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Hyperspherical Symmetry of Hydrogenic Orbitals and Recoupling Coefficients
among Alternative Bases
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Fock’s representation of momentum space hydrogenic orbitals in terms of harmonics on
hypersphereS3 of a four-dimensional space is extended to classify alternative bases. These orb
are of interest for Sturmian expansions of use in atomic and molecular structure calculations and
the description of atoms in fields. Because of the correspondence between theS3 manifold and the
SUs2d group, new sum rules are established which are of relevance for the connection, not only am
hydrogen atom orbitals in different bases, but also among the usual vector coupling coefficients
rotation matrix elements. [S0031-9007(98)05785-8]
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The motivation of the classification reported in thi
study of hyperspherical harmonics of the four dimension
rotation group Os4d is in the spirit of investigations (pre-
sented, e.g., in preceding papers [1,2]), where the possi
ity is considered of exploiting different parametrization
of theSn hypersphere to build up alternative “natural” [3
or Sturmian [4] basis sets. Their symmetry and comple
ness properties make them in fact adapt to solve quant
mechanical problems, where the hyperspherical symme
of the kinetic energy operator is broken by the intera
tion potential, but the corresponding perturbation matr
elements can be worked out explicitly, as in the case
Coulomb interactions.

Traditional hydrogenic orbitals used in atomic an
molecular physics as expansion bases belong to thejnlml
representation, which in configuration space correspon
to separation in polar coordinates, and in momentu
space to a separation in spherical coordinates on
(Fock’s) hypersphereS3 [5]. The jnlml basis will be
called spherical in the following. Stark statesjnmml
have also been used for atoms in fields and correspo
to separation in parabolic coordinates on ordinary spa
and in cylindrical coordinates onS3 (for their use for
expanding molecular orbitals, see Ref. [1]). A third basi
to be termedZeemanstates and denotedjnlml, has been
introduced more recently by Labarthe [6] and has foun
increasing applications [7].

In the following, we classify the different bases and pa
special attention to the connections among them. Sin
in momentum space the orbitals are simply related
hyperspherical harmonics, these connections are given
orthogonal matrix elements similar (when not identica
to the familiar elements of angular momentum algebr
such as Wigner’s rotation matrices and vector couplin
coefficients. Here we display connecting coefficients in
symmetric graph and as a bonus we can express the ove
between spherical and Zeeman states, originally derived
a sum of the product of two vector coupling coefficien
[6], as a single sum. This coefficientZnm

ll , introduced in
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Eq. (3) below, looks like an interesting “hybrid” addition
to the “zoo” of angular momentum theory: It involves both
angular momentum quantities as well as their projection
(as in a vector coupling coefficient or 3-j symbol), and is
orthonormal with respect to summations over two angula
momentum such as quantum numbers (as in a recoupli
Racah’s coefficient or 6-j symbol).

In 1935, Fock [8] discovered that the wave function o
a hydrogen atomjnlml in momentum space, as can be
obtained by Fourier transform from configuration space
can be related to four-dimensional spherical harmonic
i.e., eigenfunctions of the Laplace operator onS3. Thus
theprincipal quantum numbern (which labels the energy
spectrum) can appropriately be interpreted as ahyperan-
gular momentumquantum number, manifesting that the
hidden symmetrygiving rise to theaccidental degener-
acyemerging in the three-dimensional configuration spac
treatment is actually a four-dimensional symmetry, whic
has been analyzed and discussed in various papers
reviews [10], and books [11]. The properly normalized
hyperspherical harmonics, here appearing as Fourier tra
forms of hydrogenic Sturmians [1,12], find their role as
atomic orbitals and expansion basis sets in an increasi
number of applications [13].

Let us now consider the overlap between thespherical
and theStark basis. For the latter, the momentum space
eigenfunctions, which in configuration space correspon
to variable separation in parabolic coordinates, are sim
larly related to alternative hyperspherical harmonics [1
The connecting coefficient betweenspherical and Stark
basis is formally identical to a usual vector coupling co
efficient, as was first shown by Park [14] in configuration
space (from now onn is omitted from the notation):

klmjmml ­ s21dsn211m2mdy2
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for any allowedn, n $ l 1 1 and n $ jmj 1 jmj 1 1
[15]. The relationship between the two bases is mo
clearly understood in the four-dimensional momentu
space. Such a space involves four orthogonal ax
(x, y, z, w), and three (hyper)angles are needed to param
trize the unit hypersphereS3. Therefore one can define
planes by coupling the axes according to two ba
cally different sequences, say, with an obvious mea
ing of symbology,fsxydzgw (leading by permutations to
96 possible different choices of this type) andsxyd szwd
(24 possibilities) [16]. For all of the 120 distinct sys
tems of spherical coordinates, harmonics (i.e., solutions
Laplace equation onS3) can be written explicitly in terms
of Jacobi polynomials or their particular cases (see, e
Ref. [17]). The jlml and jmml bases are seen to belong
to the first and second class, respectively[18].

In the four-dimensional sphereS3, to rotations on the
six planesxy, xz, yz, wx, wy, wz, there correspond six ro-
tation operators, three of which are conveniently identifi
with the angular momentum components in physical spa
Lz , Ly , Lx and the others with the reduced Runge-Le
vector componentsKx , Ky , Kz [for any bound state of en-
ergy E in atomic units, one hasK ­ s22Ed1y2A, where
A is the Runge-Lenz vector [9]]. The correspondin
eigenvalues will be indicated withm, m0, m00, m00, m0, m.

The eigenvalue of the quadratic operatorsL2
z 1 L2

x 1

L2
y 1 K2

x 1 K2
y 1 K2

z d is n2 2 1 and gives the energy
spectrum of the hydrogen atom. Four quadratic operat
arise from rotations in the four-tridimensional subspace
xyz, xyw, xzw, andyzw. One of them,L2 ­ L2

x 1 L2
y 1

L2
z , is obviously the orbital angular momentum operat

with eigenvalueslsl 1 1d and the integerl ranging from
0 to n 2 1. The other three operators, where the ax
w comes into play, are the squared angular mome
K2

x 1 K2
y 1 L2

z , K2
x 1 L2

y 1 K2
z , and L2

x 1 K2
y 1 K2

z ,
with eigenvalues here denotedlsl 1 1d, l0sl0 1 1d,
and l00sl00 1 1d, respectively,l, l0, l00 having the same
ranges asl. In each tridimensional subspace we can al
select two axes to define a plane and the remaining o
plays the role of the polar axis. Any change of the pol
axis, say, from thez axis (m projection quantum number)
to the y axis (m0 projection quantum number) can b
performed by means of a Wigner’s rotation matrix:

klmjlm0l ­ s2dm2m0

D l
mm0

µ
p

2
,

p

2
, p

∂
­ sidmdl

mm0

µ
p

2

∂
. (2)

In this way every spherical coordinate set, correspond
to the canonical chain reduction [18] of thefsxydzgw type,
is related to a hyperspherical harmonic (and therefore t
momentum space hydrogenic orbital) labeled byn, by the
eigenvalue of the rotation operator of one of the tridime
sional subspaces and by the eigenvalue of one of its p
jections. Because of the fact that for the identification o
plane or of a three-dimensional space it is only necess
to specify the involved axes and not their sequence,
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different systems of hyperspherical coordinates, identif
ing the same plane, there correspond the same harmon
[19]. This enumeration leads to 12 different harmonic
starting from the 96 coupling schemes for the variable
[16] among which are the polar basisjlml and the
Zeeman basisjlml, the other corresponding to different
angular momenta (l0 or l00) or to different projection op-
erators (m0, m00, m, m0, m00). Similarly, the 24 systems of
coupling schemes for the coordinates parametrizing t
decoupled chain reduction lead to only three differen
bases:jmml, jm0m0l, jm00m00l.

We now turn to the classification of the connecting co
efficients among the 15 distinct bases, which can be c
culated by direct integration [20] and illustrated in a grap
(as in Fig. 1). Three types of transformation coefficien
occur: (i) vector coupling coefficients [Eq. (1)], connect
ing bases which belong to different chain reduction
(ii) the rotation matrix elements [Eq. (2)], which change
the polar axis; (iii) the third type of coefficient which,

FIG. 1. The 15 bases are represented at the crossings of
lines in a projective plane (also shown is Leonardo’s view
of the corresponding polyhedron, which he calls ”truncate
dodecahedron”). Bases occur at vertices of 10 triangles a
6 pentagons, and the sides represent connecting coefficie
They can be classified as (i) vector coupling coefficien
[solid segments, e.g.,klmjmml, Eq. (1) in the text], (ii) ro-
tation matrix elements [dotted segments, Eq. (2)], (iii)Z
coefficients [zig-zag segments, Eq. (3)]. Straight lines an
pentagons imply sum rules involving five coefficients suc
as

P
mlklm0jlml klmjlml klmjlm0l klm0jm0m0l ­ klm0jm0m0l

from which Eqs. (6) and (7) in the text follow. Sum rules suc
as

P
lklmjlml klmjmml ­ klmjmml can be read from 6 of the

triangles and lead, e.g., to Eq. (5) in the text. The other fo
triangles lead to sum rules such as, for eachl (and similarly
for any of thel’s),

P
m00klm0jlm00l klm00jlml ­ klm0jlml.
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apart from a normalizing phase, will be calledZ,
klmjlml ­ s21dl1lZnm

ll , connecting the polar and
Zeeman basis (or any two bases with different thre
dimensional angular momenta). This coefficient has be
previously defined indirectly through the steps: Spheric
e-
en
al

basis! Stark basis! Zeeman basis and calculated a
a sum on two vector coupling coefficients [6,7]. B
direct integration or by specializing overlap coefficien
between alternative harmonics [21], we are able to wr
it directly as a single sum of the Racah type:
21],
g.
entum
s

-term

e sides

of a
Z
n,m
l,l ­ fCsldCsldg1y2

X
r

s2drGsm1l1psld11
2 1 rd s n2m2psld2psld21

2 2 rd! Gs m1l1psld11
2 1 rd

r! s l2m2psld
2 2 rd! s l2m2psld

2 2 rd! s n1m1psld1psld11
2 1 rd! sm 1 rd!

, (3)

where

Cskd ­
s n1k21

2 1 pskdd! f k1m
2 2 qskdg! f k2m

2 2 qskdg! Gf n2k
2 1 pskdg

Gfn1k12
2 1 pskdgGf m1k11

2 1 qskdgGf k2m11
2 1 qskdg f n2k21

2 2 pskdg!
,

pskd ­ 2
1 1 s21dk2n

4
and qskd ­

s21dk2m 2 1
4

.

Note thatZ
n,m
l,l is zero whenn 1 l 1 l 1 m is evenand shows the symmetriesZ

n,m
l,l ­ Z

n,2m
l,l andZ

n,m
l,l ­ Z

n,m
l,l . The

sum in (3) [22] is a hypergeometric function4F3 of unit argument and can be connected with Racah polynomials [
although it cannot be reduced to the ordinary Racah’s or 6-j coefficient which performs angular momentum recouplin
Indeed, like a Racah’s recoupling coefficient it is orthogonal with respect to summation on two angular mom
quantum numbers (l andl), but contains a projection quantum number. TheZ coefficient can be compactly written a
a generalized6-j symbol [23]:

Z
n,m
l,l ­ s2dsl1ldy2111psld1psld

sµ
l 1

1
2

∂ µ
l 1

1
2

∂ (
psld 2

1
4

n21
2

l

2 2
1
4

psld 2
1
4

m21
2

l
2 2

1
4

)
(4)

and enjoys most properties of ordinary 6-j symbols, such as several recurrence relationships [24], including a three
one which allows accurate and efficient calculations [25] even for high values of the arguments.

Figure 1 also shows how sum rules and expansion formulas for this coefficient can be derived. Following th
of the triangle wherem is conserved,Z

n,m
l,l can be written as a sum involving two Clebsch-Gordan coefficients:

Z
n,m
l,l ­

X
m

s2da
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(the phasea ­
n212m2m

2 1 l 1 l is an integer: If it were omitted, the sum would bedll). We recognize on the right
hand sidethe transformation coefficient used for the definition of the Zeeman basis[6].

An alternative sum rule can be obtained from Fig. 1, following the sides of a pentagon (or equivalently
straight line):

Z
n,m
l,l ­

X
m0,m0

s21dm01m0

dl
m0,m

µ
p

2

∂
dl

m,m0

µ
p

2

∂ ø
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2
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¿
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This formula, or equivalently

dl
m,m0

µ
p

2

∂
Z
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belongs to the family of well-known “pentagonal” rela
tionships of angular momentum theory [26], such as
Biedenharn and Elliott identity (but also the Clebsc
Gordan series itself). Other sum rules can be derived fr
Fig. 1 (some of them are well known, as the addition fo
mula for rotation matrices, obtained following the sides
the triangle wherel is conserved). Thus Fig. 1 represen
an “abacus” to obtainrelationships among ordinary ele
ments of angular momentum algebra, augmented by thZ
coefficient. Figure 1 is a projective plane representatio
RP2, where lengths of segments or values of angles are
-
the
h-
om
r-
of
ts
-
e
n,
not

meaningful. A visualization of its symmetry can be mad
by mapping the graph on the surface of a sphere, whe
the six lines become six great circles. (From this spher
where each face, side, and vertex appears twice,RP2 is
obtained by identifying antipodes). The correspondin
semiregular solid is an Archimedean polyhedron, the icos
dodecahedron (20 triangles and 12 pentagons), which
Fig. 1 is depicted reproducing a drawing from the collec
tion of tables which Leonardo da Vinci prepared for th
lecture notes of Luca Pacioli on the golden section (De
Divina Proportione, Venice, 1502).
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The classification presented in this paper is expected
be of help for choosing appropriate basis sets for problem
such as those involving fields where the hypersphe
cal symmetry is broken, but the perturbation Hamiltonia
can still be written in terms of the generators of the fou
dimensional group. The new coefficientZ

n,m
l,l that we have

introduced connects directly the usual spherical basis a
the Zeemanbasis jlml, useful for the treatment of the
hydrogen atom diamagnetism [6,7] and of the behavior
Rydberg atoms in a magnetic field [6,27]. Still unexplore
are bases of thejlm0l type. Further extensions will
concern classifications of harmonics on higher spheres
view of their relationships with multidimensional hydroge
atom orbitals [2] which are relevant as many-electron a
molecular orbital expansion basis sets. The connect
coefficients will be of interest as elements of hyperangu
momentum algebra and as discrete analogs of hypersph
cal harmonics, which are their high quantum numb
(semiclassical) limits. As such, they are basic tools f
the numerical implementation of the “hyperquantization
algorithm [13].
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