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Solving the Phase Problem Using Reference-Beam X-Ray Diffraction
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(Received 24 November 1997)

A new method of obtaining Bragg reflection phases in an x-ray diffraction experiment is presented.
It combines the phase-sensitive principles of multiple-beam diffraction and x-ray standing waves, and
allows direct phase measurements of many multiple reflections simultaneously using a Bragg-inclined
oscillating-crystal geometry. A modified-two-beam intensity function is devised to extract the phase
information in a way similar to the standing wave analyses. [S0031-9007(98)05790-1]

PACS numbers: 61.10.– i, 42.25.Fx, 78.70.Ck
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X-ray diffraction and scattering techniques are use
widely in structural studies of crystalline materials. Thes
techniques provide real-space charge density informati
by probing its Fourier components, or structure factor
in reciprocal space. In a typical diffraction experimen
what one measures is the intensity of a scattered
diffracted beam, which is related only to the structur
factor amplitudeand not to itsphase. This loss of phase
information is the classicphase problemin diffraction
physics and crystallography, and its solution remains t
most difficult part of a crystal structure determination [1]

To date, all practical methods leading to solutions o
the phase problem in crystallography can be group
into two categories. In the first category are variou
mathematical techniques, such as the direct methods [2
These methods rely largely on the overdeterminatio
in the intensity measurements of a great number
Bragg reflections and use a probability distribution o
possible phases to solve a crystal structure. While ve
powerful for small molecule structures, application o
these statistics-based mathematical methods to lar
crystal structures remains to be difficult and is sti
an active area of research. In the second category
crystallographic methods are various chemical metho
involving heavy-atom derivatives and replacements [4
using x-ray dispersion corrections in the heavy-ato
scattering factor in either single- or multiple-wavelengt
anomalous diffraction [5]. With these chemical method
a crystal structure is solved by the additional phas
information provided by the heavy-atom substructur
In general, the chemistry-based techniques often requ
complex and time-consuming chemical treatments to bo
heavy atoms in proteins and other biological systems.

In recent years, there have been considerable efforts
find a physicalsolution to the phase problem, namely, t
obtain the phases of the Fourier components directly fro
diffraction experiments. One promising physical solutio
is the multiple-beam Bragg diffraction [6–9], which is
based on the interference among simultaneously exci
Bragg reflections. The effect has been shown visib
both for small molecule compounds [10,11] and fo
complex crystals such as quasicrystals [12] and prote
68 0031-9007y98y80(15)y3268(4)$15.00
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[13,14]. The conventional technique for performing su
an experiment involves exciting one Bragg reflecti
H and then rotating the crystal around the scatter
vectorH to bring another reflectionG into its diffraction
condition [15]. ReflectionH is called the main reflection
andG the detour reflection (umweganregung). This one-
reflection-at-a-time measurement method limits seriou
the practical implications of the multiple-beam diffractio
technique and makes it almost impossible to meas
a large number of phases that are required to solv
complex crystal structure.

In this Letter, we present a reference-beam x-r
diffraction method for obtaining both the phases and
magnitudes of a large number of Bragg reflections. T
method is based on the same multiple-beam diffract
principle but with the important distinction that a sing
umweganregungserves as the reference beam and
common to all recorded multiple Bragg reflections. Th
is achieved by incorporating features in x-ray standi
wave experiments as well as in common crystallograp
data collection techniques. The combined result allo
straightforward phase-sensitive diffraction measureme
of a large number of reflections with a well-controlle
phase variation of the reference Bragg beam.

To introduce the reference-beam diffraction techniq
it is helpful to review how a normal crystallographi
x-ray diffraction experiment is performed. By far, th
most popular way of collecting crystallographic data is t
rotating or oscillating crystal method [1]. In this metho
a crystal is rotated around an axis perpendicular to the
cident beam and the Bragg reflection diffraction data
collected on a two-dimensional detector such as a p
tographic film, an image plate (IP), or a charge-coup
device (CCD), as shown in Fig. 1(a). In reciprocal spa
the sphere of reflection (Ewald sphere) sweeps throug
volume of a toroid during a full360± rotation and every
reciprocal lattice point in this volume is set to diffract at
certain rotation angle.

The new reference-beam diffraction technique us
almost the same geometry as the standard oscilla
method,exceptthat the rotation axis is aligned along
reference Bragg reflectionG, which is brought to its
© 1998 The American Physical Society



VOLUME 80, NUMBER 15 P H Y S I C A L R E V I E W L E T T E R S 13 APRIL 1998

re
e-
n-
ce

ol-
ry
re,

vi-
an-
ed
d
o-

d

so

ng
he

e

le
FIG. 1. (a) Conventional crystallographic x-ray diffractio
technique using direct-beam rotating crystal method with
IP or a CCD detector. (b) New reference-beam diffractio
technique allows simultaneous measurements of both
intensities and the relative phases of all Bragg reflectio
recorded on the same two-dimensional detector.

diffraction condition, as shown in Fig. 1(b). We will cal
this the Bragg-inclined geometry. Since the crystal r
tation axis coincides withG, the reference reflection is
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always excited during the rotation or oscillation, therefo
all of the reflections recorded on the two-dimensional d
tector are, in fact, multiple-beam excitations and their i
tensities are affected by the interference with the referen
beam, much like in a hologram. The reciprocal space v
ume that the sphere of reflection sweeps through is ve
similar to that in the standard rotation case, and, therefo
a similar large number of reflections can be measured.

The basic concepts shown in Fig. 1 can be easily
sualized using the standard scattering theories in qu
tum mechanics and electrodynamics [16,17]. A scatter
x-ray wave fieldDsrd from a crystal can be represente
by a Born approximation series, with its zeroth-order s
lution Ds0d ­ D0 exps2ik0 ? rd being the incident wave,
the first-order solutionDs1d being a singly scattered wave
in the usual kinematic or two-beam approximation, an
the second-order solutionDs2d representing a doubly scat-
tered detoured wave with three-beam interactions, and
on [18]:

Dsrd ­ Ds0d 1 Ds1d 1 Ds2d 1 · · · . (1)

It can be seen immediately that the direct-beam rotati
crystal geometry in Fig. 1(a) is based on observing t
two-beam reflectionsDs1d with the rotation axis lined
up on the incident beamDs0d, while the Bragg-inclined
geometry in Fig. 1(b) is set up automatically to observ
the three-beam interactionsDs2d with the rotation axis
chosen to diffract a reference beamDs1d.

In general, ifDs1d is the diffracted wave forH reflection
andDs2d is the detour-diffracted wave throughG andH-G
reflections, it can be shown [18] that, apart from a sca
factor, the diffracted waveDH up to the second order can
be expressed as
DH ­ k̂H 3

∑
k̂H 3 FH

µ
D0 2 G

FH-GFG

FH

kG 3 skG 3 D0d
k2

0 2 k2
G

∂∏
, (2)
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whereG ­ rel2ypVc; re ­ 2.818 3 1025 Å is the clas-
sical radius of an electron;l is the x-ray wavelength;Vc

is the unit cell volume;FH, FG , andFH-G are the struc-
ture factors; andkG ­ k0 1 G, kH ; k0k̂H ­ k0 1 H
are the wave vectors of the reflections involved. T
two terms in Eq. (2) correspond toDs1d andDs2d, respec-
tively. Equation (2) demonstrates that the three-beam
terference betweenDs1d and Ds2d depends on the relative
phase differencedHG ­ aG 1 aH-G 2 aH, whereaH’s
are simply the phases of the corresponding structure
tors. This phase differencedHG is called theinvariant
triplet phasein crystallography since it is independent o
the choice of origin in the unit cell.

In the Bragg-inclined reference-beam diffraction ge
metry, a complete interference profile of each record
Bragg reflection is obtained by varying the relative pha
of the G-diffracted beam. This is accomplished by roc
ing the crystal through the Darwin width of theG re-
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flection, causing a phase change ofp, in a way analo-
gous to that used in the x-ray standing wave techniq
[19]. It should be noted that the role of theG reflec-
tion in the new reference-beam diffraction technique
switched from that in the conventional multiple-bea
azimuthal scanning method. Here, the referenceG re-
flection is the detour reflection, and each reflection me
sured on the two-dimensional detector is actually the m
reflection H. All of these main reflections have theG
reflection as the commonumweganregung. It illustrates
one of the main advantages of the reference-beam diffr
tion technique: A single referenceG reflection provides
a common perturbation and a common dynamical pha
shift of p, determined byk2

0 2 k2
G, on all main reflec-

tions. Therefore, any differences in their interference pr
files are due purely to the values of the triplet phasesdHG.

We have performed a synchrotron x-ray diffractio
experiment on a GaAs single crystal to demonstra
3269
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the reference-beam diffraction principle. The experime
was done at the C1 station of the Cornell High Ener
Synchrotron Source (CHESS), using unfocused bendi
magnet monochromatic radiation of 13.5 keV with a
incident beam size of0.25 3 1 mm2. The crystal was
a 5-mm-thick rectangular-shaped plate and was moun
at the center of a standard four-circle diffractometer. T
reference reflectionG was chosen to be the symmetri
(004) and it was aligned parallel to thef axis of the
diffractometer, which served as the oscillation axis in th
vertical diffraction plane. The rocking curve of the (004
was controlled by theu-rotation axis of the diffractometer.

A Fuji image plate was mounted on the2u detector
arm to collect the oscillating-crystal diffraction pattern
A series of oscillation exposures with the same rotati
range ofDf ­ 20± were taken at 16 differentu settings
across the (004) rocking curve. The rocking range
Du ­ 0.045± was about seven times the measured f
width at half maximum of the (004) rocking curve
[shown in Fig. 2(d)]. To minimize the possible systemat
readout errors in image plates, all 16 exposures w
recorded on a single image plate by slightly translati
the image plate after eachu movement, similar to a streak
camera. Each20± oscillation took about 40 s. During
the exposure, the incident beam intensity was monitor
by an ionization chamber to ensure that the incident be
variations were taken into account. A portion of th
diffraction image recorded on image plates is shown
Fig. 2(a) which covers a2u range from5± to 103±.

A magnified view of the recorded (317) Bragg reflec
tion is shown in the inset of Fig. 2(a). Each rectangul
spot in the image corresponds to a givenu step in the
G-reflection rocking curve. The reference-beam interfe
ence profile is essentially the intensity distribution alon
the strip as a function ofu, and can be seen clearly in th
raw data without any processing. Such peak-and-val
interference profiles exist onall recorded reflections. To
further quantify the interference profile, we integrate th
intensities around each spot and plot the integrated int
sities as a function of theu steps, as shown in Fig. 2(b)
For comparison, a rocking curve of the reference (004)
flection is shown in Fig. 2(d) on the sameu scale.

The reference-beam interference profile in Fig. 2(b) c
be understood by using the perturbation theory of Eq. (
In our experiment, the incident x-ray beam is linear
polarized withD0 perpendicular to the scattering plan
defined byk0 andG. In this case, Eq. (2) reduces to th
following simple form:

DH ­ FHD0'

µ
11

Ç
FH-GFG

FH

Ç
GeidHG

2 sin2uGDu

∂
, (3)

where D0' is the projection ofD0 onto a plane per-
pendicular tokH, and we have used Bragg’s law fo
G reflection and have written explicitly thedHG de-
pendence. Equation (3) indicates that when the graz
angleu changes from less to greater than the Bragg ang
3270
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FIG. 2. (a) Recorded image-plate oscillation-diffraction dat
of the GaAs crystal at 16u positions across the (004)
rocking curve. The inset shows a magnified view of the (317
reflection. (b) Integrated intensities (filled circles) of the 16
spots for the (317), as a function ofu. The solid curve is
a three-beam dynamical calculation withdHG ­ 0±, and the
dashed and the dotted curves are calculated using Eq. (
(c) Dynamical phase shiftnsud of the (004), calculated using
the standard two-beam dynamical theory. (d) Measured (00
rocking curve plotted on the sameu scale and fitted with a
Gaussian profile.

Du changes from negative to positive, and, thus, a d
structive (constructive) interference always occurs at th
low (high) angle side,unlessdHG provides an additional
phase shift to compensate it. Therefore, by examining t
experimental data in Fig. 2(b), we conclude thatdHG for
the s317dys004d three-beam reflection has to be aroun
zero. This conclusion is confirmed both by the perturba
tion calculation using Eq. (3), shown as the dashed cur
in Fig. 2(b), and by a full three-beam dynamical calcu
lation using NBEAM approach [6], shown as the solid
curve.
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The multiple-beam diffraction analyses in the new
reference-beam geometry can be made entirely analog
to that in the x-ray standing wave method. To remov
the singularity atDu ­ 0 in Eq. (3), we use the finite
reflectivity Rsud and the phase shiftnsud of DGyD0 in
the usual two-beam dynamical theory [19] forG and
substitute1yDu with

p
Rsud einsudyw, where w is the

Darwin width of theG reflection. Squaring the modulus
of Eq. (3) and keeping only the linear term inG, we
obtain a normalized three-beam interference intensity a

IH ­ 11

Ç
FH-G

FH

Ç q
Rsud cosfdHG 1 nsudg . (4)

A plot of nsud for the GaAs (004) as calculated in
the standard two-beam dynamical theory is shown
Fig. 2(c). Apparently, Eq. (4) is the x-ray standing wav
effect of theG reflection on another Bragg reflectionH.
Because three-beam diffraction is a coherent process,
effect is somewhat different from the standing wave in
tensities that govern the incoherent fluorescence yie
Equation (4) is used in Fig. 2(b) to produce the pertu
bation calculations for two different triplet phase values
dHG ­ 0 and p . The calculation withdHG ­ 0 agrees
very well both with the experimental data and with th
more rigorous NBEAM calculation.

In addition to the simplified multibeam analysis and
the ability to measure the phases of many Bragg refle
tions in a simple manner, the new reference-beam diffra
tion method also reduces the need for the high angu
incident-beam collimation perpendicular to the vertica
scattering plane. The reason for this is that the referen
reflection G can always be set to diffract in the verti-
cal plane where the natural collimation of the synchrotro
radiation is best. Complications on the three-beam inte
ference due to polarization mixing [20,21] are also elim
nated as shown by Eq. (3). Furthermore, the phase of t
reference beam can be varied by changing the incide
x-ray energy instead of rocking the crystal. In this way
the data collection for reference-beam diffraction can b
made as routine as other crystallographic techniques su
as the multiwavelength anomalous diffraction [5], withou
the need for heavy atoms.

In summary, we have presented a simple referenc
beam x-ray diffraction technique to measure many Brag
reflection phases directly from an oscillating-crysta
diffraction experiment. A single detour reflection com
mon to all measured Bragg reflections is used as t
reference beam, and its phase is varied by either rocki
the crystal or changing the incident beam energy. Th
allows a straightforward analysis similar to that used i
the x-ray standing wave method. Additional experimen
ous
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are under way to employ this new technique on mor
complex crystal systems. With further research and d
velopment, we believe that the new method can becom
a powerful and ultimate technique for solving the phas
problem in crystallography and diffraction physics.
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