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Elastic Moduli of a Single Quasicrystal of Decagonal Al-Ni-Co:
Evidence for Transverse Elastic Isotropy
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The single quasicrystal elastic modulicij of decagonal Al-Ni-Co were determined using resonant
ultrasound spectroscopy at selected fixed temperatures in the range between 5 and 290 K. Decagonal
Al-Ni-Co is found to be transversely elastically isotropic tos0.02 6 0.04d%. The elastic moduli
cijsT d exhibit weak temperature dependences. The elastic Debye temperatureQ

el
D calculated from

cij measured at 5 K agrees well with the thermodynamic Debye temperatureQ
th
D obtained from a low-

temperature specific-heat experiment. [S0031-9007(97)04988-0]

PACS numbers: 62.20.Dc, 61.44.Br, 65.40.+g
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Decagonal quasicrystals share structural properties w
solids exhibiting both periodic and quasiperiodic types
long-range translational order. They are periodic alo
the decagonal axis and quasiperiodic in the plane perp
dicular to it, thus exhibiting an unconventional structur
anisotropy. For decagonal quasicrystals in the Al-C
Co and Al-Ni-Co alloy systems (five-dimensional spa
group P105ymmc [1]) strong anisotropies of electrica
thermal, and optical conductivities have experimenta
been established [2,3].

We are not aware of any published data of the elas
moduli of a decagonal quasicrystal, and in this Let
we report the results of high precision measureme
of the complete set of the elastic modulicij of a
single quasicrystal of decagonal Al-Ni-Co using resona
ultrasound spectroscopy (RUS) [4,5], and find, with
remarkable level of confidence, this quasicrystal to
transversely elastically isotropic withins0.02 6 0.04d%.

For both decagonal Laue-symmetry classes10ym and
10ymmm, the elastic modulus matrix contains the fo
lowing nonzero components:c11 ­ c22, c33, c44 ­ c55,
c66 ­ 1

2 sc11 2 c12d, c12, and c13 ­ c23 [6]. The num-
ber of independent elastic modulicij is five, and these
are usually chosen to bec11, c33, c44, c12, andc13. The
equality c66 ­ 1

2 sc11 2 c12d reduces the number of in
dependent elastic modulicij that determine a deforma
tion in the quasiperiodic plane to two, as for an isotrop
medium. Thus, decagonal quasicrystals are expecte
be transversely elastically isotropic. Among periodically
ordered solids only hexagonal crystals are intrinsica
transversely elastically isotropic. For comparison, ico
hedral quasicrystals possess overall elastic isotropy;
a deformation is determined by two independent el
tic moduli [7–10] and for icosahedral Al-Cu-Li, elasti
isotropy has recently been verified to within 0.07% usi
the RUS technique by Spoor and co-workers [11].

We first briefly discuss the notion of transverse ela
tic isotropy and anisotropy in terms of the components
the elastic modulus matrix, and review the experimen
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approach of verifying whether or not a medium is tran
versely elastically isotropic. As an example, consider p
riodic crystals belonging to the tetragonal Laue-symme
class4ymmm, which have six independent elastic modu
These arec11 ­ c22, c33, c44 ­ c55, c66, c12, andc13 ­
c23. The elastic modulus matrix of the Laue class4ymmm
differs from that of a transversely isotropic solid only i
one respect, namely, that the elastic modulus combi
tion c11 2 c12 2 2c66 is nonzero. Therefore it is usefu
to compare transversely isotropic solids to the elastica
most similartetragonalcrystals. A convenient measure o
the deviation from transverse isotropy is the ratio

As ­
c11 2 c12

2c66
(1)

of the squares of the velocities of the pure shear wav
polarized in the (001) plane and propagating along t
[110] and [100] directions, respectively. We callAs

the azimuthal anisotropy of shear. We also define t
ratio of the squares of the velocities of the longitudin
waves propagating along the [110] and [100] direction
respectively, as the compressional anisotropyAc, i.e.,

Ac ­
c11 1 2c66 1 c12

2c11
. (2)

For transversely isotropic solidsAs ­ Ac ­ 1.
The Al71Ni16Co13 single quasicrystals were grown in

an alumina crucible using the self-flux method [3]. Sca
ning electron microscopy investigation of the as-grow
single quasicrystals did not reveal any grain boundar
or precipitates. An electron-diffraction experiment ha
indicated theS1 superstructure type of decagonal ord
and a negligible phason strain. One of the single qua
crystals was oriented using the back-reflection Laue te
nique and then polished into a rectangular parallelepip
with dimensions x ­ 1.963 mm, y ­ 1.215 mm, and
z ­ 1.192 mm, with x andy parallel to the twofold axes
and z parallel to the decagonal axis. The Laue patter
obtained from the lapped faces of the specimen have in
cated that the orientation of the faces with respect to
© 1998 The American Physical Society 321
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quasicrystal’s symmetry axes was within60.1 deg. From
the mass and the dimensions, the mass density of the sp
imen was determined to ber ­ 4.186 6 0.033 gycm3.

The resonant frequencies of the sample were measu
using the RUS technique [4,5] that uses free-body m
chanical resonances of small (ø1 mm) samples and allows
one to determine the complete elastic modulus matr
Because only very weak dry contacts between the corn
of the sample and the transducers are required, th
are no bond corrections, so that RUS typically provide
the highest absolute accuracy of any routine modul
measurement technique.

The room-temperature resonant frequency spectru
was measured using a commercial precision RUS pha
sensitive spectrometer [12]. The low-temperature da
were taken with an amplitude-only RUS spectromet
[13]. The resonant frequency spectra were measured
the frequency range between 1 and 3 MHz, in which
total of 30 resonances was observed. The quality fac
Q of our quasicrystal was in the range between 1500 a
2500 depending on the particular mode, indicating its hig
acoustic quality. The RUS frequency data were analyz
using a well-tested Lagrangian minimizationyLevenberg-
Marquardt code developed by one of us at LANL [14
that also provides error estimates based on the curvat
in n-dimensional space (wheren is the number of elastic
moduli) of the least-squares-fit elastic moduli. In all ou
fits we used the measured value of the mass densityr.
The fitting procedure was done by assuming that th
sample was a perfect parallelepiped with the faces align
parallel to the quasicrystal’s symmetry axes. The thr
sample dimensions were allowed to vary within25 mm
from the measured values; however, the same set of
best-fit dimensions was used for different fits.

Assuming that our quasicrystal has at least the Lau
symmetry4ymmm, so that there are at mostsix indepen-
dent componentscij of the elastic modulus tensor, we
determined the elastic modulicij shown in Table I. The
rms error for the data fitting was 0.11%, which indicate
excellent agreement between the measured and the ca
lated frequencies. We estimate our error in the pure sh
moduli c0 ­ 1

2 sc11 2 c12d andc66 to be 0.03%. We note
that the tetragonal fit producesc66 ­ 0.8845 dynycm2.
This implies an azimuthal anisotropy of shearAs of
1.0002 6 0.0004, indicating almost perfect isotropy, as
is expected for a decagonal quasicrystal. The deviati
i
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TABLE I. Room temperature elastic moduli of decagonal Al-Ni-Co and of hexagonal NbS2.
Units are in1012 dynycm2; n is the number of independent elastic moduli.

n c11 c33 c44 c66 c12 c13

Al-Ni-Co 6 2.3430 2.3221 0.7019 0.8845 0.5736 0.666
Al-Ni-Co 5 2.3433 2.3222 0.7019 0.8846 0.5741 0.666
Al-Ni-Co a 5 2.4199 2.4019 0.7282 0.9175 0.5849 0.666
NbSi2 6 3.8223 4.6802 1.4474 1.5267 0.8124 0.880

aT ­ 5 K.
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of As from unity is less than our estimated errors. Thu
our quasicrystal is transversely elastically isotropic
s0.02 6 0.04d%. The compressional anisotropyAc is
0.9999 6 0.0002, again indicating remarkable isotropy.

It is instructive to compare the experimentally dete
mined azimuthal anisotropy ratiosAs and Ac of Al-Ni-
Co with those of a transversely isotropic periodic crysta
We reanalyzed previously published RUS results for
hexagonal C40 NbSi2 single crystal [15] in the way de-
scribed above, i.e., assuming that at mostsix elastic
moduli are independent. For NbSi2, the tetragonal fit pro-
ducescij as shown in Table I that are consistent wit
a shear anisotropyAs ­ 0.9858 6 0.0023 and a com-
pressional anisotropyAc ­ 1.0057 6 0.0009. For both
ratios, the deviations from unity are much larger tha
the experimental errors, which can be attributed to sm
amounts of internal strain or other slight sample defec
Sample flaws and preparation errors hamper the iden
cation of transverse elastic isotropy for hexagonal NbS2,
but not for decagonal Al-Ni-Co. Therefore, the she
anisotropy ratio provides an upper bound for our expe
mental sensitivity to anisotropy and we can estimate tra
verse elastic anisotropy in decagonal Al-Ni-Co to be le
than s0.02 6 0.04d%. In order to highlight the experi-
mental uncertainties of our analysis using the tetrago
4ymmm fit, in Fig. 1 we plotAc 2 1 versusAs 2 1 for
both materials.

We also measured the resonant frequency spectra of
specimen of decagonal Al-Ni-Co at selected fixed tem
peratures in the range between 5 and 290 K. Since
have experimentally established transverse elastic isotr
of decagonal Al-Ni-Co, the spectra were fitted assumi
five independent elastic moduli. The elastic modulicij

obtained from this fitting are shown in Fig. 2 as function
of temperatureT , revealing thatcijsT d are only weakly
temperature dependent. The elastic modulicij deduced
from the resonant frequency spectra measured at 5 an
290 K are also given in Table I.

We now determine the degree of polar elast
anisotropy, i.e., the deviation from complete elast
isotropy. For transversely isotropic solids, two param
ters may be used to quantify polar anisotropy, i.e
the compressional anisotropyPc ­ c33yc11 and the
anisotropy of shearPs ­ c44yc66. For decagonal Al-
Ni-Co Pc ­ 0.991 and Ps ­ 0.794, revealing rather
unexpectedly, a very weak polar elastic anisotropy. F
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FIG. 1. Ac 2 1 vs As 2 1 for decagonal Al-Ni-Co and for
hexagonal NbSi2. Error bars are shown as boxes.

these two parameters a value of 1 indicates ela
isotropy. We note that the compressional anisotro
Pc ­ 0.991 is very close to unity. Since the elast
moduli c11 and c33 are closely related to potentia
between atoms, this may imply almost equally stro
atomic bonds along the periodic direction and in t
quasiperiodic plane, supporting theoretical expectati
considering a universal local order in decagonal a
icosahedral quasicrystals [16].

A useful construction emphasizing elastic anisotro
is the constant frequency or slowness surface, wh
s
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FIG. 2. Elastic modulicij as functions of temperature.

may be obtained by solving the Christoffel equation [1
inserting the experimentally determined elastic mod
cij and the mass densityr. There are three sheet
of the slowness surface, commonly labeled accordi
to the polarization of the corresponding acoustic wave
quasilongitudinal (L) for the inner sheet, and pure shea
(T1) and quasishear (T2) for the two outer sheets. For
transversely isotropic solids, the slownessesqiyv are
given by [18]

r

µ
qT1

v

∂22

­ c44 1
1
2

c sin2 u , (3)
r

µ
qL,T2

v

∂22

­ c44 1
1
2

ha sin2 u 1 h cos2 u 6 fsa sin2 u 1 h cos2 ud2 2 4sah 2 d2d sin2 u cos2 ug
1

2 j , (4)
at
s

where u is the angle between the polar axisz and
the wave vectorq, and the parametersa, c, d, and h
are defined as follows:a ­ c11 2 c44, c ­ c11 2 c12 2

2c44, d ­ c13 1 c44, and h ­ c33 2 c44. Transverse
isotropy makes the slowness surface circularly symme
about the zonal axisz and in Fig. 3 we show the zona
section of the slowness surface obtained from Eqs.
and (4) using the room-temperature values of ela
moduli cij . As Fig. 3 reveals, the form of the sheets
the slowness surface again implies a rather weak p
anisotropy, in agreement with our estimates of the po
anisotropy parametersPc andPs.

We may also estimate the elastic moduli of a rando
macroscopically isotropic aggregate of quasicrystals fr
the single quasicrystal elastic moduli. The isotropic b
modulusK and shear modulusG can be obtained by av
eraging either the elastic modulicij (Voigt [19]) or the
elastic compliancessij (Reuss [20]). The isotropic mod
uli obtained from the room-temperature elastic modulicij

are shown in Table II. The Voigt and the Reuss av
ages represent the lowest upper and the highest lo
bound, respectively, for the aggregate, and the close ag
ment between the two sets of values reflects the relativ
low polar anisotropy of the single quasicrystal. We no
the small Poisson’s ration ­ 0.229, indicating that inter-
tric
l
(3)
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f
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atomic forces in decagonal Al-Ni-Co are noncentral (n ­
0.25 is the lower limit for a central-force solid [21]).

Finally, we calculate the low-temperature specific he
CphsT d due to lattice excitations. At low temperature

FIG. 3. Zonal section of slowness surface.
323
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TABLE II. Room-temperature isotropic elastic moduli. Unit
are in1012 dynycm2.

Averaging scheme K G

Voigt 1.2025 0.7978
Reuss 1.2022 0.7891

only the long-wavelength acoustic modes contribute
CphsT d, which takes the form

CphsTd ­
2p2k4

B

5h̄3y3
s

T 3, (5)

where1yy3
s is the average of the inverse third power of th

phase velocitiesyisqd of the three acoustic modes:
1

y3
s

­
1
3

3X
i­1

Z 1

y
3
i sud

sinu du

2
. (6)

Using the elastic modulicij obtained at 5 K we deduce the
average sound velocityys to bes4.91 6 0.02d 3 103 mys
[22]. Inserting this value into Eq. (5) leads to an acou
tic contribution to the low-temperature specific heatCph ­
s8.93 6 0.11dT3 3 1026 Jymol K, in fair agreement with
the term bT 3 ­ s9.5 6 0.6dT3 3 1026 Jymol K of the
low-temperature specific heat measured on this same s
imen [3]. This is quite in contrast to the icosahedr
Al-Mn-Pd and Al-Re-Pd quasicrystals, for which the ex
istence of a large excess cubic-in-T contribution to the
low-temperature specific heatCpsT d has recently been
established [23].

It is common to characterize the acoustic specific he
of crystals using the Debye temperatureQD . We note,
however, that for a quasicrystal a common definition
QD involving the number of atoms per unit cell is no
unambiguous. We defineQD of a quasicrystal as

QD ­
h̄
kB

µ
6p2N0

V

∂1y3

ys , (7)

whereN0 is the number of atoms in a volumeV . Em-
ploying this definition we deduce the elasticQ

el
D and the

thermodynamicQth
D Debye temperatures of decagonal A

Ni-Co to be 601.5 6 3.2 and 589 6 13 K [3], respec-
tively, in good agreement with each other.

To summarize, we reiterate that for a single quasicrys
of decagonal Al-Ni-Co we measured resonant ultrasou
frequency spectra at selected fixed temperatures in
temperature range between 5 and 290 K. From t
analysis of these spectra we have shown decagonal Al-
Co to be transversely elastically isotropic withins0.02 6

0.04d%. The weak polar anisotropy indicates that als
this decagonal quasicrystal is close to being elastica
isotropic, a rather unexpected result of this study. T
elastic modulicij depend only weakly on temperature
The elastic Debye temperatureQel

D calculated using
cij as determined from the frequency scans taken
5 K agrees, within the experimental accuracy, with th
thermodynamic Debye temperatureQ

th
D .
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