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Microwave Realization of the Hofstadter Butterfly
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The transmission of microwaves through an array of 100 scatterers inserted into a wavegu
studied. The length of each scatterer could be varied individually, thus allowing the realiza
of arbitrary scattering arrangements. For periodic sequences with varying period length the
transmission bands reproduced the Hofstadter butterfly, originally predicted for the spectra of cond
electrons in strong magnetic fields. In the experiment it was used that the same transfer m
formalism is applicable to both the microwave and the electronic systems. [S0031-9007(98)0578
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In 1976 Hofstadter [1] published a work on the spectra
of Bloch electrons on a two-dimensional lattice with
lattice constanta, and a perpendicularly applied uniform
magnetic fieldB. The spectra contain one single parame
ter a ­ a2eByh counting the number of magnetic flux
quanta per unit cell.

In the tight binding approximation the Schrödinger
equation of the system reduces to the Harper equation

cn11 1 2 coss2pna 2 a0dcn 1 cn21 ­ Ecn , (1)

wherecn is the wave function at siten, anda0 is a phase
associated with the linear momentum of the electron, su
perimposed on the cyclotron orbits in the magnetic field
E is the energy in normalized units. All possible eigenen
ergies of the Harper equation are in the range24 #

E # 4, where a may be restricted to the range0 #

a # 1. In fact, it is sufficient to consider the range
0 # a # 1y2, as the Harper equation is invariant under
the substitutiona ! 1 2 a. The Harper equation (1)
can alternatively be written in the formµ

cn11

cn

∂
­ Tn

µ
cn

cn21

∂
, (2)

with the transfer matrix

Tn ­

µ
E 2 2 coss2pna 2 a0d 21

1 0

∂
. (3)

The set of all eigenvalues of the Harper equation if plotted
in the sE, ad plane form the Hofstadter butterfly (see
Fig. 1 of Ref. [1]).

The unceasing interest in the system from the ver
beginning has its cause in the self-similar structure o
the butterfly. For rational valuesa ­ pyq the magnetic
unit cell is by a factorq larger than the lattice unit cell
causing a splitting of all electronic Bloch bands intoq
subbands. For irrational values ofa the spectra become
fractal and form a Cantor set, resulting in unusual leve
spacing distributions and diffusion properties [2] (for a
review see Ref. [3]).

For an experimental realization of the butterfly with
typical lattice spacings of some 0.1 nm magnetic fields
of about 105 T are necessary, which is far beyond the
0031-9007y98y80(15)y3232(4)$15.00
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technically accessible limit. The only way to circum
vent this problem is to use artificial superlattices, and,
fact, here first indications of a magnetic induced subba
splitting due to commensurability effects have been fou
[4,5]. Another possible system is one of Wigner crysta
formed by the crystallization of a two-dimensional elec
tron gas in a strong magnetic field under the influen
of the Coulomb repulsion. As the lattice constant of th
Wigner crystal depends on the filling factor of the ban
here, too, commensurability effects are expected and,
deed, observed [6]. In the mentioned works the splittin
of an electron band into two subbands is reported, b
measurements over a largera range were not performed
which is indispensable for an unambiguous identificatio
of the butterfly.

In the present paper a completely different idea is use
which yields the butterfly over the completea and en-
ergy range. The approach is based on an analogy
tween electronic and photonic systems, where conce
originally developed in solid state physics, such as ba
structures, and localization, are applied to the propagat
of the electromagnetic waves through periodic and ra
dom systems [7]. Microwave experiments showing ph
tonic band gaps in dielectric lattices have already be
performed by Yablonovitch and Gmitter [8] as well as b
McCall et al. [9]. Krug [10] and later Prange and Fish
man [11] proposed to study kicked quantum systems v
the propagation of light through optical fibers with modu
lated refraction indices.

In the present Letter, a nearby equivalence of t
Harper equation, and an equation describing the pro
gation of waves (in our case microwaves) in a on
dimensional array of scatterers is developed. Essentia
the same transfer matrix technique as for the Harp
equation can also be used to describe the propaga
of microwaves through a scattering array. In a on
dimensional waveguide with only one possible mode t
amplitudesan, bn of the waves propagating to the left an
to the right, respectively, are obtained fromµ

an11

bn11

∂
­ Tn

µ
an

bn

∂
, (4)
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FIG. 1. (a) Schematic view of the waveguide (a ­ 20 mm,
b ­ 10 mm). The microwaves are coupled in through th
left antenna, and the transmission through the waveguide w
100 scatterers (micrometer screws) is measured with the rig
antenna. At each end the waveguide is closed by microwa
absorbers. (b) Photograph of the apparatus.

where Tn is the transfer matrix associated with thenth
scatterer [see Fig. 1(a)]. From time-reversal symmet
follows that the transfer matrix can be written as

Tn ­

0@ 1
jtnj e

ısu1gnd ı
jrnj

jtn j e
2ıu

2ı
jrnj

jtnj e
ıu 1

jtnje
2ısu1gnd

1A , (5)

where jtnj, jrnj are the moduli of transmission, and
reflection amplitudes, obeyingjtnj2 1 jrnj2 ­ 1. gn is
the phase of the transmission amplitude.u ­ kdy2p is
the phase shift from the free propagation between t
scatterers, whered is the distance between the scatterer
andk the wave number.

For the casejTrsTndj , 2 both transfer matrices (5) and
(3) can be written in the form

Tn ­ eıfnsn , (6)

where

cosfn ­
cossu 1 gnd

jtnj
, (7)

sn ­
1

sinfn

0@ sinsu1gnd
jtnj

jrn j

jtn j e
2ıu

2
jrn j

jtn j e
ıu 2

sinsu1gnd
jtnj

1A , (8)

for the scattering system and

cosfn ­
E
2

2 coss2pna 2 a0d , (9)

sn ­
1

ı sinfn

µ
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1 cosfn

∂
, (10)
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FIG. 2. Transmission probability for a periodic scatterer a
rangement showing the forbidden and allowed Bloch bands.
(a) every third and in (b) every fourth scatterer was introduc
3 mm. The shown wave number range corresponds to the
quency range from 7.5 to 15 GHz.

for the Harper equation. Because ofssnd2 ­ 1 the
eigenvalues ofsn are11 and21. It is, hence, possible
to transformsn to the spin matrixsz .

For the casejTrsTndj , 2 the cn along the chain
of sites are therefore obtained by successive spi
rotations. If all Tn are equal, which is the case fo
a ­ 0, all rotations are about the same axis, and on
the phase of the wave function changes from site to s

FIG. 3. Transmission spectra for different periodic arrang
ments witha ­ 1yq, whereq ­ 1 (a), 2 (b), 4 (c), 8 (d), and
16 (e). In (a) the two main Bloch bands can be seen, each
which splits intoq ­ 2 subbands in (b). For larger values ofq
further band splitting is observed, but due to the strong abso
tion in the system not allq subbands can be seen.
3233
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This is the range of the allowed electronic bands. F
the casejTrsTndj . 2, on the other hand,fn becomes
imaginary, and the wave functions are exponential
damped. The same argumentation can be applied
the case of rationala valuespyq. Now the sequence
hTnj of transfer matrices is periodic with a period lengt
q. In this case the value of the trace of the produQq

n­1 Tn discriminates between the ranges of allowed an
forbidden bands.

It is this equivalence between the Harper equatio
(1) and (2) and Eq. (4) describing the propagation
microwaves through a one dimensional array of scatter
that is the basis for the microwave realization of th
Hofstadter butterfly. The forms of thesn are different
in the two cases, but this changes only the quantitati
behavior. The qualitative appearance of the spectra,
number of subbands, fractality, etc., is independent of t
exact form ofsn.

In the experiment a rectangular waveguide with dime
sionsa ­ 20 mm, b ­ 10 mm was used. 100 cylindri-
cal scatterers with a radius ofr ­ 2.5 mm, and a distance
r
of the

mission,
FIG. 4. Transmission spectra for a periodic arrangement of scatterers witha ranging from 0 to 1 in steps of 0.005. The uppe
part was obtained by reflection. All 100 scatterers were used. The first two Bloch bands are seen, showing two copies
Hofstadter butterfly. The spectra were converted to a grey scale, where black and white corresponds to high and low trans
respectively.
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of d ­ 20.5 mm, could be introduced into the waveguid
(see Fig. 1). The lengths of the scatterers could be v
ied with the help of micrometer screws. The upper pa
of the waveguide could be rotated against the lower on
thus allowing one to vary the position of the exit antenn
a feature which, however, was not yet used. The to
transmission through the empty waveguide (with all sca
terers removed) amounted to only about 15%. This rath
high loss is partly due to a mismatch of the antennas, a
partly due to the absorbers at the end of the waveguide.
these effects are considered, one obtains for the real tra
mission through the waveguide a value of about 70%.
the figures below the uncorrected transmission probab
ties are displayed. We measured in the frequency ran
where only the first mode can propagate, starting from t
cutoff frequency ofnmin ­ c

2a ø 7.5 GHz up tonmax ­
c
a ­ c

2b ø 15 GHz, where the propagation of the secon
mode becomes possible. In a microwave waveguide
dispersion relation is given byk ­ 2p

c

p
n2 2 n2

min. To
avoid a distortion of the spectra for low frequencies, fo
all data presented the wave numberk is used as abscissa
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in units of pyd, where d is the distance between the
scatterers.

To test the apparatus we started with periodic scatter
arrangements. As an example Fig. 2 shows two transm
sion measurements demonstrating clearly the allowed a
forbidden transmission bands.

In the context of the above-mentioned analogy one m
look upon the waveguide with a periodic arrangement
scatterers as a one-dimensional photonic crystal [8].

For the realization of the butterfly a periodic modula
tion of the lengths of the scatterers was applied with t
period length as a parameter. We did not vary, howev
the lengths according toln ­ l0 coss2pna 2 a0d but re-
placed the cosinusoidal variation by a rectangular one,

ln ­

Ω
0 for coss2pna 2 a0d # 0 ,
l0 for coss2pna 2 a0d . 0 ,

which was much easier to realize. In the experiment w
chosel0 ­ 3 mm anda0 ­ 0.

Figure 3 shows a selection of transmission spec
for different a ­ 1yq values. In 3(a) the first two
fundamental transmission bands are seen, correspond
to the first two Brillouin zones of the photonic crystal. In
3(b)–3(e) one finds the expected splitting into subban
although because of the increasing absorption in the low
and upper parts of the frequency range not all expectedq
subbands are observed.

The spectra are easier to interpret if the transmissi
probabilities are converted to a grey scale, and the sp
tra for different values ofa are plotted together. This has
been done in Fig. 4. Now the structure of the Hofstadt
butterfly is identified beyond all doubt, though the low an
the high wave number regions are disturbed by absorpti
Both two fundamental Bloch bands show a crosslike su
band splitting witha. This cross is the dominant structur
of the Hofstadter butterfly (see Fig. 1 of Ref. [1]). Th
new subbands again split crosslike. Self-similar structur
are observed up to a depth of about 3.

In Fig. 5 spectra are shown where only every seco
scatterer was used. Therefore now four Bloch bands
seen. Since only 50 scatterers were used, now less fra
details are seen as in Fig. 4, but instead the Hofstad
butterflies in the two middle Bloch bands are complet
and only the two outer bands are again disturbed
absorption.

As the experiment allows an easy realization of arb
trary scattering arrangements, questions of transmiss
and localization in random or pseudorandom [12] stru
tures may be studied equally well with the same appa
tus. The possibility to also measure the field distributio
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FIG. 5. As Fig. 4, but nowa was varied in steps of 0.02, and
only every second scatterer was used. Four Bloch bands a
seen, each showing the Hofstadter butterfly.

along the waveguide is an additional interesting featur
Our doubts in the beginning that the absorption coul
prevent meaningful results fortunately showed up to b
unfounded.

The experiment profited much from discussions with
S. Fishman, Haifa, on possible realizations of kicke
systems using microwave waveguides. This work wa
supported by the Deutsche Forschungsgemeinschaft v
the Sonderforschungsbereich “Nichtlineare Dynamik.”
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