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Hyperspherical Symmetry of Hydrogenic Orbitals and Recoupling Coefficients
among Alternative Bases
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Fock’s representation of momentum space hydrogenic orbitals in terms of harmonics on the
hyperspheres? of a four-dimensional space is extended to classify alternative bases. These orbitals
are of interest for Sturmian expansions of use in atomic and molecular structure calculations and for
the description of atoms in fields. Because of the correspondence betwesh thanifold and the
SU(2) group, new sum rules are established which are of relevance for the connection, not only among
hydrogen atom orbitals in different bases, but also among the usual vector coupling coefficients and
rotation matrix elements. [S0031-9007(98)05785-8]

PACS numbers: 31.15.—p, 03.65.—w

The motivation of the classification reported in this Eqg. (3) below, looks like an interesting “hybrid” addition
study of hyperspherical harmonics of the four dimensionato the “zoo” of angular momentum theory: Itinvolves both
rotation group @) is in the spirit of investigations (pre- angular momentum quantities as well as their projections
sented, e.g., in preceding papers [1,2]), where the possibi{as in a vector coupling coefficient or;3symbol), and is
ity is considered of exploiting different parametrizationsorthonormal with respect to summations over two angular
of the " hypersphere to build up alternative “natural” [3] momentum such as quantum numbers (as in a recoupling
or Sturmian [4] basis sets. Their symmetry and completeRacah’s coefficient or g-symbol).
ness properties make them in fact adapt to solve quantum In 1935, Fock [8] discovered that the wave function of
mechanical problems, where the hyperspherical symmetrg hydrogen atormn/m) in momentum space, as can be
of the kinetic energy operator is broken by the interac-obtained by Fourier transform from configuration space,
tion potential, but the corresponding perturbation matrixcan be related to four-dimensional spherical harmonics,
elements can be worked out explicitly, as in the case of.e., eigenfunctions of the Laplace operator h Thus
Coulomb interactions. the principal quantum numbet (which labels the energy

Traditional hydrogenic orbitals used in atomic andspectrum) can appropriately be interpreted ds/peran-
molecular physics as expansion bases belong tivthw®)  gular momentunguantum number, manifesting that the
representation, which in configuration space correspondsidden symmetrgiving rise to theaccidental degener-
to separation in polar coordinates, and in momentunacyemerging in the three-dimensional configuration space
space to a separation in spherical coordinates on thieeatment is actually a four-dimensional symmetry, which
(Fock’s) hyperspheres? [5]. The |nim) basis will be has been analyzed and discussed in various papers [9],
called spherical in the following. Stark states|num)  reviews [10], and books [11]. The properly normalized
have also been used for atoms in fields and corresponttyperspherical harmonics, here appearing as Fourier trans-
to separation in parabolic coordinates on ordinary spact®rms of hydrogenic Sturmians [1,12], find their role as
and in cylindrical coordinates oS3 (for their use for atomic orbitals and expansion basis sets in an increasing
expanding molecular orbitals, see Ref. [1]). A third basisnhumber of applications [13].
to be termedZeemarstates and denotdd Am), has been Let us now consider the overlap between spderical
introduced more recently by Labarthe [6] and has foundand theStark basis. For the latter, the momentum space
increasing applications [7]. eigenfunctions, which in configuration space correspond

In the following, we classify the different bases and payto variable separation in parabolic coordinates, are simi-
special attention to the connections among them. Sinckarly related to alternative hyperspherical harmonics [1].
in momentum space the orbitals are simply related ta'he connecting coefficient betweepherical and Stark
hyperspherical harmonics, these connections are given tasis is formally identical to a usual vector coupling co-
orthogonal matrix elements similar (when not identical)efficient, as was first shown by Park [14] in configuration
to the familiar elements of angular momentum algebraspace (from now om is omitted from the notation):

such as Wigner’s rotation matrices and vector coupling (Im|pum) = (—1)n=1Tm=w)/2

coefficients. Here we display connecting coefficients in a

symmetric graph and as a bonus we can express the overlap X <”_1J — ﬂ;

between spherical and Zeeman states, originally derived as 2 2

a sum of the product of two vector coupling coefficients n—1—m pu

[6], as a single sum. This coefficieft,", introduced in T Ty ‘ lO> (1)
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for any allowedn, n =1 + 1 andn = |m| + |u| + 1  different systems of hyperspherical coordinates, identify-
[15]. The relationship between the two bases is mosing the same plane, there correspond the same harmonics
clearly understood in the four-dimensional momentum[19]. This enumeration leads to 12 different harmonics
space. Such a space involves four orthogonal axestarting from the 96 coupling schemes for the variables
(x,y,z,w), and three (hyper)angles are needed to paramgi6] among which are the polar basigm) and the
trize the unit hyperspher§®. Therefore one can define Zeeman basi$Am), the other corresponding to different
planes by coupling the axes according to two basiangular momentaX{ or A”) or to different projection op-
cally different sequences, say, with an obvious meanerators '/, m”, w, u', u”). Similarly, the 24 systems of
ing of symbology,[(xy)z]w (leading by permutations to coupling schemes for the coordinates parametrizing the
96 possible different choices of this type) a6d) (zw)  decoupled chain reduction lead to only three different
(24 possibilities) [16]. For all of the 120 distinct sys- basesimu), |m'u'), |m" u'").
tems of spherical coordinates, harmonics (i.e., solutions to We now turn to the classification of the connecting co-
Laplace equation 06%) can be written explicitly in terms  efficients among the 15 distinct bases, which can be cal-
of Jacobi polynomials or their particular cases (see, e.gculated by direct integration [20] and illustrated in a graph
Ref. [17]). Thel|lm) and |um) bases are seen to belong (as in Fig. 1). Three types of transformation coefficients
to the first and second class, respectividlg]. occur: (i) vector coupling coefficients [Eqg. (1)], connect-
In the four-dimensional spher§’, to rotations on the ing bases which belong to different chain reductions;
six planesxy, xz, yz, wx, wy, wz, there correspond six ro- (ii) the rotation matrix elements [Eq. (2)], which change
tation operators, three of which are conveniently identifiedhe polar axis; (iii) the third type of coefficient which,
with the angular momentum components in physical space
L. L, L, and the others with the reduced Runge-Lenz
vector component&,, K, K, [for any bound state of en-
ergy E in atomic units, one haK = (—2E)'/2A, where
A is the Runge-Lenz vector [9]]. The corresponding
eigenvalues will be indicated with, m’, m”, ", u', u.
The eigenvalue of the quadratic operathe + L2 +
L} + K7 + K} + K2) is n* — 1 and gives the energy
spectrum of the hydrogen atom. Four quadratic operators
arise from rotations in the four-tridimensional subspaces,
xyz, xyw, xzw, andyzw. One of them/? = Li + L% +
L2, is obviously the orbital angular momentum operator
with eigenvalued(/ + 1) and the integef ranging from i
0 to n — 1. The other three operators, where the axis —
w comes into play, are the squared angular momenta
K? + K} + L2, K} + Ly + K2, and L} + K} + K?,
with eigenvalues here denotedl(A + 1), A'(A’ + 1),
and A”(A" + 1), respectively,A, A/, A" having the same
ranges as. In each tridimensional subspace we can also
select two axes to define a plane and the remaining one
plays the role of the polar axis. Any change of the polar
axis, say, from the axis (n projection quantum number)
to the y axis (n’ projection gquantum number) can be
performed by means of a Wigner's rotation matrix:

(Im|lm'y = (_)m*m’Dl /(1 K 7T> FIG. 1. The 15 bases are represented at the crossings of six
mm\ 5’9’ lines in a projective plane (also shown is Leonardo’s view
of the corresponding polyhedron, which he calls "truncated
_ (i)mdl <1> ) dodecahedron”). Bases occur at vertices of 10 triangles and
2 ) 6 pentagons, and the sides represent connecting coefficients.

In this way every spherical coordinate set, correspondingn€y can be classified as (i) vector coupling coefficients

: . . olid segments, e.g{lm|mu), Eq. (1) in the text], (ii) ro-
to the canonical chain reduction [18] of they)z]w type, tation mgtrix emmgéts [d'gt>ted qség)ments, Eq. %2)5,)03)

is related to a hyperspherical harmonic (and therefore to goefficients [zig-zag segments, Eq. (3)]. Straight lines and
momentum space hydrogenic orbital) labeledibypy the  pentagons imply sum rules involving five coefficients such
eigenvalue of the rotation operator of one of the tridimenas 2., {m/|lm) {im|Am) (Am|Ap') (A w'm’) = (Im'|w'm’)

sional subspaces and by the eigenvalue of one of its prdtem which Egs. (6) and (7) in the text follow. Sum rules such

jections. Because of the fact that for the identification of aﬁisaznéfézlgfg %thméf é'ztél"ézf’(% Ci?]nﬂ,?g trg)?[('al f%n; %getrh%ur

plane or of a three-dimensional space it is only necessatyiangles lead to sum rules such as, for eactand similarly
to specify the involved axes and not their sequence, téor any of thex’s), >.,.«{Im/|lm"y (Im" |Im) = {Im’|Im).

3210



VOLUME 80, NUMBER 15 PHYSICAL REVIEW LETTERS 13 ARIL 1998

apart from a normalizing phase, will be called, basis— Stark basis— Zeeman basis and calculated as
(Im|Am) = (—=1)!**Z/", connecting the polar and a sum on two vector coupling coefficients [6,7]. By
Zeeman basis (or any two bases with different threedirect integration or by specializing overlap coefficients
dimensional angular momenta). This coefficient has beehetween alternative harmonics [21], we are able to write
previously defined indirectly through the steps: Spheriq:alt directly as a single sum of the Racah type:

_)rr(% + r)(n—m—p(lz)—ﬂ(/\)—l _ i‘)! I-(m+/\+2p(/\)+1 I i‘)

21 = [cme 2y L

rr!

©)

(l—mz—p(l) _ r)!(/\—mz—p(/\) _ r)!(n+1n+p(12)+p(/\)+l + r)'(m + r)' ’

where

ntk— k+m k—m n—k

("o + U 5" — g 5" — (I TS + p(k)]
P52+ pOINES + g5 + g5 — p(]

1+ (=Dk (=D —1
k)= ————— —_— .

p(k) 2 2
Note thatZ;y" is zero whem + [ + A + m is evenand shows the symmetrigg," = Z;, " andZz;\" = Z)7". The
sum in (3) [22] is a hypergeometric functiqirs of unit argument and can be connected with Racah polynomials [21],
although it cannot be reduced to the ordinary Racah’s pcéefficient which performs angular momentum recoupling.
Indeed, like a Racah’s recoupling coefficient it is orthogonal with respect to summation on two angular momentum

guantum numberd @nd A), but contains a projection quantum number. Theoefficient can be compactly written as
ageneralized-j symbol [23]:
1 1 -+ =t -1
ZI = (=)D ) <l N _> <A N _)[P - 1 ] @)
’ 2 2/lp) -3 & 2- 7
and enjoys most properties of ordinary &ymbols, such as several recurrence relationships [24], including a three-term
one which allows accurate and efficient calculations [25] even for high values of the arguments.

Figure 1 also shows how sum rules and expansion formulas for this coefficient can be derived. Following the sides
of the triangle wherex is conservedz;’}" can be written as a sum involving two Clebsch-Gordan coefficients:

nm of/n—1+m n—1—m n—1+m n—1—m
ap = S LT A e ALY E TP P
"

Ck) =

and g(k) =

0|~ >

2 27 2 2 27 2
(the phaser = “~15"~% + | + Ais an integer: If it were omitted, the sum would Bg). We recognize on the right

hand sidehe transformation coefficient used for the definition of the Zeeman [&jsis _
An alternative sum rule can be obtained from Fig. 1, following the sides of a pentagon (or equivalently of a

straight line):
I —14+m uwn-1-m u
zZy = —wrmgl <1>d" ,<1><n7,——,7,—;l,0>
1A m/zl‘;/( ) mm\ o mu'\ o ) D) ) )

n—14+u m n—-1-u m >
(LT M TR 0). 6
< 2 2 2 2 ©)
This formula, or equivalently
nm ) —1+m uw n-1-m u
d! ,<1>Z’ = S (-1t ,<1><"—,——,—,—;z,o>
mm'\ o)A g( w5 2 2 2 2
n—14+u m n—-—1-—u m >
x(i——# BEI- "B R 7
< 2 ’ 2 > 2 s 2 > ’0 ’ ( )

belongs to the family of well-known “pentagonal” rela- meaningful. A visualization of its symmetry can be made
tionships of angular momentum theory [26], such as thdy mapping the graph on the surface of a sphere, where
Biedenharn and Elliott identity (but also the Clebsch-the six lines become six great circles. (From this sphere,
Gordan series itself). Other sum rules can be derived frorwhere each face, side, and vertex appears twR@®, is

Fig. 1 (some of them are well known, as the addition for-obtained by identifying antipodes). The corresponding
mula for rotation matrices, obtained following the sides ofsemiregular solid is an Archimedean polyhedron, the icosi-
the triangle wheré is conserved). Thus Fig. 1 representsdodecahedron (20 triangles and 12 pentagons), which in
an “abacus” to obtaimelationships among ordinary ele- Fig. 1 is depicted reproducing a drawing from the collec-
ments of angular momentum algebra, augmented by the tion of tables which Leonardo da Vinci prepared for the
coefficient. Figure 1 is a projective plane representation,lecture notes of Luca Pacioli on the golden sectibe (
RP?, where lengths of segments or values of angles are n@ivina Proportiong Venice, 1502).
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The classification presented in this paper is expected to
be of help for choosing appropriate basis sets for problems, B.R. Judd, Angular Momentum Theory for Diatomic
such as those involving fields where the hyperspheri-  Molecules(Academic Press, New York, 1975).
cal symmetry is broken, but the perturbation Hamiltonian[12] J- Avery and D.R. Herschbach, Int. J. Quantum Chén.
can still be written in terms of the geng{rgtors of the four-[13] ?/73A(qll?i?azr3t'i s. cavalli C. Coletti. D. De Fazio. and
dimensional group. The new coefficiefity that we have ' N S ' ;
introduced connects directly the usual spherical basis and Sy g rZSST"S;SigeQ’/V SM eég%%i '?D %uagél:srgh{)giﬁwggsd\] S
the Zeemanbasis |Am), useful for the treatment of the o "N JoRy o ' o

. - - Avery (Kluwer, Dordrecht, 1996), pp. 233-250.
hydrogen atom diamagnetism [6,7] and of the behavior of1 4] p. park, z. Phys36, 155 (1960).

(Addison-Wesley, Reading, MA, 1981), pp. 335-364;

Rydberg atoms in a magnetic field [6,27]. Still unexplored[15] In Ref. [1] relationships among alternative no-
are bases of théau') type. Further extensions will tatons for “parabolic’ quantum numbers are
concern classifications of harmonics on higher spheres in  presented.  Expression (1) is preferred for the
view of their relationships with multidimensional hydrogen form of the coefficient rather than{lm|um) =
atom orbitals [2] which are relevant as many-electron and (=)0~ w/2("5L Mol L MUY ), which s

normally found in literature and from which it follows
by Regge’'s symmetry [1]. This leads to the physical
interpretation of the transformation as one to a body fixed
reference frame, where the quantization axis is such that

molecular orbital expansion basis sets. The connecting
coefficients will be of interest as elements of hyperangular
momentum algebra and as discrete analogs of hyperspheri-
cal harmonics, which are their high quantum number : o

. . S . the orbital angular momentum has zero projection and
(semiclassical) limits. As such, they are basic tools for appears as helicity quantum number.

the numerical implementation of the “hyperquantization”[16] N. P. Klepikov, Sov. J. Nucl. Phyd9, 462 (1974).

algorithm [13]. [17] V. Aquilanti, S. Cavalli, and G. Grossi, J. Chem. Phg5,
Discussion with Jakub Zakrzewski, and support from 1362 (1986).
MURST and CNR of Italy and the TMR program [18] The two classes are also a manifestation of the two
of EU [Contract No. ERB-FMRX-CT96-0088] are basic reduction chains for the four dimensional rotation
acknowledged. group [9], the canonical O(4) D O(3) D O(2) and the
decoupledO(4) = O(2) X O(2). Other reduction chains
lead to separations of coordinates, but not to explicit form
for the eigenfunctions. Similarly, in configuration space,
spheroidal coordinates lead to separation. For progress in
solving the corresponding tridiagonal eigenvalue problem,
see S.M. Sung and D.R. Herschbach, J. Chem. P%ys.
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