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Importance of Local Pattern Properties in Spiral Defect Chaos
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We analyze experimental data from Rayleigh-Bénard convection in a large aspect ratio cell using a
new, efficient method applicable to disordered striped patterns from biological, chemical, optical, and
fluid systems. We present statistics of various local pattern properties such as the local wave-vector
magnitude, local pattern orientation, and defect densities. Using these statistics, we provide quantitative
evidence demonstrating that the stability boundaries derived for infinite systems are applicable to local
patches within disordered patterns. We also present the first experimental observation of multiple length
scales within spiral defect chaos. [S0031-9007(98)05734-2]

PACS numbers: 05.45.+b, 47.20.Lz, 47.52.+j, 47.54.+r

From the ripples in windblown sand to the coats ofwe use these properties to analyze spatiotemporal chaotic
zebras, the natural world abounds with locally striped patedata from experimental Rayleigh-Bénard convection. By
terns. Such patterns have been of great interest throughemputing the local wave-vector field, we provide experi-
out history, and, in the last twenty years, scientists in anental evidence that stability boundaries determined for
wide variety of fields have been studying the patternsnfinite systems may applipcally within disordered pat-
formed in well-controlled experiments that yield enor-terns. Our data also demonstrate the presence of mul-
mous quantities of high-precision data [1]. Experimentdiple length scales within the spiral defect chaos state of
involving phenomena as diverse as chemical reactions iRayleigh-Bénard convection, perhaps providing a separa-
shallow layers [2], ferromagnetic films [3], periodically tion of short-scale highly chaotic dynamics and longer-
shaken layers of sand [4], excitations in the visual corscale phase behavior.
tex [5], ferrofluids confined between glass plates [6], and Local pattern properties—The use of local pattern
block copolymer films [7] often display locally striped properties to describe patterns similar to Fig. 1(a) was
patterns. For large aspect ratio systems (many stripes), thgeviously explored by several researchers. As early as
patterns are often spatially and temporally disordered but983, Ahlerset al. measured local wave numbers in Tay-
are still locally striped as seen, for example, in Fig. 1(a)lor vortex flow to understand wave number readjustment
Fast, quantitative methods are needed to characterize tireresponse to changes in system parameters [8]. A few
complex patterns as a function of experimental parameyears later, Heutmaker and Gollub [9] performed a de-
ters, as well as the dynamical behavior of patterns fotailed study of the wave-vector field and statistics such
fixed experimental parameters. as “roll bending” and “roll obliqueness” in stationary and

In this Letter we present an efficient, quantitative real-time-dependent patterns in circular Rayleigh-Bénard con-
time method for calculating local pattern properties, andsection cells to understand the stability of convective

-/ 2

FIG. 1(color). (a) Shadowgraph image of Rayleigh-Bénard convection with Prandtl numiset and reduced Rayleigh number
€ = 0.805. The experimental cell is square of sike= L/d = 100, whered is the depth of the cell and is the lateral extent.
White indicates cold downflow, while black signals warm upflow. Red denotes regions for which the local wave f(@hiper
exceeds the skewed-varicose instability line. (b) Local wave-director magrii(ég and (c) local roll orientatiorg(3) for the
pattern shown in (a). (d) Shadowgraph image 1647, where the vertical thermal diffusion time scalg = d?/«k and« is the
thermal diffusivity) after image shown in (a). (Figure shows only cerggal X 90d of cell.)
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patterns. More recently, Het al. [10] proposed an order tions neglected in Eqg. (1) are often noticeable. We reduce
parameter based on measurements of local wave numbehese effects by smoothing the director fidldk) over
and curvatures for experimental pictures very similar tosmall regions. The, andk, fields are first screened for
Fig. 1(a). In a numerical study of a model of Rayleigh-anomalous values due to defects or due to the denomimator
Bénard convection rotated about a vertical axis, Cros&(x)in Eq. (3) approaching very close to zero. (The radius
et al.[11] computed local roll orientations to character- of strong amplitude and wave-vector variations around a
ize domain structure. Ouyang and Swinney [2] used the&lefect is abour /2, whereA is approximately the average
local orientation to analyze patterns in a chemical reactionwavelength in the pattern.) The few anomalous values
diffusion system, and Gunaratm al. [12] suggested an are replaced by neighboring values. The director field
invariant measure of disorder in locally striped patternsk(¥) = k, + ik, is then smoothed in two partsk2(x) =
In a set of recent papers, Newell and co-workers [13] havé?2(X) + kg(?c) and expi26(x)], where 6(x) is defined
begun to use local wave numbers to study the behavior amplicitly through the relation epé(x)] = %(x)/[k(¥)|.
phase-diffusion equations in the presence of defects. = Each smoothing is accomplished using a simple Gaussian
These studies clearly demonstrated the potential utilblur of radiusA/2. This particular choice of the smoothing
ity of local pattern properties. Researchers used a vaadius removes most of the contributions from higher
riety of methods including nonlinear least squares fitsharmonics and amplitude variations without obscuring
to small patches of patterns [12], automated [10] andsariations on length scales larger than the order of a
semi-automated [9] determination of pattern “skeletons,wavelength [15].
modern wavelet-based procedures for determination of We have carefully tested our method on a variety of
wave-vector fields [2,11,13], and visual identification of computer generated patterns, as well as on simulations of
spirals [14]. In this Letter we present a simple algorithmstraight rolls in Rayleigh-Bénard convection, for which
for the real-time quantitative analysis of patterns found inthe root-mean-square deviation of the calculated local
today’s large aspect ratio experiments, thus opening newave number from the known value was found to be

avenues of research on these systems. 0.7%. For straight rolls filling an experimental Rayleigh-
A new method—For patterns that are locally striped, Bénard convection cell, the error in the local wave num-
we can approximate the fieldx) locally by ber was less than the uncertainties in the experimentally
oy s . determined value from the power spectrum. For a pat-

u(x) = A(x)cod ()], (1) tern of512 x 512 pixels, the entire procedure, including

the calculation of the raw director field and the smoothing

. . of the field, takes about 1 s on a modern workstation. Al-

k(x) = Vo (x). (2)  though in this Letter we present only patterns from experi-
Sufficiently far from defects, we expect that variationsmen-tal Rayleigh-Bénard convection, we h_ave successfully
) . > . ' o . ~applied our method to patterns from a variety of other sys-
in A(x) and k(x) are small compared to variations in tgms including vibrating sand layers, block copolymers,

¢(x). The components of the wave vecidit) can then magnetic stripe domains, and ferrofluids.

be approximated well using simple partial derivatives. Results—The pattern (shadowgraph field) in Fig. 1(a)

for which the local wave vectd}(fc) is defined via

Specifically, . developed in a Rayleigh-Bénard convection experiment in
Ik ? = — 93 u(x) 3) which a horizontal layer of fluid of lateral extehtis con-
u(x) ’ fined between two parallel plates with separatiband a
wherek, = AN andaﬁ = 92/9x2. temperature differenc&7 = Tpotiom — Tiop > 0. (FOr

Equation (3) and the analogous equation fay|2 experimental details, see Ref. [16].) FAT larger than
yield only themagnitudesf the wave-vector components & critical valueAT,, a convective instability develops.
k. and k,. From these magnitudes, the vector can bdn most situations studied experimentally, this instability
specified in any of four directions. We note, however,'eads Fo the dgvelopment of a striped convective roll pat-
that in a real field the wave vectét,, k,) is equivalent (e With a horizontal wave numbér= 7 /d. For mod-

0 (—ke, —ky); .., k() is actually adirector field k%), ~ S'ate values of the control parameier= (T — T)/ T

so we only need to determine the sign kgf relative to and large system sizes (i.e., many convection rolls), the

k.. We find this using a mixed partial derivative. If we ;patlotemporal chaotic state of spiral defect chaos [shown

in Fig. 1(a)] is found.
choosek, > 0, 9. u(®) Figure 1(b) shows the local wave-director magnitude
ky = _lkyl 59’( = ) P

— (4) [k(x)| at each point of the experimental data in Fig. 1(a)
u(x) [17]. The wave number is approximately constant across
where sgfw) = v/|v| and |k,| is determined using the the pattern as indicated by the large regions of blue-
equation analogous to Eq. (3). green, but small localized regions of very high (red)

Because this method is local, the effects of noise, ofvave number are interspersed throughout. These areas
higher harmonics, and of amplitude and wave-vector variacorrespond to the patches of compressed rolls in Fig. 1(a).
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The solid line in Fig. 2 is the distribution of local of defects (regions marked by ellipses). Each of these
wave-director magnitudes averaged over a period of 50 bvents occurred within the regions of unstable wave num-
(about 28 horizontal thermal diffusion times). The theo-ber in Fig. 1(a). This evidence suggests that even stability
retically determined [18,19] and experimentally con-analyses performed in the infinite-extent limit may, at least
firmed [20] secondary stability boundaries are alsoapproximately, apply locally.
shown. A finite region of the distribution is above the In addition to the local wave-director magnitude, sev-
upper (skewed-varicose) stability boundary; howevergral other fields can be computed. Figure 1(c) shows
no noticeable amount of the distribution is below thethe local orientation of the rollg(x) for the pattern in
lower (cross-roll) boundary. This is consistent with Fig. 1(a). The winding of the roll orientation about the
the observed dynamics showing defects formed throughenters of spirals is particularly clear for the large spi-
skewed-varicose instabilities and almost no cross-roltal in the center of the picture. Knowledge of the local
events; however, it is in direct contrast to the powerorientation of the rolls also allows the identification of
spectrum (the circles), which has a finite region extendinglisclinations, which can be classified by the numbetof
below the lower boundary. The broadening of the powerotations completed by the director as a defect is circled.
spectrum (as compared to the local wave-number disbisclinations are easily found by the computer by calcu-
tribution) is not unexpected since the spectrum containfating the winding ofé (x) along a closed circuit about the
global modes and needs to describe spatial variations armbint of interest. Figure 3(b) shows the average number
localized objects such as defects and grain boundariesf » = +1 defectsN, (spirals and targets) as a function
However, it has been a common practice to use the powef the control parameteg, expressed as a spiral length
spectrum as an approximation to the local wave-numbescale ¢, = (A/N,)'/2, where A is the area over which
distribution. Figure 2 demonstrates that the power specspirals and targets are counted.
trum should not be used in this manner for disordered We have also computed azimuthally averaged auto-
patterns such as in Fig. 1(a), since it would incorrectlycorrelation functions for the shadowgraph field and the
suggest that the pattern contains regions of rolls withorientation field exp20(x)]. Correlation functions for
wave numbers below the cross-roll instability. e = 0.805 are shown in Fig. 3(a); other values ofyield

Even though the stability boundaries shown in Fig. 2similar plots. For six values of the control parameter
are derived for a system with an infinite humber of par-and for both of the correlation functions, we determined
allel straight rolls extending to infinity [18], one might correlation lengths¢é from the asymptotic exponential
hope that the boundaries apply at least approximately tdecay of the correlation functiod;(Ar) ~ exp(—Ar/£).
smaller regions of “almost” straight parallel rolls. As men- As seen in Fig. 3, the correlation lengths corresponding to
tioned above, we observed in the experimental dynamics
numerous skewed-varicose events and almost no cross-

roll events. These skewed-varicose events are, in fact, 0.0 §o - ; - ]
associated with regions in which the local wave number || Ry, ° Exp(i20) @
exceeds the skewed-varicose boundary. The red regions = -1.0 [ Ry, Shadowgraph field
in Fig. 1(a) are points with local wave numbers outside & A, @@y,
the theoretically stable range. Figure 1(d) shows the state £ -2.0 rlf|f\ oy,
of the system 10 s after the state in Fig. 1(a). During = so VN,
that time, several skewed varicose events produced pairs e (\ R
0 5 10 15 20 25
30 — —Ar (d) .
1.5 ¢ X V Defect (scaled) (®)
5 = A Exp(i26)
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FIG. 2. Probability densities of the local wave numberFIG. 3. (a) Azimuthally averaged two-point equal-time corre-
|k(x)| (solid line) and the power spectral density (circles) for lation functions of the orientation field epé) and the high-

e = 0.805 computed from the centrad3d X 62d region of pass-filtered shadowgraph field. (b) Correlation lengths of the
300 images each separated by 10 mm24077). Vertical  orientation field and of the shadowgraph field. Also plotted is
lines denote the lower (cross-roll) and upper (skewed-varicosehe scaled spiral length scalg/3.5. Experimental details can
stability boundaries. be found in Ref. [16].
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