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Importance of Local Pattern Properties in Spiral Defect Chaos
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(Received 16 October 1997)

We analyze experimental data from Rayleigh-Bénard convection in a large aspect ratio cell us
new, efficient method applicable to disordered striped patterns from biological, chemical, optical,
fluid systems. We present statistics of various local pattern properties such as the local wave-v
magnitude, local pattern orientation, and defect densities. Using these statistics, we provide quant
evidence demonstrating that the stability boundaries derived for infinite systems are applicable to
patches within disordered patterns. We also present the first experimental observation of multiple l
scales within spiral defect chaos. [S0031-9007(98)05734-2]

PACS numbers: 05.45.+b, 47.20.Lz, 47.52.+ j, 47.54.+r
otic
y
i-
for

ul-
of
ra-
r-

as
as
-
nt
ew
e-
ch
d
n-
e

From the ripples in windblown sand to the coats o
zebras, the natural world abounds with locally striped pa
terns. Such patterns have been of great interest throu
out history, and, in the last twenty years, scientists in
wide variety of fields have been studying the pattern
formed in well-controlled experiments that yield enor
mous quantities of high-precision data [1]. Experimen
involving phenomena as diverse as chemical reactions
shallow layers [2], ferromagnetic films [3], periodically
shaken layers of sand [4], excitations in the visual co
tex [5], ferrofluids confined between glass plates [6], an
block copolymer films [7] often display locally striped
patterns. For large aspect ratio systems (many stripes),
patterns are often spatially and temporally disordered b
are still locally striped as seen, for example, in Fig. 1(a
Fast, quantitative methods are needed to characterize
complex patterns as a function of experimental param
ters, as well as the dynamical behavior of patterns f
fixed experimental parameters.

In this Letter we present an efficient, quantitative rea
time method for calculating local pattern properties, an
r
FIG. 1(color). (a) Shadowgraph image of Rayleigh-Bénard convection with Prandtl numbers ­ 1 and reduced Rayleigh numbe
e ­ 0.805. The experimental cell is square of sizeG ­ Lyd ­ 100, whered is the depth of the cell andL is the lateral extent.
White indicates cold downflow, while black signals warm upflow. Red denotes regions for which the local wave numberjk

$s $xdj
exceeds the skewed-varicose instability line. (b) Local wave-director magnitudejk

$s$xdj and (c) local roll orientationus$xd for the
pattern shown in (a). (d) Shadowgraph image 10 s (ø4tT , where the vertical thermal diffusion time scaletT ­ d2yk andk is the
thermal diffusivity) after image shown in (a). (Figure shows only central88d 3 90d of cell.)
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we use these properties to analyze spatiotemporal cha
data from experimental Rayleigh-Bénard convection. B
computing the local wave-vector field, we provide exper
mental evidence that stability boundaries determined
infinite systems may applylocally within disordered pat-
terns. Our data also demonstrate the presence of m
tiple length scales within the spiral defect chaos state
Rayleigh-Bénard convection, perhaps providing a sepa
tion of short-scale highly chaotic dynamics and longe
scale phase behavior.

Local pattern properties.—The use of local pattern
properties to describe patterns similar to Fig. 1(a) w
previously explored by several researchers. As early
1983, Ahlerset al. measured local wave numbers in Tay
lor vortex flow to understand wave number readjustme
in response to changes in system parameters [8]. A f
years later, Heutmaker and Gollub [9] performed a d
tailed study of the wave-vector field and statistics su
as “roll bending” and “roll obliqueness” in stationary an
time-dependent patterns in circular Rayleigh-Bénard co
vection cells to understand the stability of convectiv
© 1998 The American Physical Society



VOLUME 80, NUMBER 15 P H Y S I C A L R E V I E W L E T T E R S 13 APRIL 1998

ce

ator
us

a

es
ld

ian

er
g
a

of
s of
h
cal
e
-
-
lly

at-

g
l-
ri-
lly
s-
s,

)
in

.
ty
at-

the
wn

e
a)
ss
e-
)
eas
(a).
patterns. More recently, Huet al. [10] proposed an order
parameter based on measurements of local wave numb
and curvatures for experimental pictures very similar
Fig. 1(a). In a numerical study of a model of Rayleigh
Bénard convection rotated about a vertical axis, Cro
et al. [11] computed local roll orientations to character
ize domain structure. Ouyang and Swinney [2] used t
local orientation to analyze patterns in a chemical reactio
diffusion system, and Gunaratneet al. [12] suggested an
invariant measure of disorder in locally striped pattern
In a set of recent papers, Newell and co-workers [13] ha
begun to use local wave numbers to study the behavior
phase-diffusion equations in the presence of defects.

These studies clearly demonstrated the potential u
ity of local pattern properties. Researchers used a
riety of methods including nonlinear least squares fi
to small patches of patterns [12], automated [10] a
semi-automated [9] determination of pattern “skeletons
modern wavelet-based procedures for determination
wave-vector fields [2,11,13], and visual identification o
spirals [14]. In this Letter we present a simple algorith
for the real-time quantitative analysis of patterns found
today’s large aspect ratio experiments, thus opening n
avenues of research on these systems.

A new method.—For patterns that are locally striped
we can approximate the fieldus $xd locally by

us $xd ­ As $xd cosffs$xdg , (1)

for which the local wave vector$ks $xd is defined via

$ks $xd ; $=fs$xd . (2)

Sufficiently far from defects, we expect that variation
in As $xd and $ks $xd are small compared to variations in
fs$xd. The components of the wave vector$ks $xd can then
be approximated well using simple partial derivative
Specifically,

jkxj2 ­ 2
≠2

xus $xd
us $xd

, (3)

wherekx ­ $k ? x̂ and≠2
x ; ≠2y≠x2.

Equation (3) and the analogous equation forjkyj2

yield only themagnitudesof the wave-vector components
kx and ky. From these magnitudes, the vector can b
specified in any of four directions. We note, howeve
that in a real field the wave vectorskx , kyd is equivalent
to s2kx , 2kyd; i.e., $ks $xd is actually adirector field k

$s $xd,
so we only need to determine the sign ofky relative to
kx. We find this using a mixed partial derivative. If we
choosekx . 0,

ky ­ 2jkyj sgn

√
≠xyus $xd

us $xd

!
, (4)

where sgnsyd ­ yyjyj and jky j is determined using the
equation analogous to Eq. (3).

Because this method is local, the effects of noise,
higher harmonics, and of amplitude and wave-vector var
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tions neglected in Eq. (1) are often noticeable. We redu
these effects by smoothing the director fieldk

$s $xd over
small regions. Thekx andky fields are first screened for
anomalous values due to defects or due to the denomim
us $xd in Eq. (3) approaching very close to zero. (The radi
of strong amplitude and wave-vector variations around
defect is aboutly2, wherel is approximately the average
wavelength in the pattern.) The few anomalous valu
are replaced by neighboring values. The director fie
k
$s $xd ­ kx 1 iky is then smoothed in two parts—k2s $xd ­
k2

x s $xd 1 k2
y s $xd and expfi2us$xdg, where us $xd is defined

implicitly through the relation expfius$xdg ­ k
$s $xdyjk

$s $xdj.
Each smoothing is accomplished using a simple Gauss
blur of radiusly2. This particular choice of the smoothing
radius removes most of the contributions from high
harmonics and amplitude variations without obscurin
variations on length scales larger than the order of
wavelength [15].

We have carefully tested our method on a variety
computer generated patterns, as well as on simulation
straight rolls in Rayleigh-Bénard convection, for whic
the root-mean-square deviation of the calculated lo
wave number from the known value was found to b
0.7%. For straight rolls filling an experimental Rayleigh
Bénard convection cell, the error in the local wave num
ber was less than the uncertainties in the experimenta
determined value from the power spectrum. For a p
tern of 512 3 512 pixels, the entire procedure, including
the calculation of the raw director field and the smoothin
of the field, takes about 1 s on a modern workstation. A
though in this Letter we present only patterns from expe
mental Rayleigh-Bénard convection, we have successfu
applied our method to patterns from a variety of other sy
tems, including vibrating sand layers, block copolymer
magnetic stripe domains, and ferrofluids.

Results.—The pattern (shadowgraph field) in Fig. 1(a
developed in a Rayleigh-Bénard convection experiment
which a horizontal layer of fluid of lateral extentL is con-
fined between two parallel plates with separationd and a
temperature differenceDT ­ Tbottom 2 Ttop . 0. (For
experimental details, see Ref. [16].) ForDT larger than
a critical valueDTc, a convective instability develops
In most situations studied experimentally, this instabili
leads to the development of a striped convective roll p
tern with a horizontal wave numberk ø pyd. For mod-
erate values of the control parametere ­ sT 2 TcdyTc

and large system sizes (i.e., many convection rolls),
spatiotemporal chaotic state of spiral defect chaos [sho
in Fig. 1(a)] is found.

Figure 1(b) shows the local wave-director magnitud
jk
$s $xdj at each point of the experimental data in Fig. 1(
[17]. The wave number is approximately constant acro
the pattern as indicated by the large regions of blu
green, but small localized regions of very high (red
wave number are interspersed throughout. These ar
correspond to the patches of compressed rolls in Fig. 1
3229
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The solid line in Fig. 2 is the distribution of local
wave-director magnitudes averaged over a period of 50
(about 28 horizontal thermal diffusion times). The theo
retically determined [18,19] and experimentally con
firmed [20] secondary stability boundaries are als
shown. A finite region of the distribution is above th
upper (skewed-varicose) stability boundary; howeve
no noticeable amount of the distribution is below th
lower (cross-roll) boundary. This is consistent wit
the observed dynamics showing defects formed throu
skewed-varicose instabilities and almost no cross-r
events; however, it is in direct contrast to the pow
spectrum (the circles), which has a finite region extendi
below the lower boundary. The broadening of the pow
spectrum (as compared to the local wave-number d
tribution) is not unexpected since the spectrum conta
global modes and needs to describe spatial variations
localized objects such as defects and grain boundar
However, it has been a common practice to use the pow
spectrum as an approximation to the local wave-numb
distribution. Figure 2 demonstrates that the power spe
trum should not be used in this manner for disorder
patterns such as in Fig. 1(a), since it would incorrect
suggest that the pattern contains regions of rolls w
wave numbers below the cross-roll instability.

Even though the stability boundaries shown in Fig.
are derived for a system with an infinite number of pa
allel straight rolls extending to infinity [18], one might
hope that the boundaries apply at least approximately
smaller regions of “almost” straight parallel rolls. As men
tioned above, we observed in the experimental dynam
numerous skewed-varicose events and almost no cro
roll events. These skewed-varicose events are, in fa
associated with regions in which the local wave numb
exceeds the skewed-varicose boundary. The red regi
in Fig. 1(a) are points with local wave numbers outsid
the theoretically stable range. Figure 1(d) shows the st
of the system 10 s after the state in Fig. 1(a). Durin
that time, several skewed varicose events produced p

FIG. 2. Probability densities of the local wave numbe
jk
$s$xdj (solid line) and the power spectral density (circles) fo
e ­ 0.805 computed from the central63d 3 62d region of
300 images each separated by 10 min (ø240tT ). Vertical
lines denote the lower (cross-roll) and upper (skewed-varico
stability boundaries.
3230
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of defects (regions marked by ellipses). Each of the
events occurred within the regions of unstable wave nu
ber in Fig. 1(a). This evidence suggests that even stabi
analyses performed in the infinite-extent limit may, at lea
approximately, apply locally.

In addition to the local wave-director magnitude, se
eral other fields can be computed. Figure 1(c) sho
the local orientation of the rollsus$xd for the pattern in
Fig. 1(a). The winding of the roll orientation about th
centers of spirals is particularly clear for the large sp
ral in the center of the picture. Knowledge of the loc
orientation of the rolls also allows the identification o
disclinations, which can be classified by the number of2p

rotations completed by the director as a defect is circle
Disclinations are easily found by the computer by calc
lating the winding ofus $xd along a closed circuit about the
point of interest. Figure 3(b) shows the average numb
of n ­ 11 defectsNd (spirals and targets) as a functio
of the control parametere, expressed as a spiral lengt
scalejd ­ sAyNdd1y2, where A is the area over which
spirals and targets are counted.

We have also computed azimuthally averaged au
correlation functions for the shadowgraph field and t
orientation field expfi2us $xdg. Correlation functions for
e ­ 0.805 are shown in Fig. 3(a); other values ofe yield
similar plots. For six values of the control parametere

and for both of the correlation functions, we determine
correlation lengthsj from the asymptotic exponentia
decay of the correlation function,CsDrd , exps2Dryjd.
As seen in Fig. 3, the correlation lengths corresponding

FIG. 3. (a) Azimuthally averaged two-point equal-time corre
lation functions of the orientation field expsi2ud and the high-
pass-filtered shadowgraph field. (b) Correlation lengths of t
orientation field and of the shadowgraph field. Also plotted
the scaled spiral length scalejdy3.5. Experimental details can
be found in Ref. [16].
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the orientation grow quite large ase is decreased. These
data signal that at least two independent length scales
present since the correlation length of the shadowgra
field itself are quite short and only change slightly ove
the same range ofe [16,21,22]. The new longer length
scale seems to agree well with the size of coherent stru
tures such as spirals within the pattern (and with typic
visual estimates of coherence lengths). In particular, t
spiral length scalejd coincides with the correlation length
of the orientation field to within a factor of order 1. Pre
liminary evidence from simulations of Rayleigh-Bénar
convection suggests that this longer length scale may a
be associated with the experimentally unobserved me
flow. In analogy to length scales discovered in other sp
tiotemporal chaotic states [22–25], we also speculate th
the shorter length scale may be associated with the sho
range chaotic dynamics.

We have presented a new, efficient method that a
lows real-time analysis of the local pattern properties
data gathered in modern large aspect ratio pattern-form
experiments involving biological, chemical, optical, an
fluid systems. We have provided quantitative experime
tal evidence that the secondary stability boundaries a
valid locally, and we have demonstrated the existen
of at least two length scales within the spatiotempor
chaotic state of spiral defect chaos.
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