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Solving the Phase Problem Using Reference-Beam X-Ray Diffraction
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A new method of obtaining Bragg reflection phases in an x-ray diffraction experiment is presented.
It combines the phase-sensitive principles of multiple-beam diffraction and x-ray standing waves, and
allows direct phase measurements of many multiple reflections simultaneously using a Bragg-inclined
oscillating-crystal geometry. A modified-two-beam intensity function is devised to extract the phase
information in a way similar to the standing wave analyses. [S0031-9007(98)05790-1]

PACS numbers: 61.10.—i, 42.25.Fx, 78.70.Ck

X-ray diffraction and scattering techniques are used13,14]. The conventional technique for performing such
widely in structural studies of crystalline materials. Thesean experiment involves exciting one Bragg reflection
techniques provide real-space charge density informatioH and then rotating the crystal around the scattering
by probing its Fourier components, or structure factorsyectorH to bring another reflectiof into its diffraction
in reciprocal space. In a typical diffraction experiment,condition [15]. ReflectiorH is called the main reflection
what one measures is the intensity of a scattered aandG the detour reflectionumweganregunyg This one-
diffracted beam, which is related only to the structurereflection-at-a-time measurement method limits seriously
factoramplitudeand not to itsphase This loss of phase the practical implications of the multiple-beam diffraction
information is the classiphase problemn diffraction  technigue and makes it almost impossible to measure
physics and crystallography, and its solution remains tha large number of phases that are required to solve a
most difficult part of a crystal structure determination [1]. complex crystal structure.

To date, all practical methods leading to solutions of In this Letter, we present a reference-beam x-ray
the phase problem in crystallography can be groupediffraction method for obtaining both the phases and the
into two categories. In the first category are variousmagnitudes of a large number of Bragg reflections. The
mathematical techniques, such as the direct methods [2,3hethod is based on the same multiple-beam diffraction
These methods rely largely on the overdeterminatiorprinciple but with the important distinction that a single
in the intensity measurements of a great number ofimweganregungserves as the reference beam and is
Bragg reflections and use a probability distribution ofcommon to all recorded multiple Bragg reflections. This
possible phases to solve a crystal structure. While veris achieved by incorporating features in x-ray standing
powerful for small molecule structures, application of wave experiments as well as in common crystallographic
these statistics-based mathematical methods to largeiata collection techniques. The combined result allows
crystal structures remains to be difficult and is still straightforward phase-sensitive diffraction measurements
an active area of research. In the second category aff a large number of reflections with a well-controlled
crystallographic methods are various chemical methodphase variation of the reference Bragg beam.
involving heavy-atom derivatives and replacements [4], To introduce the reference-beam diffraction technique,
using x-ray dispersion corrections in the heavy-atomit is helpful to review how a normal crystallographic
scattering factor in either single- or multiple-wavelengthx-ray diffraction experiment is performed. By far, the
anomalous diffraction [5]. With these chemical methodsmost popular way of collecting crystallographic data is the
a crystal structure is solved by the additional phaseotating or oscillating crystal method [1]. In this method,
information provided by the heavy-atom substructurea crystal is rotated around an axis perpendicular to the in-
In general, the chemistry-based techniques often requireident beam and the Bragg reflection diffraction data are
complex and time-consuming chemical treatments to bondollected on a two-dimensional detector such as a pho-
heavy atoms in proteins and other biological systems. tographic film, an image plate (IP), or a charge-coupled

In recent years, there have been considerable efforts wevice (CCD), as shown in Fig. 1(a). In reciprocal space,
find a physicalsolution to the phase problem, namely, tothe sphere of reflection (Ewald sphere) sweeps through a
obtain the phases of the Fourier components directly fronvolume of a toroid during a fulB60° rotation and every
diffraction experiments. One promising physical solutionreciprocal lattice point in this volume is set to diffract at a
is the multiple-beam Bragg diffraction [6—9], which is certain rotation angle.
based on the interference among simultaneously excited The new reference-beam diffraction technigque uses
Bragg reflections. The effect has been shown visiblealmost the same geometry as the standard oscillation
both for small molecule compounds [10,11] and formethod,exceptthat the rotation axis is aligned along a
complex crystals such as quasicrystals [12] and proteinseference Bragg reflectio, which is brought to its
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(a) Direct-beam geometry always excited during the rotation or oscillation, therefore
all of the reflections recorded on the two-dimensional de-
tector are, in fact, multiple-beam excitations and their in-

P tensities are affected by the interference with the reference

CCD beam, much like in a hologram. The reciprocal space vol-
ume that the sphere of reflection sweeps through is very

= 5 similar to that in the standard rotation case, and, therefore,

a similar large number of reflections can be measured.

The basic concepts shown in Fig. 1 can be easily vi-
sualized using the standard scattering theories in quan-
tum mechanics and electrodynamics [16,17]. A scattered
x-ray wave fieldD(r) from a crystal can be represented
by a Born approximation series, with its zeroth-order so-

(b) Reference-beam geometry lution D© = D, exp(—ik - r) being the incident wave,

the first-order solutiod! being a singly scattered wave

in the usual kinematic or two-beam approximation, and

the second-order solutidd® representing a doubly scat-

tered detoured wave with three-beam interactions, and so

on [18]:

rotation axis

rotation axis

D(r) = DO + p® £ p® 4L ... (1)

It can be seen immediately that the direct-beam rotating
crystal geometry in Fig. 1(a) is based on observing the
two-beam reflectiond!) with the rotation axis lined
F'Gh- 1 (a) .Con(\j/.entitogal crys'ialtllographict Ix-raythdgfrag:ttri]on up on the incident bear®©, while the Bragg-inclined
e e Sy, BEoMety in Fig. 1(b) is set up automatically to observe
technique allows simultaneous measurements of both théle three-beam interactior®® with the rotation axis
intensities and the relative phases of all Bragg reflectionghosen to diffract a reference bedft).
recorded on the same two-dimensional detector. In general, ifD" is the diffracted wave foH reflection
andD@ is the detour-diffracted wave throughandH-G
diffraction condition, as shown in Fig. 1(b). We will call reflections, it can be shown [18] that, apart from a scale
this the Bragg-inclined geometry. Since the crystal rofactor, the diffracted wav®y up to the second order can
tation axis coincides witlG, the reference reflection i? be expressed as

. X FucFo Ko X (Kg X D
DH=kH><[kH><FH<DO—F Holg kg X (kg O)ﬂ, (2)

Fu ki — k&

wherel’ = r,A2/7V,; r. = 2.818 X 107 Ais the clas- | flection, causing a phase change®f in a way analo-
sical radius of an electrony is the x-ray wavelengthy.  gous to that used in the x-ray standing wave technique
is the unit cell volumeFy, Fg, and Fy.g are the struc- [19]. It should be noted that the role of th& reflec-
ture factors; ankg = ko + G, ky = kokyg = ko + H tion in the new reference-beam diffraction technique is
are the wave vectors of the reflections involved. Theswitched from that in the conventional multiple-beam
two terms in Eq. (2) correspond B) andD®, respec- azimuthal scanning method. Here, the refereficee-
tively. Equation (2) demonstrates that the three-beam inflection is the detour reflection, and each reflection mea-
terference betweeP" andD® depends on the relative sured on the two-dimensional detector is actually the main
phase differencéyg = ag + ay.g — ang, whereay'’s reflection H. All of these main reflections have th@
are simply the phases of the corresponding structure faceflection as the commoamweganregung It illustrates
tors. This phase differencéyg is called theinvariant  one of the main advantages of the reference-beam diffrac-
triplet phasein crystallography since it is independent of tion technique: A single referende reflection provides
the choice of origin in the unit cell. a common perturbation and a common dynamical phase
In the Bragg-inclined reference-beam diffraction geo-shift of 7, determined byk; — k&, on all main reflec-
metry, a complete interference profile of each recordedions. Therefore, any differences in their interference pro-
Bragg reflection is obtained by varying the relative phasdiles are due purely to the values of the triplet phadgs.
of the G-diffracted beam. This is accomplished by rock- We have performed a synchrotron x-ray diffraction
ing the crystal through the Darwin width of tH@ re- experiment on a GaAs single crystal to demonstrate
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the reference-beam diffraction principle. The experiment
was done at the C1 station of the Cornell High Energy | (2) o - (13)
Synchrotron Source (CHESS), using unfocused bending- S (315)

magnet monochromatic radiation of 13.5 keV with an
incident beam size 00.25 X 1 mn?. The crystal was 448) (317) (206) (173)
a 5-mm-thick rectangular-shaped plate and was mounted /Z\'— """"
at the center of a standard four-circle diffractometer. The
reference reflectiolG was chosen to be the symmetric 11k
(004) and it was aligned parallel to the axis of the 1L

diffractometer, which served as the oscillation axis in the A
vertical diffraction plane. The rocking curve of the (00O4) } -
was controlled by thé-rotation axis of the diffractometer.  |(44®) (137) (026) (113)

A Fuji image plate was mounted on tR# detector
arm to collect the oscillating-crystal diffraction patterns. . .
A series of oscillation exposures with the same rotation 141 (b)GaAs =
range ofA¢ = 20° were taken at 16 differerft settings X
across the (004) rocking curve. The rocking range of
A# = 0.045° was about seven times the measured full
width at half maximum of the (004) rocking curve
[shown in Fig. 2(d)]. To minimize the possible systematic
readout errors in image plates, all 16 exposures were
recorded on a single image plate by slightly translating
the image plate after eachmovement, similar to a streak
camera. Eachl0° oscillation took about 40 s. During
the exposure, the incident beam intensity was monitored
by an ionization chamber to ensure that the incident beam
variations were taken into account. A portion of the
diffraction image recorded on image plates is shown in
Fig. 2(a) which covers a0 range from5° to 103°.

A magnified view of the recorded (317) Bragg reflec-
tion is shown in the inset of Fig. 2(a). Each rectangular
spot in the image corresponds to a giverstep in the
G-reflection rocking curve. The reference-beam interfer-
ence profile is essentially the intensity distribution along
the strip as a function of, and can be seen clearly in the FIG. 2. (a) Recorded image-plate oscillation-diffraction data
raw data without any processing. Such peak-and-valle¢f the GaAs crystal at 166 positions across the (004)

; . ; ; rocking curve. The inset shows a magnified view of the (317)
interference profiles exist oall recorded reflections. To reflection. (b) Integrated intensities (filled circles) of the 16

further quantify the interference profile, we integrate thegpots for the (317), as a function o The solid curve is
intensities around each spot and plot the integrated inteny three-beam dynamical calculation with;g = 0°, and the

sities as a function of thé steps, as shown in Fig. 2(b). dashed and the dotted curves are calculated using Eq. (3).

For comparison, a rocking curve of the reference (004) re(c) Dynamical phase shift(¢) of the (004), calculated using
flection is shown in Fig. 2(d) on the sarfiescale. the standard two-beam dynamical theory. (d) Measured (004)

The reference-beam interference profile in Fig. 2(b) Carg);:llj;nsgijagug\rloeﬁlpéllotted on the samg scale and fitted with a

be understood by using the perturbation theory of Eq. (2).
In our experiment, the incident x-ray beam is linearly
polarized withD, perpendicular to the scattering plane A@ changes from negative to positive, and, thus, a de-
defined byky andG. In this case, Eq. (2) reduces to the structive (constructive) interference always occurs at the
following simple form: low (high) angle sideunlesséyg provides an additional
is phase shift to compensate it. Therefore, by examining the

FucFe TefOne > experimental data in Fig. 2(b), we conclude thai; for

Fy 2sin260GA6 )’ the (317)/(004) three-beam reflection has to be around
where Dy, is the projection ofDy onto a plane per- zero. This conclusion is confirmed both by the perturba-
pendicular toky, and we have used Bragg's law for tion calculation using Eq. (3), shown as the dashed curve
G reflection and have written explicitly théyg de- in Fig. 2(b), and by a full three-beam dynamical calcu-
pendence. Equation (3) indicates that when the grazintation using NBEAM approach [6], shown as the solid
angled changes from less to greater than the Bragg anglesurve.

Intensity

| (c) Dynamical
phase v(6)

v(0)

Rla.u]

A6 (degrees)

Dy = FHD()L<1+
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The multiple-beam diffraction analyses in the neware under way to employ this new technique on more
reference-beam geometry can be made entirely analogogsmplex crystal systems. With further research and de-
to that in the x-ray standing wave method. To removevelopment, we believe that the new method can become
the singularity atAd = 0 in Eqg. (3), we use the finite a powerful and ultimate technique for solving the phase
reflectivity R(6) and the phase shift(#) of Dg/Dy in  problem in crystallography and diffraction physics.
the usual two-beam dynamical theory [19] f6r and The author thanks Marian Szebenyi and Bill Miller for
substitute 1/A0 with /R(#) ¢’ /w, where w is the their assistance on image plates, and Boris Batterman,
Darwin width of theG reflection. Squaring the modulus Stefan Kycia, Ernie Fontes, and Ken Finkelstein for useful
of Eq. (3) and keeping only the linear term in, we  discussions and encouragement. This work is supported
obtain a normalized three-beam interference intensity asby the National Science Foundation through CHESS

under Grant No. DMR-9311772.
JR(0)codduc + v(0)]. (4)
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