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We report on large scale numerical simulations of fracture surfaces using random fuse networks for
two very different disorders. There are some properties and exponents that are different for the two
distributions, but others, notably theroughness exponents,seem universal. For the universal roughness
exponent we found a value ofz ­ 0.62 6 0.05. In contrast to what is observed in two dimensions,
this value is lower than that reported in experimental studies of brittle fractures, and rules out the
minimal-energy surface exponent,0.41 6 0.01. [S0031-9007(97)05002-3]
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During the past ten years or so, fracture mechanics
caught the interest of the physics community. It is a fie
of utmost technological importance, and at the same t
it poses fundamental questions on the interplay betw
disorder and dynamical effects. Early on, simple sta
models of brittle fracture, such as thefuse model[1],
were constructed and studied extensively with the limi
numerical tools of the time [2], which meant that on
small two-dimensional systems were accessible. E
so, several qualitative and some quantitative results w
obtained. Among the qualitative results, we may quote
existence of several types of fracture regimes depend
on the type of initial disorder in the system [3,4]. Th
most notable quantitative result was the roughness
cracks obtained using the random fuse model [5]. T
roughness, defined as a typical length scale associated
the direction perpendicular to the fracture plane, was fo
to scale with the linear size of the fracture plane to a pow
law with a roughness exponentz ­ 0.70 6 0.07 for a
wide class of different disorders. This exponent was la
measured for two-dimensional stackings of collapsi
cylinders [6] sz ø 0.73d, for paper tear lines [7]sz ­
0.68 6 0.05d, and for fractures in thin wood plates, whe
the grain structure was oriented parallel to the short a
sz ­ 0.68 6 0.04d [8].

In three dimensions, studies of the scaling properties
fracture surfaces started with the work of Mandelbrotet al.
[9]. Bouchaudet al. [10] suggested that the roughness e
ponent for brittle materials has a universal value close
0.8. Later experimental work on a wide range of materia
e.g., by Måløyet al. [11], gave results which were consis
tent with such a hypothesis. However, Milmanet al. [12]
contested this hypothesis, and supported their claims
atomic force microscope measurements of fracture
faces in crystalline metals. The picture that is emerg
today is one where there is a smaller roughness expone
about 0.4–0.5 at very small scales, which crosses over
higher valuesø0.8d at larger scales [13,14]. The small
roughness exponent has been associated with slow c
propagation, where dynamical effects are negligible, wh
0031-9007y98y80(2)y325(4)$15.00
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the higher crack speeds give rise to the higher value.
has been speculated that the smaller value is that of
minimum-energy surfaces [13], which by the best estima
of today is known to be0.41 6 0.01 [15]. We note that,
in two dimensions, the corresponding minimal-energy su
face problem leads to a roughness exponent equal to 2y3,
i.e., very close to that found in the fuse model.

Given the success of the fuse model in reproducing
experimentally observed roughness exponents in two
mensions, it is of great interest to test this model in thr
dimensions. As the fuse model does not contain any d
namical fracture properties, it is capable of isolating th
effect of the interplay between the stress distribution (mo
eled as an electrical current distribution) and the distrib
tion of local strengths in the material. It therefore mode
slow crack propagation. In particular, the hypothesis o
connection between the roughness exponent in this reg
and that of the minimal-energy surfaces can be tested.

The model is a three-dimensional lattice with the nea
neighbor sites connected by bonds, taken to be electr
fuses with identical resistance but whose burnout thre
olds are disordered. A fuse conducts until the curren
carries,i, exceeds the burnout (breaking) threshold,ic,
at which point it becomes irreversibly an insulator. Th
breaking thresholds,ic, are drawn from some probability
distribution (see below), and the potential difference acro
the L 3 L 3 L lattice is applied along a diagonal of th
cube, i.e., thes1, 1, 1d direction. The finite-size effects as
sociated with this choice are much smaller than taking t
potential difference along a major lattice axis. To redu
finite-size effects further, we used periodic boundary co
ditions in all directions, i.e., we do not use actual plan
electrodes attached to the lattice to apply the potential d
ference. Such electrodes greatly modify the behavior
the fracture surfaces in their neighborhood. Instead
use “ghost” sites that are not actually on the lattice to pr
duce the potential difference [16].

So, a potential difference is applied and the weak
fuse is broken. To recalculate the currents in the bon
after a fuse has blown, one solves the Kirchhoff equatio
© 1998 The American Physical Society 325
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by using the conjugate gradient algorithm, which is trivia
to parallelize efficiently. We did our simulations on th
Connection Machine CM5. The stopping condition w
that the residual error be less than10211.

The system sizes we studied went from83 to 483. The
number of realizations per lattice depended on its size
the type of disorder used, and the quantity studied.
list these numbers later on in the text.

The breaking thresholds were assigned by genera
random numbers uniformly distributed on the unit interv
and raising it to a powerD. This corresponds to a cumu
lative probability distributionPsicd ­ i1yjDj

c whenD . 0,
and Psicd ­ 1 2 i21yjDj

c when D , 0. The smaller the
value ofjDj, the smaller the disorder. Furthermore, wh
D . 0 the distribution of strengths has a power law ta
extending towards weak bonds (i.e., those with a sm
threshold), while whenD , 0 the tail extends towards
strong bonds. Depending on the value ofD, the two-
dimensional fuse model was shown to exhibit distin
classes of fracture behavior [4]. For small values ofjDj,
a macroscopic crack starts developing early in the fr
ture process, while whenjDj is large, a cloud of discon-
nected “microcracks” (blown fuses) develops before th
coalesce into a final macroscopic crack. In the current
per, we study the fracture surfaces in three-dimensio
systems with weak disorder,jDj ­ 0.5, i.e., macroscopic
fracture surfaces start to develop early in the fractu
process (localized fracture). To study universality issu
we examined both positive and negative values ofD, D ­
60.5. The idea is that, with such widely different distribu
tions, universal and nonuniversal properties will be clea
distinguished.

Before turning to the question of fracture roughne
we report on some further results concerning the fract
process. These results should be compared with those
tained earlier for the two-dimensional fuse model [17,1
and for a three-dimensional elastic bond-bending mo
[19,20]. We find forD ­ 0.5 that Nb ~ L2.6, while for
D ­ 20.5 we findNb ~ L2.1, whereNb is the total num-
ber of broken bonds. The exponent2.1 is consistent with
2, the trivial geometrical exponent of a surface, indica
ing that most of the broken bonds for this case belong
the fracture surface. The lack of universality for this e
ponent can be understood by examining the details of
formation of the fracture surface. Even though, for bo
positive and negativeD, the simulations are done in th
localized phases, the fracture surfaces evolve differe
for each case. For theD . 0, the distribution allows for
quite a few very weak bonds which must be broken bef
the fracture surface starts to develop. This initial break
process is disorder dominated, and crosses over to cu
dominated breaking after enough bonds have been bro
At the crossover point, the fracture surface starts to deve
and spread. But at this point there are already many b
ken bonds which do not belong to the fracture surface a
which are randomly distributed in thevolumeof the lattice.
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On the other hand, we found that forD , 0 the breaking
process starts out in the current dominated mode, for we
disorder, and so it is one of the very first broken bonds th
determine where the fracture surface will start spreadin
There are no broken bonds randomly distributed in the v
ume, in marked contrast with theD . 0 case. This result
and its explanation are in agreement with those of [18]
two dimensions.

This same effect is clearly seen if one examines t
evolution of the conductivity of the networks as a functio
of broken bonds. Figure 1 shows (forL ­ 8, 12, 16, 32,
48, D ­ 20.5) the conductivity as a function of “time,”
t ; iyLv , wherei is the number of broken bonds. We
see that the data collapse is very good forv ­ 2.13
throughout the fracture process (except at the very e
where the finite-size effects are appreciable). On the ot
hand, positiveD gives a very different picture. Figure 2
(inset) shows the conductivity versust ­ iyL3 for the
same sizes as the previous case, but forD ­ 0.5. We
see that, for times up tot ø 0.25, the data collapse is
excellent. In addition, we see that the scaling expone
3 simply corresponds to the geometric dimension. A
mentioned before, this is due to the fact that, for th
case, the early times are disorder driven and therefore
broken fuses are randomly distributed in the volume, th
giving this geometric exponent. However, we also see t
there is a sudden crossover to a different behavior. T
is the crossover to the current driven regime. Figure
furthermore, shows the development of the conductiv
but with the t ­ iyL2 and where the curves are shifte
to the right to coincide with the current driven curve fo
L ­ 48. We see that the data collapse in the current driv
regime is excellent. This shows that in thecurrent driven
regime the fracture surfaces evolve at the same rate for
sizes and for both values ofD (the two exponents,2 and
2.13, are consistent). ForD . 0 we find, in addition, that

FIG. 1. Conductivity versust ­ iyL2.13 for L ­ 8 (200 re-
alizations),12 (200 realizations),16 (200 realizations),32 (64
realizations), and48 (21 realizations). HereD ­ 20.5.
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FIG. 2. Conductivity versust ­ iyL2 plus a shift making
all curves collapse onto theL ­ 48 data late in the fracture
process. The inset shows the conductivity as a function
t ­ iyL3. The figures are based onL ­ 8 (200 realizations),
12 (200 realizations),16 (144 realizations),32 (62 realizations),
and48 (20 realizations). HereD ­ 0.5.

the number of bonds to be broken in order to cross ove
the current dominated regime scales the same asL2.7. The
value found in [18] is1.65 6 0.03 for the two-dimensional
case. This is consistent with our result in one additio
dimension.

Figure 3 shows theI-V curves forD ­ 60.5 andL ­
8, 12, 16, 32, and 48. It shows clearly that the data follo
the scaling law [17]I ­ LafsVL2bd, where we found the
best data collapse fora ­ 2 andb ­ 1. These values are
close to those found in [18] for two-dimensional system
except that one must add1 to a. This, of course, is
not surprising since in three dimensions the current pas
through a surface rather than a line as in two dimensio

FIG. 3. TheI-V characteristic forD ­ 0.5 and D ­ 20.5.
The vertical axis showsIyL2 as a function ofVyL for L ­ 8,
12, 16, 32, and 48. Excellent data collapse is seen for
increasing part of the data. The number of configurations
the same as Figs. 1 and 2.
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The universality of these exponents is very clear since t
collapse is excellent for bothD ­ 0.5 andD ­ 20.5. In
addition, Fig. 3 shows that the twoI-V characteristics are
complimentary in the sense that the slopes of the scali
parts are identical.

Finally, we get to the roughness of the fracture surface
Our three-dimensional lattice has the topology of anS3

torus. We cut it open in such a way that the fractur
surface forms a square sheet, and we orient the surfa
in such a way that thez axis points along thes1, 1, 1d
direction, i.e., the mean current direction before any fus
has burned out. We measure the typical length scaleW
in thez direction using three different norms: (i) kDzk2 ­q

s
P

i z2
i dyNs 2 s

P
i ziyNsd2, wherezi is thez coordinate

of theith broken bond belonging to the fracture surface an
Ns is the total number of these; (ii ) kDzk` ­ smaxi zi 2

mini zid; and (iii ) the smallest eigenvalue of the moment o
inertia tensor of the fracture surface,Imin. Figure 4 shows
W as a function ofL based on these three norms for the tw
types of disorder. ForD ­ 0.5, lattice sizes areL ­ 8,
12, 16, 32, 48 with 600, 200, 402, 146, 133, 37 realization
respectively, and forD ­ 20.5, the sizes areL ­ 8,
12, 16, 32, 48 with 300, 200, 200, 64, 21 realization
respectively. The figure shows that there is no appreciab
difference in roughness between the two types of disord
used. There are strong finite-size corrections to the pow
laws that the different kinds of roughness measures follo
However, the way these corrections affect the asympto
power laws depends on the measures. For thekDzk`, the
effective roughness exponent approaches the asympto
one from above, while for thekDzk2 andImin measures, the
asymptotic roughness exponent is approached from belo
In Fig. 5, we show the effective roughness exponent
defined asfln W sL0d 2 ln W sLdgyfln L0 2 ln Lg, based on
these measures for both theD ­ 0.5 and D ­ 20.5

FIG. 4. RoughnessW as a function of linear lattice size
L, where W has been estimated from (i) kDzk2, D ­ 0.5
(circles) andD ­ 20.5 (plus); (ii ) kDzk`, D ­ 0.5 (crosses)
andD ­ 20.5 (squares); and (iii ) Imin, D ­ 0.5 (triangles) and
D ­ 20.5 (diamonds). The slope of the two straight lines
is 0.62.
327
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FIG. 5. Effective roughness exponent,zeff as a function ofL
based on (i) kDzk2, D ­ 0.5 (circles) andD ­ 20.5 (plus);
(ii ) kDzk`, D ­ 0.5 (squares) andD ­ 20.5 (crosses); and
(iii ) Imin, D ­ 0.5 (triangles) andD ­ 20.5 (diamonds). The
two straight lines are guides to the eye.

disorders, plotted againstL020.75. Two straight lines have
been added, which somewhat follow thekDzk`, D ­ 0.5
data and thekDzk2, D ­ 0.5 data. They act as guides to
the eye. Based on this figure, we suggest an asympt
roughness exponent equal toz ­ 0.62 6 0.05 for both
disorders.

We see that this value is smaller than the value of 0
typically seen in large scale brittle fractures. It is, how
ever, also larger than the value seen at small scales, wh
is of the order 0.4–0.5. Our result,z ­ 0.62 6 0.05,
seems to rule out the minimal-energy exponent,0.41 6

0.01, advocated for slowly propagating cracks. Thu
the coincidence between the roughness exponent fo
in the two-dimensional fuse model and the correspond
minimal-energy problem seems fortuitous.
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