented
Hilbert spaces defined by appropriately selected ba
functions, and the analysis of characteristics of qua
tum breathers via various dynamic correlation function
We deal fully with nonadiabaticity ande-e correlations;
the only approximation is the truncation of the infinite
phonon Hilbert space. Because wave-function inform
tion is needed to identify a quantum breather state whi
is not necessarily low lying in the complete eigenspe
trum, efficient exact diagonalization techniques have be
developed to handle large-scale matrices; these are a
designed to suit parallel computer architectures [13].
Fig. 1, we show a typical total density of states (DOS
of a HH model, calculated using the kernel polynomia
method [14] which has a finite energy resolution. The re
gions of interest are indicated (see text below Figs. 3 a
5). Comparing this to the Hubbard model DOS, we rea
ize that the denser the states the more difficult they are
numerically distinguish, and the higher the numerical effi
ciency required. Also, since our model systems are finit
it is not easy to eliminate finite-size effects [15]. How
ever, our main results remain valid because the breath
excitations of interest here are intrinsically of finite size
There are also many realistic material contexts which a
explicitly finite size (e.g., conjugated oligomers).

The eigenenergies of the system (1) are shown
Figs. 2 and 3 for 6-site Holstein and HH models, respe
tively. The results in Fig. 2 were obtained using a bas
set of Debye phonons and Bloch electron functions, whi
Fig. 3 results use Einstein phonons and Wannier fun
tions. The degrees of softening of thek ­ p mode (Kohn
anomaly) indicate that the systems in Figs. 2(a) and 3 a
weakly e-ph coupled, whereas that in Fig. 2(b) is mor
© 1998 The American Physical Society
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FIG. 1. Total DOS of a 6-site Holstein-Hubbard chain with
t0 ­ 1.00, v ­ 0.40, l ­ 0.31, U ­ 8.10, V ­ 1.11, Mph ­
4, and M ­ 1 638 400. (Mph and M represent phonon
truncation and the total dimension of the matrix.) Th
inset shows the DOS over the full energy range, with th
corresponding pure Hubbard model (gray line) results f
comparison.

strongly coupled. The phonon dispersion is caused by
fective nonlinear ph-ph coupling via thee-ph coupling.
Because of discrete translational invariance, direct exam
nation of the wave-function amplitudes and single phono
operator expectation values do not reveal the presen
of quantum breathers [8]. Rather, we examine vario
static and dynamic correlation functions of lattice dis
placements, includingUk

j std ­
P

i kkjuis0dujstdjkl, where
ui is the phonon displacement operator. The static cor
lation functionsst ­ 0d probe the spatial localization in
a given eigenstate, while the dynamic counterparts pro
the temporal coherence. These two properties are
distinguishing characteristics of quantum breathers [1,2
The correlation functionsUk

j std, as in Fig. 4, show that
there indeed exists a band of particlelike states in ea
of the above examples, and that these states possess s
but finite spatial and temporal correlations, whereas
other states are extended [16]. A typical case is show
in Fig. 2(b), where the particlelike band possesses a lar
binding energy separating it from the continuum band
above, and the anharmonicity and corresponding localiz
tion are strong (the correlation length is approximate
three lattice constants, see Fig. 4) [10].

The existence and properties of quantum breathe
depend not only on the effective nonlinear ph-ph couplin
(as in [8]) but also on the nonadiabaticity (here, controlle
by the ratioh̄v0yt0). We find that the stronger thee-ph
coupling and the adiabaticity, the more easily quantu
breathers form [16]. Furthermore, these breather sta
can survive stronge-e correlations (Fig. 3), although we
find that, in the lowest part of the excitation spectrum
stronge-e correlations tend to induce extended magnet
excitations [16]. We will see below, however, tha
strong e-e correlations do not necessarily destroy shor
correlation length breathers in other spectral regions.
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FIG. 2. Eigenspectrum (low-lying sector) of a 6-site Hol
stein chain with t0 ­ 1.00, v ­ 0.4, U ­ V ­ 0.00 and
(a) l ­ 0.31, Mphsk ­ 6

p

3 , 6
2p

3 d ­ 5, Mphsk ­ pd ­ 6,
Mphsk ­ 0d ­ 1, M ­ 1 500 000; (b) l ­ 0.61, Mphsk ­
6

p

3 , 6
2p

3 d ­ 6, Mphsk ­ pd ­ 10, Mphsk ­ 0d ­ 1, M ­
5 184 000. The breather states are labeled with solid triangle
and the remaining ones with open triangles. The ground st
energy has been subtracted fromEk .

To identify physical consequences of the breather ex
tations, we study the first-order optical response functi
which can be measured in one-photon experiments. F
ure 5 shows the zero-temperature infrared and electro
optical absorptions of a HH system. Within this nonad
abatic approach, we account for all of the electronic a
phonon polarizabilities within one-photon perturbation
This is a step toward understanding accumulating exp
imental results in ultrafast time-resolved (nonadiabati
and nonequilibrium measurements [17]. First, we o
serve that, in the infrared region, several prominent pea
3285
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FIG. 3. Eigenspectrum of the 6-site Holstein-Hubbard cha
in Fig. 1. The notation is as in Fig. 2. The ground state ener
is 4.14t0.

directly indicate the anharmonicity, including multi
phonon side bands. By comparing this to Fig. 3, th
contribution to the infrared absorption from the breath
states (marked “b”) has comparable intensity to tha
from surrounding extended states. Second, below
main absorption peak (marked “exciton”), there exist a
series of spectral features which cannot be explained
an adiabatic description. To understand their origin, w
added small amounts of disorder in the electron or phon
degrees of freedom (e.g., the parametersU or h̄v0). We
found that only phonon disorder changes the spect
features near theexciton edge [16], indicating their
phonon origin. Third, in addition to the rich structure in
the region of electronic absorption, we observe a ser
of bands between theexcitonedge and the “continuum”
bands. Among them, we notice one band (“b-e”) whose
position and intensity relative to the other phonon sid
bands does not change under the perturbation of phon
disorder [16]. This indicates that this particular band
due to some relatively stable excited configurations whi
are more localized. This evidence suggests a poss
new type of bound state higher in energy than the lowe

FIG. 4. The spatial correlation functionUk
j s0d of the system

in Fig. 2(b). The solid line is for a breather state [labeledB in
Fig. 2(b)], while the gray line is for an extended state (E).
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excitons and more localized than the nearby states—
will term thesebreather excitons. Below, we show that
they possess some of the characteristics of the “grou
state” quantum breathers identified in the low-lying pa
of the eigenspectrum [Fig. 3].

Physical intuition suggests the possibility of a boun
state of excitons and breathers, i.e., a hot (dressed)
citon or a photoexcited breather. Excitons exist prima
ily as electron-hole pairs bound by both the Coulom
interactions ande-ph coupling. The latter factor slows
down the exciton motion and tends to dress the excito
with phonons and breathers.e-e correlations provide an-
other energy region from which the breather can be e
cited, and contribute additional nonlinearity enhancing th
breather formation. Furthermore, with the excited osci
lating dipole moments inside the breather exciton boun
states, they will strongly absorb photons, as an electron
exciton does.

To support the above arguments [18], we introduc
a minimal exciton-phonon model, describing an electro
and hole interacting with each other and with phonons:
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with V si 2 jd ­ 2U (as i ­ j); 2V (as ji 2 jj ­ 1 );
and0 (otherwise). e

y
i seid andh

y
i shid are creation (anni-

hilation) operators for the electron and hole, respectivel
teshd, eeshd, V si 2 jd, and leshd are the electron (hole)
hopping integrals, on-site energies, electron-hole attra
tions, andeshd-ph coupling strengths, respectively [19]

FIG. 5. The zero-temperature infrared and electronic optic
absorptions of the 6-site Holstein-Hubbard system in Fig.
(solid line) and the related 6-site Hubbard model witht0 ­
1.00, U ­ 8.10, V ­ 1.11 (gray line). All spectra are broad-
ened by a Lorenzian of width 0.005.
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Figure 6 shows the low-lying part of the eigenspectrum
corresponding to theexcitonregion in Fig. 5. The lowest
band corresponds to the lowest exciton states in Fig. 5 a
shows dispersion. They are excitons dressed by a st
lattice distortion of condensed phonons. The breath
exciton states are also strongly localized, but dressed w
a dynamic phonon wave packet (weak dispersion) a
exhibiting more coherent internal motions. (We spec
late that the excitonic internal frequency resonantly tra
a breather.) The remaining states aree-h pairs coupled
to extended anharmonic phonons. Breather excitons
more polarized than the ground state breathers, leading
the stronger optical absorption seen in Fig. 5.

In summary, this study is an important extension o
previous investigations of quantum breathers in nonline
lattices [8]. It demonstrates their existence in more ge
eral e-ph systems, where nonlinearity is self-consistent
generated by thee-ph (ande-e) coupling rather than be-
ing inserted by hand. Thus, the combined influences
nonadiabaticity and nonlinearity are incorporated. Cle
features from breathers are found in optical propertie
The concept ofbreather-excitonstates was proposed and
demonstrated for a simplified exciton-phonon model wit
out any adiabatic approximations. Investigations are u
derway [20] to correlate our findings with nonlinear optic
and time-resolved spectroscopy, including the competi
time scales associated with exciton formation, exciton

FIG. 6. Eigenspectrum (low-lying sector) of the 6-site min
imal exciton-phonon model (see text) withte ­ 1.00, th ­
0.67, ee ­ 4.00, eh ­ 24.00, v0 ­ 0.15, U ­ 18.0, V ­
2.75, le ­ 0.87, lh ­ 20.27. Mph ­ 6, M ­ 1 679 616.
The breather exciton states are labeled with solid triangles,
dressed excitons with diamonds, and the remaining ones w
open triangles. The ground state energy has been subtra
from Ek.
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self-trapping, and breather-exciton formation, as function
of nonlinearity and nonadiabaticity [16].
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