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Fracture in Three-Dimensional Fuse Networks
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We report on large scale numerical simulations of fracture surfaces using random fuse networks for
two very different disorders. There are some properties and exponents that are different for the two
distributions, but others, notably theughness exponentseem universal. For the universal roughness
exponent we found a value df = 0.62 = 0.05. In contrast to what is observed in two dimensions,
this value is lower than that reported in experimental studies of brittle fractures, and rules out the
minimal-energy surface exponeft41 = 0.01. [S0031-9007(97)05002-3]

PACS numbers: 62.20.Mk, 46.30.Nz

During the past ten years or so, fracture mechanics habke higher crack speeds give rise to the higher value. It
caught the interest of the physics community. It is a fieldhas been speculated that the smaller value is that of the
of utmost technological importance, and at the same timeninimum-energy surfaces [13], which by the best estimate
it poses fundamental questions on the interplay betweeof today is known to b&®.41 = 0.01 [15]. We note that,
disorder and dynamical effects. Early on, simple statidn two dimensions, the corresponding minimal-energy sur-
models of brittle fracture, such as tliese model[l], face problem leads to a roughness exponent equal3p 2
were constructed and studied extensively with the limited.e., very close to that found in the fuse model.
numerical tools of the time [2], which meant that only Given the success of the fuse model in reproducing the
small two-dimensional systems were accessible. Eveaxperimentally observed roughness exponents in two di-
so, several qualitative and some quantitative results wenmensions, it is of great interest to test this model in three
obtained. Among the qualitative results, we may quote thelimensions. As the fuse model does not contain any dy-
existence of several types of fracture regimes dependingamical fracture properties, it is capable of isolating the
on the type of initial disorder in the system [3,4]. The effect of the interplay between the stress distribution (mod-
most notable quantitative result was the roughness ddled as an electrical current distribution) and the distribu-
cracks obtained using the random fuse model [5]. Thigion of local strengths in the material. It therefore models
roughness, defined as a typical length scale associated wisfow crack propagation. In particular, the hypothesis of a
the direction perpendicular to the fracture plane, was found@onnection between the roughness exponent in this regime
to scale with the linear size of the fracture plane to a poweand that of the minimal-energy surfaces can be tested.
law with a roughness exponeit= 0.70 = 0.07 for a The model is a three-dimensional lattice with the near-
wide class of different disorders. This exponent was lateneighbor sites connected by bonds, taken to be electrical
measured for two-dimensional stackings of collapsiblefuses with identical resistance but whose burnout thresh-
cylinders [6] (¢ = 0.73), for paper tear lines [7]{ =  olds are disordered. A fuse conducts until the current it
0.68 = 0.05), and for fractures in thin wood plates, where carries, i, exceeds the burnout (breaking) threshald,
the grain structure was oriented parallel to the short axist which point it becomes irreversibly an insulator. The
(£ = 0.68 = 0.04) [8]. breaking thresholds,, are drawn from some probability

In three dimensions, studies of the scaling properties odlistribution (see below), and the potential difference across
fracture surfaces started with the work of Mandellaioal. the L X L X L lattice is applied along a diagonal of the
[9]. Bouchauckt al. [10] suggested that the roughness ex-cube, i.e., thél, 1, 1) direction. The finite-size effects as-
ponent for brittle materials has a universal value close t@ociated with this choice are much smaller than taking the
0.8. Later experimental work on a wide range of materialspotential difference along a major lattice axis. To reduce
e.g., by Malgyet al. [11], gave results which were consis- finite-size effects further, we used periodic boundary con-
tent with such a hypothesis. However, Milmahal. [12]  ditions inall directions, i.e., we do not use actual planar
contested this hypothesis, and supported their claims withlectrodes attached to the lattice to apply the potential dif-
atomic force microscope measurements of fracture suference. Such electrodes greatly modify the behavior of
faces in crystalline metals. The picture that is emerginghe fracture surfaces in their neighborhood. Instead we
today is one where there is a smaller roughness exponent oée “ghost” sites that are not actually on the lattice to pro-
about 0.4-0.5 at very small scales, which crosses over toduce the potential difference [16].
higher value(=0.8) at larger scales [13,14]. The smaller So, a potential difference is applied and the weakest
roughness exponent has been associated with slow crafikse is broken. To recalculate the currents in the bonds
propagation, where dynamical effects are negligible, whileafter a fuse has blown, one solves the Kirchhoff equations
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by using the conjugate gradient algorithm, which is trivial, On the other hand, we found that fbr < 0 the breaking

to parallelize efficiently. We did our simulations on the process starts out in the current dominated mode, for weak
Connection Machine CM5. The stopping condition wasdisorder, and so it is one of the very first broken bonds that
that the residual error be less tham !, determine where the fracture surface will start spreading.

The system sizes we studied went fr@mto 48°>. The  There are no broken bonds randomly distributed in the vol-
number of realizations per lattice depended on its size, oume, in marked contrast with tHe > 0 case. This result
the type of disorder used, and the quantity studied. Weand its explanation are in agreement with those of [18] in
list these numbers later on in the text. two dimensions.

The breaking thresholds were assigned by generating This same effect is clearly seen if one examines the
random numbers uniformly distributed on the unit intervalevolution of the conductivity of the networks as a function
and raising it to a poweb. This corresponds to a cumu- of broken bonds. Figure 1 shows (fbr= 8, 12, 16, 32,
lative probability distributiorP (i) = i!//P! whenD >0, 48, D = —0.5) the conductivity as a function of “time,”
andP(i,) = 1 — i,/ whenD < 0. The smaller the = i/L“, wherei is the number of broken bonds. We
value of|D|, the smaller the disorder. Furthermore, whensee that the data collapse is very good for= 2.13
D > 0 the distribution of strengths has a power law tailthroughout the fracture process (except at the very end,
extending towards weak bonds (i.e., those with a smalvhere the finite-size effects are appreciable). On the other
threshold), while whenD < 0 the tail extends towards hand, positiveD gives a very different picture. Figure 2
strong bonds. Depending on the value f the two-  (inset) shows the conductivity versus= i/L* for the
dimensional fuse model was shown to exhibit distinctsame sizes as the previous case, butor 0.5. We
classes of fracture behavior [4]. For small valueg@f, see that, for times up to = 0.25, the data collapse is
a macroscopic crack starts developing early in the fracexcellent. In addition, we see that the scaling exponent
ture process, while whelD| is large, a cloud of discon- 3 simply corresponds to the geometric dimension. As
nected “microcracks” (blown fuses) develops before theynentioned before, this is due to the fact that, for this
coalesce into a final macroscopic crack. In the current pacase, the early times are disorder driven and therefore the
per, we study the fracture surfaces in three-dimensiondroken fuses are randomly distributed in the volume, thus
systems with weak disordef| = 0.5, i.e., macroscopic giving this geometric exponent. However, we also see that
fracture surfaces start to develop early in the fractureghere is a sudden crossover to a different behavior. This
process (localized fracture). To study universality issuess the crossover to the current driven regime. Figure 2,
we examined both positive and negative valueBpb =  furthermore, shows the development of the conductivity
+0.5. The idea is that, with such widely different distribu- but with ther = i/L?> and where the curves are shifted
tions, universal and nonuniversal properties will be clearlyto the right to coincide with the current driven curve for
distinguished. L = 48. We see that the data collapse in the current driven

Before turning to the question of fracture roughnessregime is excellent. This shows that in therrent driven
we report on some further results concerning the fractureegime the fracture surfaces evolve at the same rate for all
process. These results should be compared with those obizes and for both values @ (the two exponents and
tained earlier for the two-dimensional fuse model [17,18],2.13, are consistent). Fdp > 0 we find, in addition, that
and for a three-dimensional elastic bond-bending model
[19,20]. We find forD = 0.5 that N;, = L*¢, while for
D = —0.5 we find N, « L*!, whereN, is the total num-
ber of broken bonds. The exponeént is consistent with
2, the trivial geometrical exponent of a surface, indicat-
ing that most of the broken bonds for this case belong to
the fracture surface. The lack of universality for this ex- 2
ponent can be understood by examining the details of the .
formation of the fracture surface. Even though, for both
positive and negativ®, the simulations are done in the
localized phases, the fracture surfaces evolve differently
for each case. For the > 0, the distribution allows for
quite a few very weak bonds which must be broken before
the fracture surface starts to develop. This initial breaking
process is disorder dominated, and crosses over to current
dominated breaking after enough bonds have been broken. o L L : .
At the crossover point, the fracture surface starts to develop 7T
and spread. I_3ut at this point there are already many brg-5 1 Conductivity versus = i/L2'3 for L = 8 (200 re-
ken bonds which do not belong to the fracture surface angizations), 12 (200 realizations)16 (200 realizations)32 (64
which are randomly distributed in thv®lumeof the lattice.  realizations), and8 (21 realizations). Her® = —0.5.

D=-05
L=8,12,16,82,48
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3 . - - . . The universality of these exponents is very clear since the

\\\ \ collapse is excellent for both = 0.5 andD = —0.5. In
addition, Fig. 3 shows that the tweV characteristics are
complimentary in the sense that the slopes of the scaling
parts are identical.

Finally, we get to the roughness of the fracture surfaces.
Our three-dimensional lattice has the topology of &n
torus. We cut it open in such a way that the fracture
surface forms a square sheet, and we orient the surface
in such a way that the axis points along thd1,1,1)

L=8 direction, i.e., the mean current direction before any fuse
has burned out. We measure the typical length sdale

0 A
00 02 °'4m_a°"5 08 10 in thez direction using three different norms) (|Az|l, =

% 5 10 15 20 \/(Zi z})/N; — (3; z:/N,)?, wherez; is thez coordinate
tL® + shift of theith broken bond belonging to the fracture surface and
FIG. 2. Conductivity versug = i/L? plus a shift making Ns IS the total_'number of thesg]XIIAzllw = (max z; —
all curves collapse onto the = 48 data late in the fracture Min; z;); and (ii) the smallest eigenvalue of the moment of
process. The inset shows the conductivity as a function ofnertia tensor of the fracture surfadg,,. Figure 4 shows
1 =i/L*. The figures are based dn= 8 (200 realizations), W as a function of. based on these three norms for the two
12 (200 realizations)]6 (144 realizations)32 (62 realizations), types of disorder. Fob = 0.5, lattice sizes ard. = 8
and48 (20 realizations). Her® = 0.5. . ! L
12, 16, 32, 48 with 600, 200, 402, 146, 133, 37 realizations,
respectively, and forD = —0.5, the sizes arel. = 8,
the number of bonds to be broken in order to cross over ta2 16, 32, 48 with 300, 200, 200, 64, 21 realizations,
the current dominated regime scales the sanig’as The  respectively. The figure shows that there is no appreciable
value found in [18] isl.65 = 0.03 for the two-dimensional  difference in roughness between the two types of disorder
case. This is consistent with our result in one additionalised. There are strong finite-size corrections to the power
dimension. laws that the different kinds of roughness measures follow.
Figure 3 shows thé-V curves forD = *0.5andL =  However, the way these corrections affect the asymptotic
8,12, 16, 32, and 48. It shows clearly that the data followpower laws depends on the measures. Foi|thg|.., the
the scaling law [17] = L* f(VL™#), where we found the ~ effective roughness exponent approaches the asymptotic
best data collapse far = 2andg = 1. These values are one from above, while for thgAz||, and,,, measures, the
close to those found in [18] for two-dimensional systems gsymptotic roughness exponent is approached from below.
except that one must adtito «. This, of course, is |n Fig. 5, we show the effective roughness exponents,
not surprising since in three dimensions the current passefefined agin W(L') — InW(L)]/[InL’ — InL], based on
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FIG. 4. RoughnessW as a function of linear lattice size
FIG. 3. Thel-V characteristic forD = 0.5 and D = —0.5. L, where W has been estimated from) {|Az|l,, D = 0.5
The vertical axis show#/L? as a function ofV /L for L = 8, (circles) andD = —0.5 (plus); i) ||Azll., D = 0.5 (crosses)
12, 16, 32, and 48. Excellent data collapse is seen for thandD = —0.5 (squares); andi{) Imin, D = 0.5 (triangles) and
increasing part of the data. The number of configurations i = —0.5 (diamonds). The slope of the two straight lines
the same as Figs. 1 and 2. is 0.62.
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FIG. 5. Effective roughness exponedt;; as a function ofL
based onif ||Azll,, D = 0.5 (circles) andD = —0.5 (plus);
(i) 1Azll., D = 0.5 (squares) and> = —0.5 (crosses); and
(iii) I'min, D = 0.5 (triangles) and> = —0.5 (diamonds). The
two straight lines are guides to the eye.

disorders, plotted againgt~%7>. Two straight lines have
been added, which somewhat follow th&z||., D = 0.5

data and thdlAz|[,, D = 0.5 data. They act as guides to
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